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Abstract: Multispectral reflectance imagery and spectroradiometry can be used to detect 

stresses affecting crops. Previously, we have shown that changes in spectral reflectance 

and vegetation indices detected viral infection 14 days before visual symptoms were 

noticed by the trained eye. Herein we present evidence that shows that the application of 

multifractal analysis and wavelet transform to spectroradiometrical data improves the 

diagnostic power of the remote sensing-based methodology proposed in our previous 

work. The diagnosis of viral infection was effectively enhanced, providing the earliest 

detection ever reported, as anomalies were detected 29 and 33 days before appearance of 

visual symptoms in two experiments. 
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1. Introduction 

Monitoring plant health with remotely sensed data is now a practical tool for most field crops with 

high commercial value [1,2]. Multispectral curves and imagery differences can be used to assess the 

spatial extent and severity of stresses and anomalies such as diseases, weeds and pests [3-6]. The 

multispectral analysis is based on the reflectivity and propagation of solar radiation from and within 

plant canopies and tissues, where a fraction is absorbed and others reflected in all directions [1]. This 

absorption and reflectivity of light is linked to the biochemical and structural components of the plant, 

such as chlorophyll, water, proteins and cell wall materials [2,7]. All these components, particularly 

chlorophyll content, are affected by diseases, resulting in differences in the spectral signature of 

healthy and stressed plants.  

In a previous work [8], we assessed the usefulness of remotely sensed multispectral reflectance 

imagery and spectroradiometry to determine yellow vein virus (PYVV) infection in potatoes before 

symptoms became visually perceptible. Our results showed that changes in reflectance in certain 

regions of the electromagnetic spectrum—indicative of disturbances in light absorption and reflection 

by vascular tissues in infected plants—enabled the early detection of viral infection in potato plants 

grown under controlled conditions, long before symptoms of chlorosis were detected by the trained 

eye. The most reliable response of early diagnostic value corresponded to changes in reflectance in the 

blue region (450–495 nm), which allowed the flagging of infected plants some 23 days after infection, 

although differences in reflectance in the near-infrared (NIR) region (>750 nm) were also detected as 

early as 11 days after inoculation.  

Multifractal techniques are increasingly recognized as the most appropriate and straightforward 

framework for analyzing and simulating not only the scale dependency of geophysical observables, but 

also their extreme variability over a wide range of scales [9]. Multifractal theory permits the 

characterization of complex phenomena in a fully quantitative fashion, for continuous signals (e.g., 

time, space or wavelength) [10]. An important property of multifractal systems is that they are scale 

invariant [11], which means that the information they provide is constant across different scales, 

allowing for a valid extrapolation up and down scales. This property of the multifractal analysis is 

particularly relevant in the work herewith reported, as it was hypothesized that it would confer 

robustness and consistency to the analysis of observed data. Moreover, the multifractal analysis gives a 

description of several physical properties of the observed signal such as the internal entropy, the 

anisotropy and the correlation among data. Indeed, many workers have successfully applied 

multifractals analysis to signals data in several research fields such as solar flare x-ray emissions [12], 

soil science [13-15], neurology [16,17] and cardiology [18,19].  

On the other hand, the wavelet analysis has been successfully used for extracting meaningful 

quantitative information from plant reflectance spectra [20]. To optimize the determination of the 

multifractal parameters, the wavelet transform is used for two basic reasons: one is that it is possible to 

characterize the singularities of the function (signal) through the estimation of their wavelets 

coefficient, and the other is that there is an optimal relationship between the estimated multifractal 

function and the real function (signal) [21]. 

The aim of this work was to test the hypothesis that applying multifractal analysis and wavelet 

transform to remotely sensed spectroradiometrical data would improve the diagnostic power of the 
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remote sensing-based methodology proposed in our previous work [8]. Before testing the central 

hypothesis, we corroborated the condition that the continuous reflectance signals obtained from 

healthy and infected plants, in the range of 390–1,020 nm, presented scale invariance properties and 

thus could be subjected to multifractal analysis. 

