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Abstract: Many food products are subjected to quality control analyses for detection of 

surface residue/contaminants, and there is a trend of requiring more and more 

documentation and reporting by farmers regarding their use of pesticides. Recent outbreaks 

of food borne illnesses have been a major contributor to this trend. With a growing need 

for food safety measures and ―smart applications‖ of insecticides, it is important to develop 

methods for rapid and accurate assessments of surface residues on food and feed items. As 

a model system, we investigated detection of a miticide applied to maize leaves and its 

miticidal bioactivity over time, and we compared two types of reflectance data: fourier 

transformed infrared (FTIR) data and hyperspectral imaging (HI) data. The miticide 

(bifenazate) was applied at a commercial field rate to maize leaves in the field, with or 

without application of a surfactant, and with or without application of a simulated ―rain 

event‖. In addition, we collected FTIR and HI from untreated control leaves (total of five 

treatments). Maize leaf data were collected at seven time intervals from 0 to 48 hours after 

application. FTIR data were analyzed using conventional analysis of variance of  

miticide-specific vibration peaks. Two unique FTIR vibration peaks were associated with 

miticide application (1,700 cm
−1

 and 763 cm
−1

). The integrated intensities of these two 
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peaks, miticide application, surfactant, rain event, time between miticide application, and 

rain event were used as explanatory variables in a linear multi-regression fit to spider mite 

mortality. The same linear multi-regression approach was applied to variogram parameters 

derived from HI data in five selected spectral bands (664, 683, 706, 740, and 747 nm). For 

each spectral band, we conducted a spatial structure analysis, and the three standard 

variogram parameters (―sill‖, ―range‖, and ―nugget‖) were examined as possible 

―indicators‖ of miticide bioactivity. We demonstrated that both FTIR peaks and standard 

variogram parameters could be used to accurately predict spider mite mortality, but linear 

multi-regression fits based on standard variogram parameters had the highest accuracy and 

were successfully validated with independent data. Based on experimental manipulation of 

HI data, the use of spatial structure analysis in classification of HI data was discussed. 

Keywords: hyperspectral imaging; fourier transformed infrared analysis; variogram 

analysis; residue analysis; miticide 

 

1. Introduction 

Many food products are subjected to quality control analyses before sold to consumers, and there is 

a trend of requiring more and more documentation and reporting by farmers regarding their use of 

pesticides. At the same time, reflectance-based quality control systems are becoming increasingly 

more versatile, robust and more affordable. Pesticide and contaminant (i.e., fecal) residues and surface 

defects on vegetables and fruits [1-4] and meat [5] are of particular interest due to recent concerns 

about outbreaks of food borne illnesses [3]. Thus, among farmers, crop consultants, extension services, 

food processors, food distributors, and agricultural inspection entities there is a need for real-time tools 

to detect and quantify pesticides and other surface residues on food and feed materials. Precision 

agriculture [6,7], food quality and safety [8-11], and pharmaceutical industries [12] are just some of 

the areas in which reflectance-based analysis is becoming increasingly important. It is obviously 

important to continue improving the quality and robustness of spectral sensors, but it is equally 

important to develop classification algorithms that allow accurate, rapid and reliable processing and 

analysis of large reflectance data sets. Objects reflect electromagnetic energy according to their 

chemical composition, particle size, physical structure, and temperature [13], and different chemical 

bonds absorb and transmit light in uniquely different ways. The acquired signal of reflected 

electromagnetic energy is determined by the illumination source, projection angle, and type of spectral 

sensor. Reflection from a theoretically constant light source constitutes a ―radiometric fingerprint‖, 

which are compared with reflectance data from training data set and subsequently 

classified/distinguished based on their chemical or physical properties. The driving factors behind 

widespread implementation of reflectance-based systems are: (1) data is acquired, processed and 

analyzed real-time due to increasingly faster and more powerful telecommunication systems and 

computer processing, (2) data acquisition is non-destructive, (3) labor intensive chemical procedures 

and/or qualitative/subjective evaluation procedures can be automated and replaced by quantitative 

standards, and (4) the technology is becoming increasingly cost-effective.  



Remote Sensing 2010, 2               

 

910 

Fourier Transform Infrared spectroscopy (FTIR) is a rapid, non-destructive technique that can 

quantitatively detect a range of functional groups in the sample. It has been successfully used to 

investigate contaminated cotton fibers and yarn defects [14,15]. Furthermore, FTIR has emerged as a 

key technique for the study of plant growth and development [16-25]. Hyperspectral imaging (HI) data 

are acquired with line-scanning devices in which individual pixels are associated with a reflectance 

profile with reflectance values in narrow wavelength bands. Most HI sensors collect reflectance or 

transmission data within 350–2,500 nm (visible and near-infrared spectra).  

