
Remote Sensing 2010, 2, 968-989; doi:10.3390/rs2040968 

 

Remote Sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 
Article 

Comparative Analysis of Clustering-Based Approaches for 3-D 
Single Tree Detection Using Airborne Fullwave Lidar Data  

Sandeep Gupta *, Holger Weinacker and Barbara Koch 

Department of Remote Sensing and Landscape Information System (FeLis), Faculty of Forestry,  

Albert-Ludwigs University, Tennenbacher str. 4, 79106 Freiburg, i.Br., Germany;  

E-Mails: holger.weinacker@felis.uni-freiburg.de (H.W.); barbara.koch@felis.uni-freiburg.de (B.K.) 

* Author to whom correspondence should be addressed; E-Mail: sandeep.gupta@felis.uni-freiburg.de;  

Tel.: +49-761-203-3698; Fax: +49-761-203-3701. 

Received: 18 January 2010; in revised form: 20 February 2010 / Accepted: 27 February 2010 /  

Published: 1 April 2010 

 

Abstract: In the past, many algorithms have been applied for three-dimensional (3-D) 
single tree extraction using Airborne Laser Scanner (ALS) data. Clustering based algorithms 
are widely used in different applications but rarely being they used in the field of forestry 
using ALS data as an input. In this paper, a comparative qualitative study was conducted 
using the iterative partitioning and hierarchical clustering based mechanisms and full 
waveform ALS data as an input to extract the individual trees/tree crowns in their most 
appropriate shape. The full waveform LIght Detection And Ranging (LIDAR) data was 
collected from the Waldkirch black forest area in the south-western part of Germany in 
August 2005 with density of 4–5 points/m2. Both the clustering algorithms were used in 
their original and modified form for a comparative qualitative analysis of the results 
obtained in the form of individual clusters containing 3-D points for each tree/tree crown. A 
total of 378 trees were found in all the 1.2 ha area with height ranging from 15 m to 50.9 m. 
The forest contains mainly older trees with deciduous, coniferous and mixed stands. The 
findings showed that among the three kind of clustering methods applied (normal k-means, 
modified k-means and hierarchical clustering), the modified k-means algorithm using 
external seed points and scaling down the height for initialization of the clustering process 
was the most promising method for the extraction of clusters of  individual trees/tree 
crowns. A 3-D reconstruction of extracted individual clusters was carried out using QHull 
algorithm. In this study, the result was not possible to validate quantitatively due to lack of 
the field inventory data.  
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1. Introduction  

Over the last decade, the usage of Airborne Laser Scanner (ALS) data by applying different 

algorithms for three-dimensional (3-D) single tree extraction has been commonly exploited in the field 

of forestry in order to minimize the traditional forest inventory practices which are very time, 

manpower and cost consuming. There has been a multifold increase in the demand for single tree 

related information for more precise estimation of biophysical parameters, forest management and 

environmental planning practices. This was the main motivation factor behind research work to test the 

ALS data for the extraction of pattern of single tree crowns using clustering based methodologies. The 

full waveform digitized data from latest laser scanners are capable of giving more information as 

compare to the traditional ones. The multiple return echoes of the full waveform laser data with high 

point density scattered from the tree crown is helpful for the purposes of single tree crown delineation. 

Clustering, in pattern recognition, is the process of partitioning a set of pattern vectors into subsets 

called ‘clusters’. For example, if the pattern vectors are pairs of real numbers which can be viewed as 

points, then clustering consist of finding subsets of points that are ‘closed’ to each other with 

supported space partitioning measures (for example, Euclidean distance matrix) in n-dimension. There 

are different types of clustering algorithms which are useful in image segmentation and partitioning 

the clusters, for example, k-means, fuzzy C-means and hierarchical tree clustering. Because of the high 

point density full waveform LIght Detection And Ranging (LIDAR) data provide a good platform to 

implement the clustering mechanisms via partitioning the data into individual clusters of single 

tree/tree crown cover. 