2. Materials and Methods 

2.1. Plant Material and Treatments  

Two indoor experiments conducted under a split-plot in time design, with inoculated and control 

treatments in the main plot and time measurements as sub-plots, were carried out in Lima, Peru, from 

May to September 2007. The two experiments were similar in design and treatments. The only 

relevant difference was that for the first experiment, the aperture angle of the fore-optics used for the 

gathering of spectroradiometric data was 25°, whereas in the second experiment, a collimator was used 

and the normal aperture angle of the fore-optics of the spectroradiometer was reduced to 1°. Each 

experiment comprised 20 potato plants, with 10 plants as control (Ctrl) and 10 as PYVV infected 

(PYVVi) treatment. The PYVV infection was induced through lateral grafting some two weeks after 

plant emergence. Plants were germinated in a nursery and then transplanted into individual six-liter 

pots containing a mixture of compost (10%), organic soil (70%) and perlite stone (20%) as substrate. 

The pots were located under an insect-free net house and irrigated to maintain the soil at field capacity. 

The environmental conditions (temperature, relative humidity and light) and management, including 

irrigation and fertilizer application, were the same for infected and control plants. 

2.2. Data Collection 

2.2.1. Spectroradiometric Data 

Solar radiation reflected by individual plants was recorded in both experiments before and after the 

virus inoculation, until the symptoms of disease were visually perceptible. A computer-assisted ASD 

Fieldspec Pro spectroradiometer (Analytical Spectral Devices Inc., CO, USA), covering the 325–1,075 

nm wavelength region, was used for data recording. In both experiments, measurements were taken 

from nadir at a distance of 30 cm from the plant canopy, resulting in a circular projected field of view 

of 13 cm and 0.52 cm diameter for fore-optics angles of 25° and 1°, respectively (Figure 1). 

Spectroradiometric measurements were taken every 2–3 days with the sun at 30° of zenith angle 

throughout the observational period. A white Spectralon® panel was used for converting the reflected 

radiation into relative reflectance values. At the same time, a visual assessment of disease symptoms in 

PYVVi plants was continuously conducted and compared to Ctrl plants.  
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Figure 1. Aperture of the spectroradiometer sensor for each experiment. (a) Experiment 

with a 25° solid angle aperture, (b) Experiment with a 1° solid angle aperture. 
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2.2.2. Multispectral Imagery 

In addition to spectroradiometric data, multispectral images of Ctrl and PYVVi plants were 

recorded (only from experiment 1) to provide a comparative analysis between continuous and discrete 

reflectance responses. The latter was registered with a sensor widely used in agricultural research. 

Images were taken using an agricultural digital camera (Tetracam Inc., CA, USA) equipped with green 

(520–600 nm), red (630–690 nm) and NIR (760–900 nm) bands and a sensor resolution of 3.2 

megapixels (2,048 × 1,536 pixels). The camera was placed 0.60 m above the observed plants, and 

independent images were registered for each plant. Multispectral images were taken at the same time 

of day every five days during the crop phenological cycle. The reflectance data recorded per pixel 

throughout every image were analyzed through the free software Briv32 (Band Rationing Image 

Viewer, Tetracam Inc., CA, USA) to obtain several spectral vegetation indices (SVI): the normalized 

difference vegetation index (NDVI = (RNIR − Rred)/(RNIR + Rred), R=reflectance, ranging from −1 to 

+1) that track changes in chlorophyll concentration [22]; the soil adjusted vegetation index  

(SAVI = {(RNIR − Rred)/(RNIR + Rred + L)*(1 + L)} , where L ranges from 0 to 1), proposed as a soil-

line vegetation index to reduce the background effect [23]; and the infrared percentage vegetation 

index (IPVI = RNIR/(RNIR + Rred)), a ratio-based index that holds a limited range with no negative 

values (0 < IPVI < 1), whose main disadvantage is its sensitivity to atmospheric noise [24]. These 

three SVIs had proved to be good indicators of infection by PYVV in potato [8]. 
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2.2.3. Spectroradiometric Data Pre-Processing 