Standard analytical approaches used in analysis of reflectance data include (see [9] for review): 

discriminant analysis [10,11,26], principal component analysis [3,21,26-28], multi-regression 

approaches, like partial least square (PLS) [12,29,30], use of spectral band ratios (indices) [3,31-33], 

decision trees [34], artificial neural networks [17,28,34], and support vector machines [8,35]. One 

common denominator in all of these analytical approaches is that they do not incorporate—or take 

advantage of —the spatial information available in a HI data.  

Figure 1. Variogram illustrates relationship of distance between paired observations (lag 

distance) and variance, and variogram analysis is used to determine three parameters 

(―Nugget‖, ―Range‖, and ―Sill‖).  
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Spatial structure analysis can be conducted with reflectance data from HI cubes, because each pixel 

(hyperspectral profile) is associated with a set of x- and y-coordinates. Basically, the spatial structure 

of a data set describes how individual observations at individual points (in this case relative reflectance 

values in a single spectral band at a particular location within an image cube) are associated with their 

geographic position within the sampling universe. This geostatistical approach to imaging analyses is 

based on variogram analysis [36-39] which describes the distance between paired observations and the 

variance of observations of these paired observations (Figure 1). The spatial structure of a data set is 

either random or non-random. Random, or lack of spatial dependence, means that the variance of data 

is independent of the geographical distance between paired trap locations. Consequently, the curve fit 

is a straight line denoted ―pure nugget variogram‖ [37] (dotted line in Figure 1). A data set with  

non-random spatial structure, shows spatial dependence [37,40] or spatial continuity [36], which 
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means that data points close to each other are generally more similar than observations at locations 

further apart. Spatial dependence is linear (dashed line in Figure 1) when the variance in counts 

increases proportionally with lag distance, or asymptotic when the variance of counts levels off after a 

certain lag distance and becomes constant (solid line in Figure 1). Asymptotic spatial dependence is 

the most commonly observed phenomenon, because it suggests that data points are spatially correlated 

up to a certain distance and then become uncorrelated. Once the variogram has been generated, a 

regression curve fit is used to characterize the spatial structure, and this regression fit includes three 

standard parameters, ―nugget‖, ―range‖, and ―sill‖. The nugget represents an estimate of the variance 

between observations collected at ―zero distance apart‖, which equals the noise or stochasticity in the 

data set. The range is an estimate of the maximum distance at which point observations are spatially 

auto-correlated, beyond this distance point observations are to be considered spatially uncorrelated. As 

the distance between point observations increase, the variance asymptotically approaches the sill, 

which is an estimate of the total variance explained within the spatial structure analysis. For instance, 

in ecology, it is often seen that environmental observations collected in close proximity to each other 

are more similar than observations collected further apart. Thus, variance among paired observations is 

correlated to the distance between points. Analysis of the spatial structure of reflectance values in a 

single spectral band can be used as indicator of plant stress [41]. The underlying assumption in these 

studies is that reflectance data from a healthy crop leaf are more uniform than those acquired from a 

stressed crop leaves. A change in variance among adjacent spectral profiles will inherently cause a 

change in standard variogram parameters. The exact biological meaning of these three standard 

variogram parameters is not fully understood, but the use of variogram parameters as indicators of crop 

stress was a more consistent analytical approach more conventional analyses of mean/variance 

reflectance values and standard indices.  

In this study, we investigated the hypothesis that standard variogram parameters can be used to 

assess the bioactivity of a miticide applied to crop leaves. We applied a miticide [Acramite (Chemtura 

Corporation, Middlebury, CT. AI: bifenazate)] at a known rate to portions of maize leaves under field 

conditions and subsequently tested spider mite mortality and conducted Fourier transformed infrared 

analysis (FTIR) and HI analyses of treated and untreated maize leaves. We examined miticide 

applications with or without addition of a surfactant and with or without a subsequent simulated rain 

event. Variogram analysis was used to identify standard variogram parameters from each experimental 

unit, while FTIR data were analyzed using conventional parametric statistics. We examined to what 

extent absolute FTIR peak values acquired from maize leaves were associated with spider mite 

mortality. Standard variogram parameters from HI analysis acquired from maize leaves were also 

examined as possible explanatory variables of spider mite mortality. A training regression model of HI 

data was successfully validated with an independent data set. As part of a ―robustness test‖, HI data 

were experimentally manipulated (systematic and random changes in reflectance values), and we 

evaluated the effects of data manipulations on variogram parameters. Based on experimental  

re-manipulation of HI data, we discuss the use of spatial structure analysis in classification of HI data. 
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2. Materials and Methods 