In the past 10 years, the demand for high quality LIDAR data with more information has 

tremendously increased for various applications. Work has been carried out in the past using LIDAR data 

for 3-D vegetation and related information extraction using various methods [1-4]. For single tree 

delineation, the majority of the existed algorithms are Digital Surface Model (DSM) based [5-7]. Apart 

from individual tree detection, methods for reconstructing the tree crowns were also provided [8]. With 

the pre-knowledge about the locations and the crown sizes of each tree, they extracted the raw points 

belonging to the tree, tree heights, and the average radius of the crowns at different heights were  

derived [3]. A new method for 3-D single tree crown contour extraction at different height levels using 

hierarchical morphological processes has been presented [3]. It was showed that the new full waveform 

LIDAR data significantly improve the detection rate of single trees using a 3D segmentation technique 

based on the normalized cut segmentation method [9]. Very little work has been reported using clustering 

based approaches for 3-D single tree extraction using airborne LIDAR data [10-15]. First and last pulse 

data with an overall density of 30 points m−2 and the k-means method to extract single tree in the Swiss 

National Park were used [10]. The authors in [10] used local maxima derived from smoothened DSM as 

seed points. In contrast to the modified algorithm presented below, instead of scaling-down the  

z-coordinates, they scaled-up z-value by 3. For this they argued that they did it to accommodate the 

aspect ratio of pine tree crowns, which ranged from 3 to 6, based on the field data. However, here it is 

important to note that by scaling down the height value (z-coordinates) of the normalized raw points as 
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well as seed points ‘height-wise’ in the space helps in minimizing the intra-cluster variance or the 

squared error function which is the ultimate objective of the k-means method. The closer the points will 

be, the more precise will be the cluster formation with regard to actual tree/tree crown and its shape. This 

fact was applied in this paper while modifying the algorithm. In another study conducted for  

deciduous-coniferous classification using single leaf-on full waveform LIDAR data, branches of 27 

coniferous and 38 deciduous trees were derived by calculating the mean silhouette values repeatedly for 

different k values using simple k-means clustering for improved visualization [14]. The method lacks the 

efficiency for finding the suitable value of k with respect to different tree types, tree age and forest 

conditions. In their study the result is not validated using any field data. In another approach, supervised 

classification strategy using linear discriminant analysis, random forest algorithm and support vector 

machines for tree species classification was tested using first, single and last echoes ALS data [15]. In 

their study, unsupervised k-means clustering and k-means clustering in combination with the 

unsupervised random forest algorithm was used for species classification. However, their result showed 

that accuracies were lower in case of unsupervised one than for supervised methods applied for overall 

species classification. This shows that supervised methods are more promising which was found true 

during the investigation after a comparative qualitative analysis of the output. 

Multi-tier single tree crown extraction within single clustering process was also applied in a test site to 

assess its feasibility which is lacking in all the previous studies conducted through different clustering 

based approaches [10-15]. In the study area, different tree types, multistoried trees, tree density, tree 

crown density, gap variation, presented a big challenge to extract individual trees and associated 

information. The multiple return pulses from single emitted laser pulse with additional information like 

amplitude and pulse width besides the 3-D coordinates provides relevant and quality information for the 

user community. However, these parameters were not used in the present study.  

A lot of research work has been carried out for single tree/tree crown extraction using airborne 

LIDAR data with one or a combination of method(s). But, very little research work has been carried out 

using raw airborne LIDAR data and clustering based mechanisms. Different clustering algorithms are 

widely used for many applications but this attempt is unique. For the first time such a comparative 

analysis of different clustering algorithms was qualitatively analyzed using leaf-on raw full waveform 

LIDAR data for single tree/tree crown extraction and the outcomes has been presented in this paper. The 

main objective of this paper is to present a comparative qualitative analysis of the different clustering 

algorithms for the extraction of clusters of individual trees/tree crowns using airborne full waveform 

LIDAR data. The agglomerative hierarchical tree algorithm (bottom-up) and most commonly used  

k-means algorithm, an iterative partitioning based top-down approach, were used and presented in this 

paper. The 3-D reconstruction of the extracted individual cluster points representing individual trees/tree 

crowns shape into convex polytope was also carried out using the QHull algorithm. However, in this 

study, the result was not possible to validate quantitatively due to the lack of field inventory data. 