The pre-processing of spectroradiometric data consisted of two steps. First, a background correction 

was performed to reduce the undesired variations caused by small atmospheric changes occurring 

while measuring all the plants within a day and non-systematic measuring errors. The background 

correction was performed by the linear regression shown in Equation 1 [25]. The slope and intercept of 

the regression were estimated by Equations 2 and 3.  
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where: 

Sj(λi) and Gj(λi) are the corrected and raw signals for the jth plant at the ith wavelength, respectively 

Gmax j and Gmin j are the maximum and minimum raw measures of the jth plant, and 

GTotal max and GTotal min are the maximum and minimum raw measures of all the plants within a 

treatment, measured in a sampling date. 

Aj is the ratio: response range of the jth plant to total population. 

Bj is the regression intercept.  

In the second step, anomalies over moving averages of 41 wavelengths (see Equations 4 and 5) 

were calculated. The use of filters such as wavelets, the first difference of reflectance signal or its 

anomalies, has been shown to highlight the plant attributes or responses associated with physiological 

changes induced by stressing factors and thus reduce the signal to noise ratio [20,26,27]. Moving 
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where Ŝj is the resultant reflectance, for the jth plant, after application of moving average; Sj is the 

reflectance value obtained from Equation 1, through the λk wavelength values in the analyzed moving 

window; and k is the counter that allows the analyzed window to move from −20 to +20. The λi 

wavelength value ranged from 390 to 1,020 nm. 

Anomalies: 

).()(ˆ)(' iii SSS    (5)  

2.3. Wavelet and Multifractal Data Analysis 

The continuous reflectance signal was pre-processed, as described above, and submitted to a 

wavelet-based multifractal analysis to search for singularities in the response. The wavelet used for 
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this multifractal analysis was the Mexican hat wavelet, which is the negative normalized second 

derivative of a Gaussian function. This filter is widely used for studying singularities in different types 

of signals [21,28,29]. Multifractal functions are used to model signals whose regularity may change 

abruptly from one point to the next [21]. In a physical context, this property holds only within a few 

magnitudes of changes, the so-called singularities in the signal [10]. This condition was evidenced 

(Figure 2) as cusp-like and step-like singularities shown by the reflectance data obtained in the present 

work. The singularities are quantified by the Hölder exponent, obtained through the scale-invariant 

property. The definition of statistical moments is used in the present work, where q > 0 is the qth order 

statistical moment [30]. A summarized explanation about wavelet-multifractal theory is presented in 

the Appendix for interested readers. For more details on the subject, see the papers by [12] and [31]. 

Thus, following the works of [12] and [14], wavelet and multifractal formalisms were applied to the 

data, aiming at detecting such singularities and obtaining the multifractal spectrum for each group, 

infected and control.  

Figure 2. Heterogeneous signal of a reflectance spectrum, obtained from a potato plant, 

showing two types of singularities: cusp-like and step-like features, the so-called 

singularities in the signal.  

 

2.4. Statistical Analysis 

All the response variables (raw spectra, multifractal parameters and multispectral images) were 

analyzed following the split-plot in time design. In the main plot, plants were randomly assigned to 

each of the treatments prior to the infection with the virus, to avoid biases in the allocation of plants. 

Reflectance measurements taken in time (or sub-plot) cannot be randomized, therefore a carryover 

effect—i.e., observations close in time may be more related than observations far apart in time—

cannot be avoided. To minimize the bias introduced by this carryover effect, repeated measurement 

analyses were performed as explained by [32]. The analysis of variance generated by the General 

Lineal Model (GLM) for a split-plot in time design permits the determination of statistical differences 

between treatments, as a function of time, with a pre-established probability level (P value) of 5%. A 
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significant difference indicates that, on the one hand, the variation due to treatment, at a particular time 

within the experiment, was greater than the variation among plants within each treatment. On the other 

hand, it indicates that the number of replicates was enough to reach a robust assessment of the 

difference between healthy and infected plants. All the statistical analyses were performed with the 

SAS software package (SAS Institute, NC, USA). 