2.1. Experimental Design 

2.1.1. Treatment with Miticide of Maize Leaves Under Field Conditions 

Data were collected from a maize field plot (50 m wide and 50 m long) at the Texas AgriLife 

Research and Extension Center in Lubbock, TX, USA. The maize was planted on June 2 and leaf data 

were collected at tasseling stage on two separate dates (data set 1: July 30, 2008, data set 2: August 6, 

2008). Within each of 5 rows, we selected 32 plants, 3–5 plants apart, and all selected plants within 

each row were treated the same way (see below). The 10 cm diameter mid portion of the 7th or 8th leaf 

(counting from the lowest leaf) on a maize plant constituted the experimental unit in this study, and 

only one leaf on each selected plant was included. Data set 1 included five treatments including 

miticide (Chemtura Corporation, Middlebury, CT. AI: bifenazate) at a single rate [4.7 nL/cm
2
 (12 

ounces per acre) in a 1.5 µL/cm
2
 (20 gallon per acre) water formulation]: (1) miticide only and no rain 

event, (2) miticide only and rain event, (3) miticide and a surfactant but no rain event, (4) miticide and 

a surfactant and rain event, and (5) no treatment (untreated control). The used application rate of the 

surfactant, Silwet L-77 (Setre Chemical Company, Memphis, TN, USA), was 1.0 nL/cm
2
 (2.5 ounces 

per acre). Data set 2 included 10 treatments: miticide (bifenazate) applied at four rates [4.7 (12 ounces 

per acre), 6.3 (16 ounces per acre), 7.8 (20 ounces per acre), and 9.4 (24 ounces per acre) nL/cm
2
 in a 

1.5 µL/cm
2
 (20 gallon per acre)] water formulation) with/without rain event, and we included untreated 

controls (negative control) and water only treatment (positive control).  

The miticide was applied onto carefully marked (marked with a sharpie) portions of leaves in the 

field, using a custom-built device, here referred to as the ―bottle sprayer‖ [41]. In brief, the bottle 

sprayer consists of an airbrush (Master Airbrush model G22, TCP Global
®

, San Diego, CA, USA) 

inside a plastic funnel which is inside a 2-liter soda bottle, spraying at a fixed distance (20 cm). A CO2 

gas cylinder with corresponding regulator (JO Series, Compressed Gas Regulator, Chudnow, MFG. 

CO. Inc., Oceanside, NY, USA) and connecting tubes provide a controlled and consistent pressure. 

Based on a priori calibration, we used a CO2 pressure of 10 psi and sprayed for 1 second (measured 

with a metronome). In data set 1, all five treatments (including untreated control) were applied to each 

of 32 experimental units at two pm (total of 160 experimental units), and four replicated experimental 

units were collected at 0, 1, 4, 6, 12, 24, and 48 h later. In data set 2, all treatments were applied at two 

pm and collected two hours later. Regarding treatments involving simulated rain, we used a 

transformed 2-liter soda bottle with a perforated bottom, and it was held 20 cm above the leaf when 

simulating the rain event. Perforations were made in a regular grid (1 cm between holes) with a total  

of 52 perforations. Preliminary analysis of the last five years weather data obtained from weather 

stations located on the Southern High Plains indicated that most rain events produce 2.5–12.5 mm 

water. Therefore, the equivalent of 13 mm rain fall was applied to experimental units as a simulated 

rain event. Ideally, leaf samples should be collected from maize plants, which had been sprayed 

according to commercial standards. However, dosage of miticide applied to individual leaves varies 

tremendously—both within and between plants (this can be tested easily by comparing water sensitive 

spray cards placed in fields prior to pesticide application). Although, used methods for applying both 

miticide and simulate rain provided applications that were different from ‗real-world‘ applications, 
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they permitted us to acquire highly repeatable data. Immediately after collection of leaf material, 

experimental units were placed on dry ice and transferred to laboratory conditions and divided into 

three parts: ½ for spider mite bioassay, ¼ for FTIR analysis, and ¼ for HI analysis. 