2. Materials and Methodology 

2.1. LIDAR Data 

For the proposed feature extraction strategy, airborne full waveform LIDAR data with multiple 

return echoes was acquired during August 2005 in the Waldkirch forest area of the  
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Baden-Württemberg region of Germany (Figure 1). The LiteMapper-5600 LIDAR system, which uses 

the RIEGL LMS-Q560 laser scanner with a scan angle range of ±30 degrees, was used during the data 

acquisition. The density of the data is 4–5 points m−2 and the flying height of the aircraft was 400 m 

above mean ground level. More information about the LIDAR RIEGL LMS-Q560 has been presented 

by other authors [16,17]. 

Figure 1. LIDAR raw data overlaid on DSM. 

 

2.2. Methodology Flow Chart 

A flow chart showing the overview of methodology adopted in the whole process to fulfill the aims 

and objectives of the study is presented in Figure 2. The figure shows the pre-processing, main process 

and different clustering algorithms applied during the processing steps and the output of the process. 

Figure 2. Methodology flow chart. 

 



Remote Sens. 2010, 2                            

 

 

972

2.3. Generation of DSM, DTM and nDSM and Normalization of Raw LIDAR Data 

A raster DSM and Digital Terrain Model (DTM) were generated from the full waveform LIDAR 

raw point clouds by TreesVis—a software for LIDAR data processing and visualization [18]. 

Normalized DSM (nDSM) was generated by subtracting the gray values of DTM from DSM in 

TreesVis. DSM, DTM and nDSM were used as an input at various preprocessing steps. 

Normalization of raw LIDAR point clouds was carried out in order to get the absolute height above 

ground of each point and to eliminate the influence of the terrain. Raw points were projected above the 

DTM [Figure 3a and Figure 3b)]. The height difference between a raw point and its correspondent 

terrain is marked as the normalized height of the point [Figure 3c]. The height of each normalized 

point represents the absolute height of the respective point. 

Figure 3. LIDAR raw and normalized points. (a) LIDAR raw points of the whole test area 

projected above DTM. (b) LIDAR raw points above DTM in a closed view. (c) 

Normalized points above zero height in a closed view. 

(a)    (b)    (c) 

   

2.4. Study Area and Its Subdivision 

The normalized LIDAR data was used for the investigation of the study area. The coordinates of the 

upper left corner of the study area in Gauss-Krüger are 3424043 (Easting), 5328613 (Northing) and the 

unit of the coordinate values are in meters. The total forest area selected is 1.2 ha. The forest mainly 

contains mature and old trees. The dominant tree types are Scots pine (Pinus sylvestris), oak (Quercus 

sp.), European beech (Fagus sylvatica), silver birch (Betula pendula), Norway spruce (Picea abies), 

hornbeam (Carpinus betulus) and few minor species.  

The tree top height ranged between the 37 and 52 meters (Table 1). The top height is the peak 

height of the 100 strongest rises that defined trees with the largest diameter in one hectare [19]. 

Because trees with the largest diameter are usually the tallest trees, the top height represents the height 

of trees in the upper canopy level which can be modeled with ALS data.  
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Table 1. Top height (in meters) of 30 cells of 20 m × 20 m size each. 

TopHeight [m] 
Cell1-39.79 Cell2-42.78 Cell3-44.89 Cell4-49.73 Cell5-47.47 Cell6-38.17 
Cell7-39.35 Cell8-40.41 Cell9-46.01 Cell10-51.57 Cell11-50.63 Cell12-41.64 
Cell13-39.31 Cell14-41.23 Cell15-44.58 Cell16-43.72 Cell17-39.54 Cell18-39.32 
Cell19-37.27 Cell20-39.96 Cell21-41.02 Cell22-39.30 Cell23-39.39 Cell24-39.38 
Cell25-37.92 Cell26-43.23 Cell27-41.98 Cell28-40.5 Cell29-38.45 Cell30-37.14 

There is a large variation in terrain, tree type, tree density, tree crown density of the forest area. The 

total study area was therefore divided into 30 grid cells of 20 m × 20 m area each to obtain more 

reliable information, reduce the computation run time and simplify the complexity (Figures 4 and 5).  

Figure 4. Subdivision of study area (in progress) into a 20 m × 20 m grid. 

 

Figure 5. Divided cells (30) in yellow color overlaid on the DSM. 