3. Results and Discussion 

3.1. Reflectance Measurements 

The reflectance pattern of healthy and diseased potato plants—in the visible and NIR range of the 

spectrum—is expected to differ due to physiology and ontogeny. Changes in the reflectance, as the 

normal plant ages, are attributed to changes in the ratio of new and aged leaves with different 

concentration of pigments that absorbs light in this range of the spectrum. With the onset of the 

translocation of assimilates from the aerial part to the tubers, the leaves initiate a rapid senescence 

process that spectrally resembles the effect produced by stressors in a diseased plant. However, the 

effects of biotic or abiotic stressors disrupt the normal pattern of change of reflectance that occurs in a 

healthy plant along its development from emergence to maturity. This particular departure from a 

normal reflectance pattern over time—difficult to notice at early stages—causes trouble in developing 

an early detection protocol for stressing agents such as viruses, thus requiring non-conventional 

processing techniques. In this work the wavelet-based multifractal approach was used. 

To apply the multifractal analysis to the reflectance signals obtained from healthy and infected 

plants, the first step was to show that the data presented multifractal attributes. On the one hand, the 

signal showed cusp-like and step-like singularities (Figure 2). On the other hand, the scale invariance 

(linearity along a scale) property shown for both types of signals (Figure 3) allowed for the estimation 

of the multifractal singularity spectra and its parameters. The system showed linearity through the 

scales 2–596 nm for the order moments q ranging from 0 to 1.3.  

Owing to physiological and developmental effects, multifractal parameters of healthy plants are 

expected to change over time. To differentiate a normal (healthy plants) from abnormal (diseased 

plants) evolution of reflectance, multifractal analysis was performed in order to compare singularities. 

This comparison was performed through the values ΔDh(q) = Dhcontrol(q) − DhPYVV(q) and  

Δh(q) = hcontrol(q) − hPYVV(q), for a given qth order of statistical moment. When ΔDh(q) = 0 and 

Δh(q) = 0, for a given q, it is taken as an indication of a normal evolution of reflectance (healthy 

plants). Conversely, any value other than zero (ΔDh  0 or Δh 0) is an indicator of stress  

(infected plants). 
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Figure 3. Scale invariance assessment for the reflectance data of healthy and infected 

plants. Dh(q, scale) is the numerator of Equation 6 in the Appendix for each order moment 

q > 0 along the wavelength scale. The slopes correspond to the Hölder exponents. 

-2

-1.5

-1

-0.5

0

0.3 0.6 0.9 1.2 1.5 1.8 2.1

Log(scale)
L

o
g

(D
h

(q
,s

ca
le

))

Dh(qmax) Ctrl

Dh(qmin) Ctrl

Dh(qmax) PYVV

Dh(qmin) PYVV

 

For the first experiment, in which spectroradiometric data were obtained through a 25° solid angle 

sensor’s aperture, the primary passive reflectance of plants of both treatments was very similar, 

making it impossible to determine signs of infection through the direct observation of the spectra 

(Figure 4). Moreover, the multifractal analysis run directly on the raw data did not show differences 

between treatments (results not shown). It is likely that the indistinct diagnosis from unprocessed data 

resulted from the reduced signal to noise ratio caused by significant reflectance from objects and plant 

organs other than leaves, captured by the wide field of view. However, when the data were pre-

processed, differences between treatments were detected through the multifractal analysis  

(P value < 0.05). Figure 5 shows that the multifractal singularity spectra have more than one fractal 

dimension, which is a characteristic of multifractal systems. The values of the Hölder exponents (h) for 

control and infected plants cover the range [0.08; 0.63] and [0.02; 0.58], respectively, during the 

observational period. The range of D(h) for control plants was [0.72; 1.06] and for infected plants the 

range was [0.71; 1.05]. Differences between Hölder exponents of healthy and infected plants (Δh) 

were evident from day 6 after infection (i.e., 29 days before symptoms became visible to the trained 

naked eye), at which date the value of Δh (q = 1.3) was 0.12. Differences hold up to the 21st day after 

infection. From the 21st to the 26th day after infection, the singularity spectrums of both treatments 

were again similar, suggesting a recovery of the PYVVi plants (see Section 3.3), but differences again 

became significant from the 28th day after infection onwards (Figure 5).  