2.1.2. Spider Mite Bioactivity 

In analyses of agro-chemicals applied to crops, there are multiple chemical-based techniques, 

including high pressure liquid chromatography, to quantify the amount applied. However, in studies of 

pesticides, the most valuable information is whether a given application is efficacious or not—whether 

it provides control of the target pest or not. Thus, in this study we did not quantify how much miticide 

was applied to each leaf but examined its ―bioactivity‖ against spider mites (Tetranychidae). Spider 

mites are important pests on maize in the southern high plains [42]. Spider mites used in this study 

originated from naturally infested maize fields near Lubbock (TX, USA) in the summer of 2007, and 

they had been reared on maize plants in a greenhouse at the Texas AgriLife Research and Extension 

Center (Lubbock, TX, USA). The spider mite bioassay was conducted in Petri dishes (100 × 15 mm) 

containing a 2.3 % water agar solution. In each bioassay, maize leaf pieces (6 × 4 cm) were placed on 

water agar solution with the top side upwards. Three adult female mites were transferred to each maize 

leaf piece. Within five min after transfer to Petri dishes, spider mites were observed to ensure they 

were alive and behaved normally. In this spider mite bioassay, Petri dishes were kept under ambient 

conditions in a laboratory (19–21 C and 40–60% RH), and spider mite survival and mortality were 

assessed 48 h after infestation.  

2.2. Fourier Transformed Infrared Spectroscopy (FTIR) 

FTIR spectra of maize leaves were recorded in an environmentally-controlled laboratory (21  1 C 

and 65  2% RH) using the Spectrum-One equipped with an UATR (Universal Attenuated Total 

Reflectance) accessory (PerkinElmer, USA). The UATR-FTIR was equipped with a ZnSe-Diamond 

crystal composite that allows collection of FTIR spectra directly on a sample without any special 

preparation. The instrument is equipped with a ―pressure arm‖ which is used to apply a constant 

pressure to maize leaves positioned on top of the ZnSe-Diamond crystal to ensure a good contact 

between the sample and the incident IR beam. The amount of pressure applied is monitored by the 

Perkin-Elmer FTIR software. We collected 30 FTIR spectra from each maize leaf. All FTIR spectra 

were collected at a spectrum resolution of 4 cm
−1

, with 32 co-added scans over the range from  

4,000 cm
−1

 to 650 cm
−1

. A background scan of clean ZnSe-Diamond crystal was acquired before 

scanning the samples. The Perkin-Elmer software was used to perform spectra normalization, baseline 

corrections, and peak integration. Data set 1 was used for FTIR analysis. Comparisons of absorption 

spectra from miticide-treated and untreated maize leaves were used to identify the FTIR bands that 

were specific to the miticide. Spectra of pure miticide were also collected as a reference (standard). 

After baseline correction and normalization, the integrated peak intensities of specific peaks  

were determined. 
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2.3. Hyperspectral Imaging (HI)  

We used a line-scanning hyperspectral camera (PIKA II, www.resonon.com) acquiring 160 spectral 

bands within the wavelength range from 405 to 907 nm (wavelength resolution of 3.1 nm) mounted on 

an aluminum tower-structure about 35 cm above a Petri dish (9-cm diameter) holding individual maize 

leaf pieces. Details about the image acquisition conditions are available in [11]. Hyperspectral images 

of individual maize leaf pieces were acquired at a magnification representing about 166 hyperspectral 

profiles (pixels) per mm
2
. All hyperspectral images were collected in a dark room, and artificial 

lighting consisted of two 12V 20W 20° and four 12V 5W 30° halogen light bulbs mounted in two 

angled rows—one on either side of the lens. As lighting power source, we used a voltage stabilizer 

(Tripp-Lite
®
, PR-7b, www.radioreference.com). A piece of white Teflon (K-Mac Plastics, MI, USA) 

was used for calibration, and for each spectral band, hyperspectral reflectance profiles were converted 

into proportions of the reflection from Teflon (denoted relative reflectance). The hyperspectral camera 

used in this study has 640 sensors in linear array, and an image representing 100 lines/frames is equal to 

64,000 hyperspectral profiles or pixels (3.85 cm
2
), which was collected from each piece of maize leaf. 

Each image data file was imported into PC-SAS 9.1 (SAS Institute Inc., Cary, NC, USA) for statistical 

analysis. In data set 1 (training data), comprising of five treatments, seven time points, and four 

replications, we acquired spectral data from 140 experimental units. In data set 2 (validation), comprising 

of three treatments and four replications, we acquired spectral data from 12 experimental units.  

2.4. Non-Spatial Statistical Analysis  

The statistical analyses of both FTIR and HI data were based on examination of the following four 

treatment effects: miticide treatment (denoted ―miticide‖) (yes = 1/no = 0), surfactant (yes = 1/no = 0) 

(denoted ―surfactant‖), rain event (yes = 1/no = 0) (denoted ―rain‖), and time between treatment and 

collection of leaf (0–48 hours) (denoted ―time‖). Finally, the response variable ―bioactivity‖ refers to 

spider mite mortality from the bioassay (see above). All data were analyzed using procedures in  

PC-SAS 9.1 (SAS Institute Inc., Cary, NC, USA). Analysis of variance (PROC MIXED) was used to 

examine the four treatment effects on spider mite mortality in data set 1. Separate analyses were 

conducted for each time interval.  