 

With an area of each cell of 400 m2, the four highest trees in each grid were found. Mean height of 

those trees were calculated as a top height in each cell using the following equation: 

TopHeight = (Max1 + Max2 ….+ Maxn)/n (1) 

Where, TopHeight is defined as the mean peak height among all the high rise trees in each grid. 

Max1, Max2,...,Maxn are the maximum heights of all the selected highest trees present in each grid and 

n is the number of high rise trees present in each grid. 

 



Remote Sens. 2010, 2                            

 

 

974

2.5. Clustering 

Iterative partitioning and hierarchical tree based approaches for extracting the clusters of individual 

trees/tree crowns were used in the present study. A short description is given below. 

2.5.1. Iterative Partitioning 

The k-means algorithm was chosen because it is an iterative hill-climbing method and is a staple of 

clustering methods. In the first approach, the k clusters were chosen using the default random seed 

points. In the second approach, k clusters were chosen using local maxima (extracted as all points from 

the nDSM image having a gray value larger than the gray value of all its neighbors and returned as an 

output, Figure 6) as external seed points. The selection of random seed points in the first approach was 

kept equal to the external seed points obtained through second approach. This was done in order to 

maintain an equal number of clusters, each representing an individual tree/tree crown, and carrying out 

a comparative analysis about the approximate shape of the trees/tree crowns. Additionally, in both the 

approaches quality of output (tree clusters) was analyzed by scaling down the height value. In this, the 

value of z-coordinates of raw normalized LIDAR points as well as external seed points is reduced 

before initialization of the k-means process. The logic behind scaling down the height value of the 

points is that it helps in minimizing the intra-cluster variance, or, the squared error function (Se) which 

is the ultimate objective of the k-means method. This is also important in viewing the natural dataset 

used where pattern recognition is not a simple task. In k-means algorithm, the sum of absolute 

differences in Euclidian distance between each point and its closest center is minimized. The squared 

error function (Se) is given by the following equation: 

      (2) 

where │xj
(i) − ci│

2 is a chosen distance measure between a data point xj
(i) and the mean vector or 

cluster centre ci, is an indicator of the distance of the n data points from their respective cluster centers. 

The value of Se depends on how the samples are grouped into clusters and the number of k clusters. At 

every iteration, new cluster memberships and new cluster centers are computed, and it is guaranteed 

that the goodness measure Se can only decrease with each iteration. In the optimal partitioning, Se is 

minimized. Since, here Se directly depends on distance measure which is computed in Euclidean 3-D 

space, so z-factor is directly linked with the Se minimization process. The more ‘closer’ the points are 

‘height-wise’, the more sound is grouping of neighboring points resulting in optimal partitioning of the 

sample data in to a desired k clusters.  

The k-means can converge to a local optimum, in this case, a partition of points in which moving 

any single point to a different cluster increases the total sum of distances. Fortunately, this problem 

was solved by providing local maxima as seed point in the second approach and scaling down the 

height value to a threshold level. Thus, in the k-means algorithm, the number of seed points chosen has 

the direct relationship over the number of tree clusters to be generated (quantity). 
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Figure 6. Extracted local maxima overlaid on DSM (red colored points). 

 

2.5.2. Hierarchical Tree Method 

Apart from clustering through k-means there exist several methods, one of which is constructing 

clusters from the hierarchical cluster tree. It starts with each sample as a singleton (a new cluster 

consisting of the one point furthest from its centroid) cluster and iteratively merge clusters that are 

most similar according to chosen similarity or distance measures. The clusters are generated as the 

maximum number of clusters to form from the hierarchical tree in a matrix of size (m-1)-by-3 as an 

output, where m is the number of observations in the original data. The leaf nodes (objects at the 

bottom of the hierarchical cluster tree) in the cluster hierarchy are the objects in the original data set, 

numbered from 1 to m.   

For the creation of hierarchical cluster tree, the weighted average distance algorithm or also known 

as weighted pair-group method using arithmetic averages (WPGMA), one type of agglomerative or 

bottom-up algorithm [20] was used. This algorithm is based on different ways of measuring the 

distance between two clusters of objects. The distance is computed between objects in the data matrix 

using the standardized Euclidean distance. Each coordinate in the sum of squares is inverse weighted 

by the sample variances of that coordinate. The weighted average distance algorithm compute the 

distance by measuring the distance between two clusters of objects by weighting the member most 

recently admitted to a cluster equal with all previous members. Thus, the size of the respective clusters 

(i.e., the number of objects contained in them) is used as a weight in this algorithm. 