The second experiment was designed to prove whether a higher precision of the field of view would 

reveal changes directly from recorded data, thus the sensor aperture of fore-optics of the 

spectroradiometer was adjusted to 1° by means of a collimator. In this instance, the raw multispectral 

reflectance data revealed that PYVVi and Ctrl plants originated very distinct spectra that were easily 

noticeable, well before symptoms of PYVV infection were visually observed, which occurred 37 days 

after infection (Figure 4). The multifractal analysis of the primary reflectance data strongly enhanced 
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the evidence of such spectral differences, making them noticeable even earlier than in the previous 

experiment, the 4th day after infection—i.e., 33 days before the symptoms were visible—when  

Δh(q = 0) =0.33. Again, an apparent unexpected recovery of PYVVi plants occurred from the 7th day 

after infection (ΔDh y Δh  0) to the 11th day. Significant differences between treatments were  

re-established on the 11th day after inoculation and held until the last date of measurement, just as 

evidenced by the raw data (Figure 4). 

The multifractal analysis gave the range of Hölder exponent values for control [1.19; 1.99] and 

infected plants [1.09; 2.04]. It is shown that the range of values for infected plants was larger and that 

the spectra moved to the left (Figure 5). The range of h values of diseased plants got progressively out 

of phase with respect to the values of healthy plants, evincing that the signal became more random, 

which indicated that the signal from infected plants became more heterogeneous and with more anti-

persistency [12]. The same trend was given by the ranges of Dh for control [0.54; 1.04] and infected 

plants [0.53; 1.22]. Moreover, it was observed that the fractal dimension (D(h) for q = 0) for infected 

plants increased over time, which indicated that their spectra had a larger fractal dimension from day 

11 after infection onwards—i.e., the multifractal spectra of infected plants appeared over that of the 

control (Figure 5).  

Earliness of PYVVi diagnosis was sharper and sooner with the fore-optic aperture of 1° as a 

consequence of the smaller instantaneous field of view, which gave a sharper measurement as the 

incoming scattering was close to zero. In contrast, the fore-optic aperture of 25° permitted a higher 

scattering influence from the surrounding area, producing a less sharp measurement. Scattering directs 

irradiance from outside the sensor’s field of view toward the sensor’s aperture [33]. It has been 

suggested that sensors with small field of view show little within-scene atmospheric variation, whereas 

sensors with wide field of view can show considerable scan-angle effects. Such effects are due to 

changes in the atmospheric path in the cross-scan direction [34]. 
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Figure 4. Passive reflectance of plants of both the first (left) and second experiments 

(right). Notice that the observable differences in the raw reflectance spectra registered by a 

sensor aperture of 25° (left) do not allow a clear treatments discrimination. In contrast, the 

spectra obtained by a sensor aperture of 1° (right) shows more clearly the differences in 

the spectra, at earlier dates. 
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Figure 5. Multifractal singularity spectra of plants. The first experiment was with a sensor 

aperture of 25° (left) and the second experiment was with a sensor aperture of 1° (right). 
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3.2. Visible and Near-Infrared Reflectance 

The analysis of the reflectance of discrete sections of the spectrum (blue, green, red, NIR) revealed 

a distinct reflectance pattern from infected plants as compared to control plants. This difference was 
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evident for several wavelengths within the visible and NIR section of the electromagnetic spectrum at 

day 25 after infection for the experiment with 25° of sensor aperture (P value < 0.05), and 23 days 

after infection for the experiment with 1° of sensor aperture (P value < 0.05). For both experiments, 

visible and NIR reflectance showed differences between treatments, with different singularity spectra 

(data not shown). The blue region (450–495 nm) band showed the most robust statistical response. 