In the analysis of FTIR analysis of data set 1, only two peaks (1,700 cm
−1

 and 763 cm
−1

) appeared 

to be consistently associated with miticide applications, and a linear regression analysis with forward 

stepwise selection option (PROC REG) was conducted with spider mite bioactivity as response 

variable and the following six explanatory variables: vibration peaks at 1,700 cm
−1

 and 763 cm
−1

, 

―miticide‖, ―surfactant‖, ―rain‖, and ―time‖. The forward selection of the six explanatory variables 

with significant contributions was based on calculation of F-statistics. 

In the analysis of HI data, we compiled spectral data from time 0 (5 treatment classes × 4 

replications × 64,000 hyperspectral profiles = 1,280,000 hyperspectral profiles) and conducted a 

stepwise discriminant analysis (PROC STEPDISC) based on calculation of F-statistics with bioactivity 

as response variable to determine which five spectral bands that provided the best indication of 

miticide treatment immediately after the miticide application had occurred (664, 683, 706, 740,  

and 747 nm). Separate analyses of variance (PROC MIXED) were conducted to examine effects of the 
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four treatment effects (―miticide‖, ―surfactant‖, ―rain‖, and ―time‖) on average reflectance values in 

those five spectral bands.  

2.5. Spatial Statistical Analysis  

Spatial structure analysis of HI data was based on variogram analysis and the selection of spectral 

bands was based on an a priori stepwise dicriminant analysis. We conducted a total of 140 variogram 

analyses (PROC VARIOGRAM) of data from data set 1 and 12 from data set 2 for each of the five 

spectral bands (total of 760 variogram analysis, each based on 64,000 data points). In each variogram 

analysis, we used the following settings: lag distance = 1, maxlags = 10, outpdistance = 100. The 

variogram (relationship between distance between paired observations and variance) was fitted to a 

commonly used regression model [39]: 
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In which ―a-c‖ are fitted coefficients. The main conveniences of using Equation 1 for model fit of 

the spatial structure are that ―a‖ denotes the nugget, ―b‖ the sill, and ―c‖ the ―range‖. 

We conducted analyses of variance for each combination of spectral band and standard variogram 

parameter and examined their response to the four treatment effects. In addition, we conducted a linear 

multi-regression analysis (PROC REG) with forward selection option with bioactivity as response 

variable and the following explanatory variables: the four treatment effects (―miticide‖, ―surfactant‖, 

―rain‖, and ―time‖) and standard variogram parameters for each of the five selected spectral band (664, 

683, 706, 740, and 747 nm). The forward selection of the six explanatory variables with significant 

contributions was based on calculation of F-statistics. A separate multi-regression analysis was 

conducted for each of the five spectral bands. The five linear regression fits were validated with an 

independent data set (data set 2), and the relationship between observed and predicted was examined.  

We constructed an experimental HI data set from a single spectral band (683 nm) of an untreated 

maize leaf. This data set was chosen as a priori analysis showed that it was representative for HI data 

sets acquired from untreated maize leaves. The 64,000 reflectance values were sorted by descending  

x- and y-coordinates, and all reflectance values were multiplied by either 1.025 or 1.050 to simulate a 

2.5% and 5.0% increase in all reflectance values. We also conducted random selections of reflectance 

values and multiplied half the values with 1.025 and one-third of the reflectance values with 1.050—to 

simulate random increase to simulate, for instance, spray application of a comparatively brighter 

material onto the leaf surface. The actual variogram parameters from the non-manipulated data were 

compared with variograms from the four manipulations. 

3. Results  

3.1. Spider Mite Bioassay  

The spider mite bioassay enabled us, in a repeatable and controlled manner, to determine the 

bioactivity of the miticide. Of the four treatment effects, only miticide was significant (df = 1, 128,  

F-value = 160.9, P < 0.001), and although mortality in untreated controls was slightly higher than 
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expected, the miticide provided >80% mortality on most treated leaves (Figure 2). In the pairwise 

contrasts for each time interval between miticide application and rain event, we found a consistent 

significant effect of miticide treatment, while effects of rain event and/or addition of surfactant 

appeared to have negligible and/or inconsistent effects on the performance of the miticide (Table 1). 

Figure 2. Average miticide bioactivity (spider mite mortality) from different treatments. 

Statistical analyses of spider mite bioassay results are presented in Table 1. 
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Table 1. F-values from pairwise comparisons of miticide treatments (analysis of variance). 