2.6. 3-D Reconstruction of Individual Tree Clusters 

The 3-D reconstruction of clusters representing the individual tree crown was carried out using the 

QHull algorithm [21]. QHull is a general dimension code for computing convex hulls using Quickhull 



Remote Sens. 2010, 2                            

 

 

976

algorithm. QHull may be used for n-dimensions. A detail description about the convex hull is also 

given [22]. Finally, each tree crown is shown as a 3-D convex polytope with triangular surface. 

3. Results and Discussion  

Figure 7, which corresponds to a sample dataset (Cell 6 with top height 38.17 m), shows the 

distribution of normalized 3-D LIDAR points between 0 and 2 m (red), between 2 and 16 m (green) 

and above 16 m (blue) height, respectively. The normalized raw LIDAR data was filtered below a 

certain threshold height value so as to minimize the disturbances during the clustering process. The 

return laser hits from lower and ground vegetation interferes in clustering process, so the points below 

2 m were filtered out before the processing. While applying k-means algorithm, following four 

different criteria to assess the point distribution of individual trees in 3-D space through manual 

visualization was considered. 

Figure 7. Cell 6 - distribution of normalized 3-D LIDAR points, projected into a freely 

chosen vertical plane, at 3 different height levels (0–2 m, 2–16 m, and above 16 m) shown 

in 3 different colors (red, green and blue, respectively). The x and y coordinate values (in 

meters) are displayed horizontally and the z value (in meters) is displayed vertically.  

 

3.1. Normal k-means (N k-means) 

In this case, the seeds for initialization of the process are randomly selected by the algorithm to 

minimize the error from the point in a cluster to its centroid. However, the number of random seed 

points was kept equal to the number of external seed points obtained via modified k-means approach. 
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This was done in order to maintain an equal number of clusters and carrying out a comparative 

qualitative analysis about the approximate shape of the trees/tree crowns. 

3.1.1. Without Scaling Down the Height Value 

In the given example (Cell 6) as displayed in Figure 7, clustering was performed on the LIDAR 

data selected from different height levels. In the first dataset, the normalized data points were split into 

two height classes (from 2–16 m and above 16 m height) after visual inspection. In the second dataset 

the normalized data points selected which were only at above 16 m height. This was done because the 

returned laser hits were from dense forest unlike the case of open forest where there is enough gap to 

separate the LIDAR points of individual tree. Since the top height for Cell 6 was 38.17 m, hence, it 

was assumed that there were very less chances of getting the low height trees at first-tier. But, for a 

better partitioning, the data in Cell 6 were split at height value of 16 meters after visual check. The  

k-means algorithm was carried out on both the datasets and the result after partitioning has been 

presented in Figure 8a) and Figure 8b), respectively. The black circular dots and the rectangles shown 

in the Figure 8a) and Figure 8b) are cluster centroids. It is clear from the Figure 8 that the normal  

k-means failed to separate the clusters of points from natural forest conditions in both the datasets. 

Figure 8. Result after running N k-means without scaling down the height value on two 

different datasets of Cell 6 at different height levels. (a) Cell 6—clusters from N k-means 

in 2 height classes (between 2 and 16 m and above 16 m). (b) Cell 6—clusters from N k-

means above 16 m height. The x and y coordinate values (in meters) are displayed 

horizontally and the z value (in meters) is displayed vertically. 

(a) 
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Figure 8. Cont.  

(b) 

 

3.1.2. By Scaling Down the Height Value 

The height value of the both the datasets of Cell 6 (between 2 and 16 m, and above 16 m) and 

respective seed points was scaled down to a threshold level before initialization of the k-means 

algorithm. The threshold value for scaling down the height was chosen after a trial and error approach. 

The value was kept constant for all the grid cells. By scaling down the height value, points came close 

to each other in z-direction. In this way, the basic idea behind the k-means algorithm in its modified 

form was fully utilized for better partitioning of the data and cluster formation. Once the algorithm was 

completed, the height value of the clustered data was scaled-up to its original. Figure 9a shows the 

improvement in pattern classification of the first dataset in its upper layer, but no considerable 

improvement was obtained in the lower layer. In the second dataset, where there are points only above 

16 m height, a more accurately classified result was obtained when compared to the upper layer of the 

first dataset [Figure 9b].  