Reflectance in the green region (495–570 nm) was also indicative of infection, but it seems to be a less 

reliable indicator. Responses in the red region (620–750 nm) presented more noise. NIR did not 

provide robust evidence of differences between treatments as the responses were highly variable in 

time (Figure 6). NIR is thus an unreliable indicator of the presence of the symptoms if the other bands 

of the electromagnetic spectrum were not taken into account, confirming the results obtained by the 

multifractal analysis described in the section above. Therefore, our results suggest that multifractal 

analysis of the visible region or the continuous multispectral reflectance spectrum (visible and NIR) is 

required to obtain reliable and accurate information about the presence of PYVV infection in potato 

plants. They also confirm the accuracy of this methodology as obtained in our previous work [8], in 

which telltale anomalies in reflectance were detected some 14 days before symptoms were visible. The 

fact that in our previous work we used a sensor with an aperture of 180°, which became 60° due to its 

built-in cosine corrector, without significant changes in the results indicates that with sensor  

aperture ≥ 25° there might be no substantial changes in the measurement.  

3.3. Recovery Period 

The apparent transitory recovery of infected plants, suggested by the observed realignment of the 

singularity spectra, could be explained by the fact that plants possess more than one defense 

mechanism to protect themselves against different pathogenic attacks. It has been shown that some 

virus–host interactions naturally lead to host recovery [35]. Although some of the defense mechanisms 

are still unknown, there is one specially targeted at avoiding viral infections, called RNA silencing, 

reported for potato, tobacco and other species. This gene silencing differs from many other plant 

defense systems in that it is adaptive. The plant perceives information from the infecting virus genome 

and produces a defensive response that is specific for that genome [36]. The silencing RNA 

mechanism, induced by double-stranded RNAs (dsRNA) and targeted to homologous RNA and DNA 

sequences, is a complex surveillance and regulatory process. It mediates the post-transcriptional 

repression of the target gene expression and represses the proliferation and expression of different 

invading nucleic acids, such as those carried by viruses, viroids, transposons or transgenes, as well as 

regulates the gene expression [37]. The silencing response may not be limited to the plant cell being 

actively infected by the virus, but it extends into newly dividing cells at the plant’s growing points and 

enables plant cells far removed from the initial infection site to be prepared when viruses get to  

them [36]. Furthermore, it appears that young plants can exert more resistance to viral infection and 

endogenously expressed viral transcripts [38]. This finding could explain why the multifractal analysis 

showed an early temporary recovery of PYVVi plants as denoted by the similarity of their reflectance 

spectrum compared to that of Ctrl plants, since plants at this stage were juveniles. Later on, the barrier 

of silencing RNA of PYVVi plants was overwhelmed by the infection and symptoms developed. It has 

been suggested [35] that the activation of silencing is accompanied by recovery of the host from the 
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initially virulent infection so that the new growth is free of both symptom and virus and is highly 

resistant to a secondary challenge by the same virus. The recovery is cyclical: plants recover then 

show disease and then recover again. However, after a period, the virus accumulates to higher levels 

and the disease takes over the plant (D. Baulcombe, personal communication). 

Figure 6. Analysis of discrete bands (blue, green, red and NIR) of reflectance spectra from 

plants. In the first experiment, (a) and (b), the difference between treatments was evident 

at the 25th day after infection. For the second experiment, (c) and (d), the difference 

between treatments was noticed on the 23rd day after infection.  
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3.4. Spectral Vegetation Indices 

It has been pointed out [22] that vegetation indices are not sensitive to rapid changes in plant 

photosynthetic status caused by environmental stressors, as most vegetation indices have no direct link 

to photosynthetic functioning beyond their sensitivity to canopy structure and pigment concentrations. 

Nevertheless, our results did show a good diagnosis capability of NDVI, SAVI and IPVI for viral 

infection in potato plants, suggesting that damage to the photosynthetic tissues produced by the virus 

infection are rapidly reflected in the components of the vegetation indices. In fact, in agreement with 
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the results described in a previous paper [8], the above-mentioned SVIs calculated from the 

multispectral images captured by the three bands (red, green and NIR) agricultural camera did show 

differences between treatments at 15–20 days after infection (Figure 7), which was around five days 

before the diagnosis obtained in the previous work, which used a two-band sensor (red and NIR) camera. 