 Hours after miticide application 
Contrast Effect 0 1 4 6 8 12 24 48 

1 vs. 5 Acramite no water 14.15** 7.71* 92.76*** 25.52*** 19.76*** 5.41* 8.4* 6.02* 

1 vs. 2 Acramite and water 0.05 0.04 0.01 2.34 5.99* 1.02 2.88 5.02* 

3 vs. 4 Acramite/surfactant and water 0.17 4.94* 0.75 2.34 0.32 0.09 0.03 0.21 

1 vs. 3 Surfactant no water 0.01 2.78 0.75 0.01 1.03 1.52 0.42 0.05 

2 vs. 4 Surfactant and water 0.39 0.13 3.01 0.01 0.74 0.43 1.56 8.47* 

Hours between miticide application and leaf collection ―*‖: Contrast numbers refer to treatment classes, and separate 

analyses of variance were conducted for each time point. ―*‖: significant difference with P < 0.05, ―**‖: significant 

difference with P < 0.01, ―***‖: significant difference with P < 0.001. 
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3.2. FTIR Analysis  

Figure 3 shows the FTIR spectra of untreated maize leaf (green), maize leaf treated with miticides 

without rain event (blue), and maize leaf treated with miticides with rain event 1 h after miticide 

application (red). Specifically peaks located at 3,313 cm
−1

, 1,700 cm
−1

, and 763 cm
−1

 appeared to be 

associated with miticide application, and these peaks were also present in the spectrum of pure 

miticide (not shown). The vibration located at 3,313 cm
−1

 is attributed to N-H stretching, the vibration 

located at 1,700 cm
−1

 is attributed to C=O stretching, and the vibration located at 763 cm
−1

 is attributed 

to N-H out-of-plane bending [43]. Both vibrations at 1,700 cm
−1

 and 763 cm
−1

 were uniquely 

associated with miticide application and not found in FTIR spectra from untreated controls. The results 

showed highly significant effects of both miticide and surfactant on both vibration peaks (P < 0.001). 

Regarding the vibration peak at 1,700 cm
−1

, we also obtained a significant effect of rain (df = 1,135,  

F-value = 3.92, P-value = 0.049), but there was no significant effect of time for any of the two 

vibration peaks (P > 0.050). In the linear multi-regression analysis of bioactivity, only two variables, 

miticide and vibrations at 1,700 cm
−1

, contributed significantly to the regression fit (df = 2, 138, 

adjusted R
2
-value = 0.490, F-value = 67.20, P-value < 0.001). The FTIR-based detection of bioactivity 

explained about 50% of the variance, which was considerably lower than was obtained based on 

spatial structure analysis of HI data (see below), so although significant and interesting because of 

unique miticide vibration peaks, the FTIR approach was not pursued further. 

Figure 3. Fourier transformed infrared analysis (FTIR) spectra from maize leaves. 

Untreated control maize leaf (in green), maize leaf treated with miticide before rain event 

(blue), and maize leaf treated with miticide after simulated rain (red). 

 

 

 

3.3. Regression Analysis of Average Hi Data per Leaf 

Hyperspectral data were collected from small pieces of maize leaf (3.85 cm
2
) (a). Average 

hyperspectral profiles from untreated maize leaves (b) and leaves treated with miticide (c) 0, 4, 12, and 
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48 hours after miticide application. Difference (untreated/treated) between the two treatments is also 

presented (d).  

Figure 4. Average hyperspectral profiles acquired from untreated and miticide-treated 

maize leaves over time.  
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Figure 4 shows a representative RGB image of maize leaves after hyperspectral image acquisition 

(Figure 4a), and average hyperspectral profiles from two of the five treatments [untreated controls 

(Figure 4b) and maize leaves treated with miticide only (Figure 4c)]. It was seen that average profiles 

within treatments varied considerably, and it was also seen that the relative ratio over time between the 

two treatments was not constant (Figure 4d). Thus, it appeared that any analysis based on relative 

reflectance values would not be very accurate over time. In the initial stepwise discriminant analysis of 

1,280,000 hyperspectral profiles, reflectance at the following wavelengths had the highest 

contributions to the separation of the five treatment classes: 664, 683, 706, 740, and 747 nm  

(Figure 4b), so only data in these spectral bands were analyzed. There was a significant time trend in 

all five spectral bands, but no significant effect of miticide on bioactivity but a significant effect of 

surfactant in two of the spectral bands (Table 2). We obtained a significant regression fit of bioactivity 

with average reflectance in the five spectral bands and the four treatment effects as explanatory 

variables (df = 3,134, adjusted R
2
-value = 0.443, F = 36.46, P < 0.001), when based on three 

explanatory variables (miticide, surfactant, and reflectance at 747 nm). About 45% of the total variance 

was explained, which was considerably lower than was obtained based on spatial structure analysis of 

HI data (see below). 
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Table 2. F-values from analysis of variance of average reflectance data in five  

spectral bands. 