As an example, a cluster of an individual tree crown above 16 m is shown in Figure 10a. This tree 

cluster has been extracted by applying a N k-means approach without scaling down the height value. 

The corresponding 3-D convex hull is shown in Figure 10b. Similarly, a cluster containing the point 

cloud of an individual tree crown above 16 m by applying N k-means approach with scaling down the 

height value and the corresponding 3-D convex hull has been shown in Figure 10c and Figure 10d, 

respectively. It is apparent from Figure 10b and Figure 10d that the shape of the 3-D polytope is 

considerably different. It supports the view that the scaling down the height value of the data as well as 

seed points before initialization influences the clustering. The shape of the extracted clusters of the 

same tree crown can be visualized from Figure 10a and Figure 10c. 
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Figure 9. Result after running N k-means by scaling down the height value on two datasets 

of Cell 6 at different height levels. (a) Cell 6 – tree clusters from N k-means in two height 

classes (between 2 and 16 m and above 16 m). (b) Cell 6 – tree clusters from N k-means 

above 16 m height. The x and y coordinate values (in meters) are displayed horizontally 

and the z value (in meters) is displayed vertically. 

(a) 

 
(b) 
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Figure 10. Cluster of an individual tree from Cell 6 after running N k-means on the dataset 

above 16 m height and respective convex polytope, projected into a freely chosen vertical 

plane. (a) Cell 6—an individual tree cluster by applying N k-means without scaling down 

the height value. (b) 3-D convex polytope reconstructed from an individual tree cluster as 

shown in (a). (c) Cell 6—an individual tree cluster by applying N k-means after scaling 

down the height value. (d) 3-D convex polytope reconstructed from an individual tree 

cluster as shown in (c). The x and y coordinate values (in meters) are displayed 

horizontally and the z value (in meters) is displayed vertically. 

(a)                                                                        (b) 

 
 

   (c)                                                                      (d) 

 

3.2. Modified k-means (M k-means) with External Seed Points 

In this case, instead of random seed points, the local maxima derived from DSM were used as 

external seed points in the algorithm to minimize the error from the point in a cluster to its centroid. 

3.2.1. Without Scaling Down the Height Value 

It was hypothesized by the authors that due to the use of external seed points for the initializing of 

the k-means algorithm, it was better to perform clustering using M k-means only on datasets 

containing points above some threshold height (for example, 5–16 m and above 16 m in the test area). 

This is due to the fact that return hits were from natural forest conditions containing mainly older trees 
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with few at the pole or mature stages and to reduce the errors caused by low ground vegetation. 

Partitioning of the whole dataset into individual clusters using local maxima as external seed points 

was found much better (Figure 11) as compare to the result obtained through N k-means algorithm 

(Figure 8b) without scaling down the height value of the data points. However, the clustering was not 

as good when compared to the clusters presented in Figure 9 (b), where the height value was scaled 

down before clustering. 

Figure 11. Result after running M k-means without scaling down the height value on Cell 

6 datasets of height above 16 m. The x and y coordinate values (in meters) are displayed 

horizontally and the z value (in meters) is displayed vertically. 

 

3.2.2. By Scaling Down the Height Value 

Figure 12 shows the tree clusters (above 16 m height) obtained by running k-means while using 

local maxima as external seed points (M k-means) and scaling down the height value of both the 

LIDAR data points and seed points. This method for partitioning the data in to individual clusters 

representing single trees was found as the best method compared to all the above k-means options 

(Figure 8b, Figure 9b and Figure 11). The fact is k-means is a top-down approach. Feeding of local 

maxima points as external seeds, before initializing the algorithm, determined the number of clusters 

to be formed. Scaling down the height value brought the points closer for distance measurement and to 

minimize the bias during the run-time. Combining these two factors and using them in the k-means 

algorithm, generated individual clusters of each trees/tree crowns in their most appropriate form. 

Initial seed Point (external) 

Final cluster 

centroid 
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Figure 12. Result after running M k-means after scaling down the height value on Cell 6 

datasets of height above 16 m. The x and y coordinate values (in meters) are displayed 

horizontally and the z value (in meters) is displayed vertically. 