Figure 7. Spectral vegetation indices calculated from the images registered by the  

three-band (red, green, NIR) multispectral Tetracam® agricultural camera. Viral infection 

was evidenced 15 days after inoculation, 22 days before symptoms were visible. 
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4. Conclusions 

Early diagnosis of PYVV infection in potato plants, as reported in our previous work, was improved 

by applying a wavelet-based multifractal analysis to the primary remotely sensed spectroradiometry 

data, allowing for the earliest detection of infection ever reported: six days after inoculation—i.e., 29 
days prior to the detection of visual symptoms by a trained eye—for the experiment with 25° of sensor 

aperture and four days after inoculation—i.e., 33 days before visual symptoms appeared—for the 

experiment with 1° of sensor aperture.  

Diagnosis based on multifractal analysis of pre-processed data was very effective and sharper than 

that based on multifractal analysis of raw data obtained through a fore-optic sensor aperture of 25°. It 

appears that pre-processing is necessary when reflectance data are obtained through a 25° solid angle 

aperture sensor, but it is not imperative for data obtained through a 1° solid angle aperture sensor, 

owing to the precision of focus. In the former case, pre-processing (background correction and the use 

of anomalies) increased the signal to noise ratio, thus increasing the likelihood of earlier detection  

of differences. 

The main advantages of multifractal analysis lay in the earliness of diagnosis of PYVV infection in 

plants and the statistical accuracy of results. This is due to the amplification of differences, which is an 

intrinsic feature of the methodology. The sensitivity with this processing methodology is such that 

differences prior to the transitory recovery period could be detected. 

The spectral vegetation indices NDVI, SAVI and IPVI confirmed their usefulness in accurately 

evincing the infection caused by PYVV. The use of a three-band camera improved the earliness of 

prediction in five days compared to the diagnosis based on the use of a two-band camera as reported in 

our previous work. Although SVIs indicated infection no earlier than the occurrence of the recovery 

period, the discrete sections of the multispectral reflectance spectrum (blue, green, red, NIR) used to 

estimate them have confirmed their accuracy in diagnosing the PYVV infection, 25 and 23 days after 

the virus inoculation. 
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Appendix 

The Continuous Wavelet Transform and the Wavelet Transform Modulus Maxima Multifractal  

The multifractal formalism is based on the calculation of two sets of coefficients associated with the 

signals: the Hölder exponents that quantify the local regularity of a signal or function f, and the 

multifractal spectrum (MS) that quantifies the multifractality of f. The MS relates each group of data 

having the same regularity at a given point with the Hausdorff dimension (or fractal dimension) of the 

set of points. In this way, it defines a function between the Hölder exponent and the Hausdorff 

dimension that is also known as the spectrum of singularities [39]. It has been demonstrated [40] that 

the MS corresponds to the entropy density of the system, whereas the set of Hölder exponents is 

related with its free energy. Some years later, [29,31,41] developed a statistical method for the 

estimation of the MS based on the study of the maxima of the continuous wavelet transform (CWT) of 

the signal. This method is known as the wavelet transform modulus maxima (WTMM) method, which 

was used for our reflectance signal analysis to obtain the MS. 

The wavelet transform is a convolution product of the data sequence (a function f(t), where t is 

usually a time or space variable) with the scaled and translated version of the analyzing wavelet (x), 

called the mother wavelet [42]. The scaling and translation are performed by two parameters; the scale 

parameter a stretches (or compresses) the mother wavelet to the required resolution, and the translation 

parameter b shifts the analyzing wavelet to the desired location [12,43]. 
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where a and b are real, a > 0 for the continuous version (CWT) and * is the complex conjugate of  

(the mother wavelet). The wavelet transform acts as a microscope: it reveals more and more details 

while going toward smaller scales (i.e., toward smaller a values). 
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The mother wavelet ((x)) is generally chosen to be well localized in space (or time) and 

frequency. Usually, (x) is only required to be zero mean, but for the particular purpose of multifractal 

analysis, (x) is also required to be orthogonal to some low-order polynomials, up to the degree n: 