  Spectral band (nm)   
Effect 664 706 740 683 747 

Miticide 1.1 0.09 0.01 0.73 0.10 

Surfactant 0.1 0.61 9.24** 0.18 10.00*** 

Water 1.32 0.46 1.42 0.83 1.14 

Time 14.02*** 8.51*** 2.33* 11.3*** 2.28* 

Miticide treatment (yes/no), time between miticide application and leaf collection, surfactant (yes/no), rain event 

(yes/no) were used as explanatory variable of relative reflectance, and statistics from regression fits to both 

training and validation data sets are provided. ―*‖: significant difference with P < 0.05, ―**‖: significant 

difference with P < 0.01, ―***‖: significant difference with P < 0.001. 

3.4. Spatial Structure Analysis of HI Data 

Based on 700 separate spatial structure analyses (140 for each of the five spectral bands), it was 

seen that nugget values and range values in all five spectral bands showed a highly significant time 

trend, while there was only sporadic significant effects by the other three treatments (Table 2). In other 

words, the standard variogram parameters did not appear to respond as clearly to treatment effects as 

FTIR vibration peaks. However, we used multi-linear regression with forward selection to determine 

to what extent the three standard variogram parameters and the four treatment effects could explain 

bioactivity. For all five spectral bands, we obtained significant curve fits and were able to  

explain >62% of the total variance (Table 3). Miticide treatment, surfactant, and the nugget parameter 

contributed significantly to all five regression analyses. Rain effect did not contribute significantly to 

any of the regression fits, while the range parameter and time effect only contributed significantly to 

the regression fit that involved standard variogram parameters of reflectance data at 747 nm.  

Table 3. Parameters and coefficients from regression fits to miticide bioactivity based on 

variogram parameters (Nugget, Sill, and Range) and treatment factors (miticide, surfactant, 

and time).  

  Explanatory Variables Training Validation 
Wavelength (nm) Nugget Sill Range Miticide Surfactant Time Adj R2-value Adj R2-value 

664 702.11 88.66  0.059 −0.061  0.639 0.961 

706 202.07 44.29  0.059 −0.038  0.629 0.961 

740 69.1   0.059 −0.048  0.645 0.96 

683 475.14 58.00  0.059 −0.057  0.641 0.962 

747 56.44   0.002 0.059 −0.055 −0.003 0.649 0.958 

Forward selection based on F-statistics were used to select variogram parameters and treatment 

effects that contributed significantly to regression fits to miticide bioactivity (Figure 2). Regression 

models were developed based on data set 1 and validated with data set 2. 
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3.5. HI Validation and Parameter Investigation 

Spatial structure analysis was conducted based on data set 2, and the 12 sets (Three treatment 

classes and four replications) of standard variogram parameters were validated based on the 

coefficients in Table 3. All five validations (each of the five spectral bands) were highly significant 

with adjusted coefficients of determination (adjusted R
2
-value) > 0.96 (Table 3). The correlation 

between observed and predicted bioactivity was highest using standard variogram parameters from the 

spectral band at 683 nm with predicted bioactivity as a function of a range of nugget and sill values 

(surfactant and miticide treatment were kept constant at 1 and 12, respectively). The coefficients in 

Table 3 suggest that even a fairly small increase in nugget value causes a marked increase in predicted 

bioactivity. A follow-up question is therefore: what change in a HI data set will change the spatial 

structure with particular reference to the nugget value? We addressed this question through 

experimental manipulation of reflectance data at 683 nm data from an untreated maize leaf. The 

following manipulations were examined: (1) increase all 64,000 reflectance values by 2.5% or 5.0%, 

or (2) randomly increase half or one-third of the reflectance values at 683 nm by 2.5% or 5.0%, 

respectively. Figure 5 shows that increasing all reflectance values by 2.5% caused an increase in 

nugget value by about 5% (from 0.0034 to 0.0036) and sill value by about 5% (0.00059 to 0.00062), 

and increasing all reflectance values by 5.0% caused an increase in nugget value by about 10% (from 

0.0034 to 0.0079) and sill value by about 10% (from 0.00059 to 0.00065). On the other hand, range 

values were unaffected. Thus, the increase in stochastic variance (nugget value) and total variance 

explained by the spatial structure was twice the increase in reflectance values. Figure 4 also showed 

that randomly increasing portions of the reflectance values appeared to have comparatively highest 

impact on nugget values. 