 

From Cell 6, two examples has been shown containing clusters of an individual tree crown above 

16 m height extracted through M k-means algorithm and its respective reconstructed 3-D convex hulls. 

The result without scaling down the height value has been shown in Figure 13a and Figure 13b.  

Figure 13. Cluster of an individual tree from Cell 6 after running M k-means without 

scaling down the height value on the dataset above 16 m height and respective convex 

polytope. (a) Cell 6—an individual tree cluster above 16 m height. (b) 3-D Convex 

polytope reconstructed from tree cluster as shown in (a). The x and y coordinate values (in 

meters) are displayed horizontally and the z value (in meters) is displayed vertically.  

(a)                                                                     (b) 

 

Initial seed Point (external) 

Final cluster 

centroid 



Remote Sens. 2010, 2                            

 

 

983

Figure 14a and Figure 14b shows the result obtained by applying M k-means after scaling down the 

height value on the normalized raw LIDAR points above 16 m height and reconstructing the respective 

convex polytope. The form of the 3-D crown cluster and the corresponding convex polytope showed that 

better qualitative accuracy was obtained by M k-means procedure by scaling down the height value as 

compared to the N k-means results [Figures 10a-10d]. Thus, after applying k-means, it was found that 

there is a direct relationship of the number of tree clusters to be generated (quantity) with respect to the 

number of seed points selected by the user before initialization of the process. Similar relationship was 

found after scaling down the height value of the LIDAR data points and corresponding external seed 

points with respect to the shape of the tree/tree crown extracted (quality) after a careful visual check. 

Figure 14. Cluster of an individual tree from Cell 6 by applying M k-means after scaling 

down the height value on the dataset above 16 m height and respective convex polytope.  

(a) Cell 6—an individual tree cluster above 16 m height. (b) 3-D Convex polytope 

reconstructed from an individual tree cluster as shown in (a). The x and y coordinate values 

(in meters) are displayed horizontally and the z value (in meters) is displayed vertically. 

(a)                                                                (b) 

 

The silhouette value for each point is a measure of how similar that point is to points in its own 

cluster compared to points in other clusters, and ranges from −1 to +1. Silhouette value and silhouette 

plot was used for the data distribution and validation purposes. A negative value for some clusters was 

obtained because the points were too far from each other and acted as an outlier. Therefore, such 

clusters could not be generated by the algorithm.   

3.3. Hierarchical Tree Based Approach Using WPGMA Algorithm 

For the creation of hierarchical cluster tree, distance between every pair of objects in a dataset in 

Euclidian 3-D space using the weighted average distance algorithm was calculated. The size of the 

respective clusters (i.e., the number of objects they contained) is used as a weight. 

3.3.1. Without Scaling Down the Height Value 

Similar to k-means, two datasets were used for hierarchical tree clustering. In one dataset, data 

points were split into two height classes (above 16 m and from 2 to 16 m) as shown in Figure 15a. In 
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the second dataset, points selected were above 16 m in height [Figure 15 (b)]. Clustering was carried 

out on both the datasets and result showed that clustering was better in the second dataset. However, in 

this case, there was no significant difference in the result as compare to the N k-means method applied 

[Figures 8a and 8b] mainly because of smaller number of clusters.   

Figure 15. Result after running hierarchical tree clustering without scaling down the 

height value on two datasets of Cell 6 at different height levels. (a) Cell 6 clusters after 

hierarchical clustering in 2 height classes (between 2 and 16 m height and above 16 m 

height). (b) Cell 6 clusters after hierarchical clustering performed on dataset above 16 m 

height. The x and y coordinate values (in meters) are displayed horizontally and the z value 

(in meters) is displayed vertically. 

(a) 

 
(b) 
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3.3.2. By Scaling Down the Height Value 

In this case, the hierarchical clustering was performed by scaling down the height value for both the 

test datasets with different height classes as mentioned in Section 3.3.1. Clusters obtained from data 

points separated into two height classes [Figure 16a] is slightly better partitioned as compare to 

without scaling down the height value [Figure 15a] as seen after visual inspection. In this case, 

hierarchical clustering gave good result in the data type of height above 16 m [Figure 16b] as 

compared to without scaling [Figure 15b and Figure 8b] and also found better than M k-means [Figure 

12]. However, it failed where there is more numbers of clusters were formed. 