 ,0)( dxxxm  m, 0 mn. (1b) 

Thus, while filtering out the trends, the wavelet transform can reveal the local characteristics of a 

signal and, more precisely, its singularities. The Hölder exponent can be understood as a global 

indicator of the local differentiability of a function. By preserving both scale and location (time, space) 

information, the CWT is an excellent tool for mapping the changing properties of non-stationary 

signals. A class of commonly used real-valued analyzing wavelets, which satisfies the above condition 

(1b), is given by the successive derivatives of the Gaussian function: 
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e
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(2)  

where  is the th derivative of the Gaussian function for which we used  = 2, the Mexican hat 

wavelet. 

It has been shown [31] that there is always at least one maxima ridgeline pointing toward any 

singularity, t0, and this scales as  

0,
)(

~),( 0
0 a

th
aatWT . (3)  

The exponent h(t0) describes the local degree of singularity or regularity around the point t0 and is 

called the Hölder exponent (or singularity strength). The singularities can be measured by calculating 

their h(t0) exponent, which permits the characterization of singularities in time regardless of whether 

the derivative exists at that point. The Hölder exponent is a useful tool for mathematically 

encapsulating the notion of ‘‘sharp changes’’ in a time series. Locally, the Hölder exponent h(t0) is 

then governed by the singularities that accumulate at t0. This results in unavoidable oscillations around 

the expected power-law behavior of the wavelet transform amplitude. The exact determination of h 

from log-log plots on a finite range of scales is therefore somewhat uncertain [32]. WTMM methods 

circumvent these difficulties. As proven by [31], the WTMM (i.e., the local maxima of |TW(t,a0)| at a 

given scale a0) detect all the singularities of a large class of signals. Thus, they are likely to contain all 

the information on the hierarchical distribution of singularities in the signal.  

When singularities are well separated in time, these can be used to calculate the local Hölder 

exponent for each singularity. However, when singularities are not isolated, use of the canonical 

approach proposed by [40] and further elaborated by [32] is preferred, where the new measurement is 

defined as: 
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where ),( atWT
imm  are the local maxima at the scale a and interval tmmi, and t and mm are the location 

parameter and location index, respectively. Then, the scaling exponent, h, and the singularity 

spectrum, D(h), are calculated from [29,32]. 

,),(log),(
log

1
lim)(

0





i

ii
mm

mmmm
a

atWTaq
a

qh   (5)  

and 

,),(log),(
log

1
lim))((

0



imm

immimm
a

aqaq
a

qhD   (6)  

where h is the Hölder exponent (internal energy), D(h) is the singularity spectrum (entropy), tmm 

denotes all positions of local maxima of |TW(t,a0)| at some scale a0, being mm the index referring to 

the modulus maxima and q is the statistical moment. The moment q provides a microscope for 

exploring different regions of the singular measure. For q > 1, u(q) amplifies the more singular regions 

of the measure, whereas for q < 1, it accentuates the less singular regions, and for q = 1, the measure 

μ(1) replicates the original measurement [40]. 

The curve defined by D(h) against h is called the singularity (or multifractal) spectrum and fully 

describes the statistical distribution of the system. Hence, by studying the singularities of the passive 

reflectance of plants across time, one is in effect characterizing the dynamics of the non-smooth 

reflectance processes. 

Software based on Equations 5 and 6 that describe the canonical method of the WTMM was 

implemented by [12] to run it in IDL6.2 for Linux. This software was modified to analyze our 

reflectance spectrum data following the methodology described by [43] and adapted to run in IDL 6.3 

for Windows®. The reflectance data obtained from the above-mentioned experiments were processed 

with the WTMM method using the second derivative of the Gaussian function (Mexican hat) as 

mother wavelet analyzer. Derivatives are a reliable method for removing the noise or disturbance from 

remote sensing data, such as the additive baseline shift and the linear baseline increase [2, 44]. 
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