Figure 5. Variogram analysis of reflectance data from single spectral band (683 nm) of an 

untreated maize leaf were experimentally manipulated in four ways and compared with 

actual: multiplying all reflectance values with either 1.025 or 1.050 to simulate a 2.5% and 

5.0% increase in all reflectance values or multiplying half the reflectance values (random 

selection) with 1.025 or one-third of the reflectance values (random selection) with 1.050.  
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4. Discussion 

Reflectance-based analyses are becoming increasingly important in agriculture and elsewhere, 

because the technology is highly sensitive and therefore can be used to classify/distinguish objects 

with only subtle physical or chemical differences. There are many chemical-based approaches to 

residue analysis of insecticides on crops and food items, such as, HPLC [44,45], ELISA [46], gas 

chromatography [47,48]. While all of these methods are highly accurate and able to detect very low 

residue levels, they require specially trained personnel, fairly sophisticated laboratory conditions, and 

are time-consuming. The two analytical approaches used in this study also require certain equipment 

capabilities but both are non-destructive procedures that require a minimum of sample preparation, and 

they both have the potential of providing results real-time. Due to high sensitivity of reflectance-based 

technologies, it is common to see prediction accuracies of training data sets exceeding 85%, but the 

real test is how well a given classification algorithm performs on independent data sets. Independent 

validations are not always included, and several authors have highlighted some of the challenges 

associated with radiometric noise/stochasticity in reflectance-based studies [49,50]. It was within this 

context that the potential of spatial structure analysis of HI data was investigated and compared with 

analysis of FTIR data.  

This study showed that: Two unique FTIR vibration peaks were associated with miticide application 

(1,700 cm
−1

 and 763 cm
−1

). The integrated intensities of these two peaks, miticide application, surfactant, 

rain event, time between miticide application, and rain event were used successfully as explanatory 

variables in a linear multi-regression fit to spider mite mortality. Reference [20] used FTIR to 

characterize isolated endodermal cell walls from plant roots and assigned FTIR frequencies to 

functional groups present in the cell wall, including the relative amounts of the cell wall biopolymers 

suberin and lignin, as well as cell wall carbohydrates and proteins. FTIR absorption spectra indicated 

structural differences for three developmental stages of the endodermal cell wall under study. The 

authors concluded that FTIR could be used as a direct and non-destructive method suitable for the 

rapid investigation of isolated plant cell walls. The approach has since been successfully applied to 

screen large numbers of mutants for a broad range of cell wall phenotypes using FTIR of leaves of 

Arabidopsis thaliana and flax (Linum usitatissimum) [21]. Also, FTIR and Fourier-Transform Raman 

spectroscopy have been successfully used to investigate the primary cell wall architecture at a 

molecular level [23] Dynamic changes in cell wall composition of hybrid maize coleoptiles (Zea mays) 

were investigated by FTIR [17].  

Spatial structure analysis is a novel approach to analysis of ground based remote sensing data, but it 

can only be applied to data sets in which reflectance data are georeferenced (i.e., associated with a pixel 

in an image cube). Published studies suggest that the spatial structure of reflectance data within a given 

spectral band may be more consistent over space and time (and therefore less susceptible to radiometric 

stochasticity) than absolute reflectance values [51]. The same linear multi-regression approach applied to 

FTIR vibration peaks was also applied to average reflectance peaks and variogram parameters (both 

derived from HI data in five selected spectral bands: 664, 683, 706, 740, and 747 nm). Highest accuracy 

was obtained using variogram parameters as explanatory variables in regression analysis of miticide 

bioactivity, and a regression model was successfully validated with independent data.  
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Based on experimental manipulation of HI data, we increased overall stochastic variance by 2.5% 

or 5.0% and showed that nugget and sill values increased 5.0 and 10%, respectively, while range 

values were less affected (Figure 5). For comparison, we can select, for instance, 25 or 100 random 

numbers and calculate their variance. Multiply each number by 1.025 (to add 2.5%), and the new 

variance is about 2.5% higher—in other words, the variance increases proportionally with the random 

numbers. However, sill and nugget values doubled in response to value increases. This simple 

phenomenon may explain why subtle changes in reflectance values do not show statistical difference 

in common parametric statistical analyses but indeed contribute significantly when HI data are 

analyzed in the context of a spatial data structure analysis. Our experimental manipulation of spectral 

data also showed that there was little difference between increasing all reflectance values by 2.5% or 

increasing a random selection of half of the reflectance values by 2.5%. Randomly increasing a 

random half (or any other portion) of the reflectance values may be considered a simplified simulation 

of a fairly uniform spray application (assuming that the liquid sprayed is brighter than the surface), and 

it generated a clearly detectable change in sill and nugget values.  
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