So, with this method alone satisfactory result was not obtained as compare to N k-means and M  

k-means methods even by scaling down the height value. But, in some cases, where numbers of trees 

are few (3–5), it worked quite well. However, possibilities cannot be ignored to use this method in 

conjunction with other algorithms. 

Figure 16. Result after running hierarchical tree clustering and scaling down the height 

value on two datasets of Cell 6 at different height levels. (a) Cell 6 clusters after 

hierarchical clustering in 2 height classes (between 2 and 16 m height and above 16 m 

height). (b) Cell 6 clusters after hierarchical clustering performed on dataset above 16 m 

height. The x and y coordinate values (in meters) are displayed horizontally and the z 

value (in meters) is displayed vertically. 

(a) 
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Figure 16. Cont. 

(b) 

 

3.4. Number of Trees in All the Grids at the First Height Level 

For all the cells (except Cell 6), the number of tree were extracted at first height level only. A total 

of 378 trees were found in all the 30 cells. The height of the extracted trees ranged from 15 m to 50.9 

m. The trees were mainly older with few ones at mature or other stages. Table 2 shows the number of 

individual trees extracted at first tier after the clustering process. 

Table 2. Number of first-tier trees in 30 cells. 

Number of trees in each cell 
Cell 1-14 Cell 2-16 Cell 3-13 Cell 4-15 Cell 5-11 Cell 6-3 
Cell 7-8 Cell 8-7 Cell 9-8 Cell 10-24 Cell 11-20 Cell 12-5 
Cell 13-8 Cell 14-12 Cell 15-13 Cell 16-13 Cell 17-8 Cell 18-9 
Cell 19-12 Cell 20-15 Cell 21-14 Cell 22-13 Cell 23-20 Cell 24-16 
Cell 25-11 Cell 26-20 Cell 27-10 Cell 28-19 Cell 29-13 Cell 30-8 

4. Conclusions  

The general problem in clustering is how to partition a set of vectors into groups having similar 

values. In image analysis, vectors can be represented as LIDAR point clouds. The normal k-means 

method is numerical, unsupervised, non-deterministic and iterative. Unfortunately, the empirical speed 

and simplicity of the normal k-means algorithm come at the price of accuracy. In many natural 

examples, the algorithm generates arbitrarily bad clustering. However, using the external seed points 

for initialization of the process and scaling down the height value increases the grouping based on 

similarity measures. It enhances reliability of the outcome which was found true after visual checks 
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performed on random number of samples of different tree and vertical tree crown densities. The 

important findings in this research investigation are the usage of local maxima as external seed points 

and scaling down the height value of the LIDAR data points and seed points for partitioning the data 

into individual clusters representing individual trees/tree crowns in their most appropriate forms. The 

quality of the final solution depends largely on the initial set of clusters, and may, in practice, be much 

poorer than the global optimum. The clustering method found efficient in detecting the individual tree 

crown in their appropriate form mainly applying by modified k-means algorithms in the study area. 

Thus, in the k-means algorithm, the number of seed points chosen has the direct relationship over the 

number of tree clusters (quantity) and by scaling down the height value of the LIDAR data points and 

corresponding external seed points has a direct influence on the shape of the tree/tree crown (quality). 

The k-means uses the actual observations of objects or individuals in the data, and not just their 

proximities. Whereas, the user faces more problems in clustering of LIDAR points reflected back from 

natural objects using hierarchical tree clustering method. In general, no satisfactory result from the 

hierarchical clustering based approach was found as compared to the N k-means and M k-means 

approaches. It is widely known that LIDAR point density, forest conditions in which a tree grows, 

terrain type, crown cover and tree density are the main factors that determine the number and shape of 

trees to be extracted. Often, outliers create a problem in clustering process. Removal of outliers before 

initialization of the clustering process may improve the output quality. A total of 378 trees of 15 to 

50.9 meters of height were found in all the 1.2 ha area with mainly older trees. At the moment, it is not 

possible to validate the result obtained because of the lack of the field inventory data. Further work 

will be done to assess the result once the field inventory data is received. 
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