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Abstract: Tam Dao National Park (TDNP) is a remaining primary forest that supports 

some of the highest levels of biodiversity in Vietnam. Forest conversion due to illegal 

logging and agricultural expansion is a major problem that is hampering biodiversity 

conservation efforts in the TDNP region. Yet, areas vulnerable to forest conversion are 

unknown. In this paper, we predicted areas vulnerable to forest changes in the TDNP 

region using multi-temporal remote sensing data and a multi-layer perceptron neural 

network (MLPNN) with a Markov chain model (MLPNN-M). The MLPNN-M model 

predicted increasing pressure in the remaining primary forest within the park as well as on 

the secondary forest in the surrounding areas. The primary forest is predicted to decrease 

from 18.03% in 2007 to 15.10% in 2014 and 12.66% in 2021. Our results can be used to 

prioritize locations for future biodiversity conservation and forest management efforts. The 

combined use of remote sensing and spatial modeling techniques provides an effective tool 

for monitoring the remaining forests in the TDNP region.  

Keywords: multi-layer perceptron neural network; Markov chain; deforestation; Vietnam 

 

1. Introduction  

Three well-known global changes are increasing carbon dioxide in the atmosphere, alterations in 

the biochemistry of the global nitrogen cycle and continuing land-use/land-cover change [1].  
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Land-use/land-cover change (LULC) generates many environmental consequences globally and 

locally, such as the release of greenhouse gases, the loss of biodiversity and the sedimentation of lakes 

and streams [2]. In particular, it is recognized as the major driver of the loss of biodiversity and 

ecosystem services [3]. The effect of land use change on biodiversity may be greater than climate 

change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration at the global 

scale [4]. Deforestation is known as one of the most important elements in LULC. Large-scale 

deforestation is occurring in the tropical forests, which contain most of the species in the world [5]. 

Globally, deforestation has been occurring at an alarming rate of 13 million hectares per year [6].  

In Vietnam, two-thirds of the territory was primary forest until the mid-twentieth century [7]. 

Though forest cover in the country as a whole was 40.7% in 1943, it declined to 27.7% by 1993 [8]. 

Primary forest was deforested to its lowest levels in the late 1980s and early 1990s [9]. Vietnam’s 

deforestation rate was the highest among low-income countries over the period from 1965 to  

1989 [10]. This trend still continued for the period from 1990 to 2005. The primary forest area per 

total forest area for the entire country declined from 4.1% in 1990 to 0.7% in 2005 [6]. However, from 

the mid-1990s until now, there has been an increase in new forest plantations across the country [9].  

Deforestation not only reduces forest area but also alters landscape configuration. Therefore, 

protected areas should be established to maintain the large, contiguous areas of forests for the 

protection of threatened species. Globally, 11.2% of the total forest area had been designated for the 

conservation of biological diversity in 2005 [6]. In Vietnam, protected areas were established in most 

of the representative ecological zones for the period from 1995 to 2005. The country’s protected areas 

now account for 14.7% of the total forest area [6]. Many protected areas in the country are 

experiencing forest changes [11]. The management of the remaining forests within protected areas is 

very difficult to achieve because the livelihoods of local residents in the surrounding areas often 

heavily depend on agriculture and the extraction of forest products [12]. From a protected area 

management perspective, there is a need to identify the areas vulnerable to forest conversion in order 

to prioritize conservation efforts. One way to achieve this identification is to use remote sensing data 

and spatial models to map forest change patterns. Satellite remote sensing plays a key role in mapping 

and predicting forest changes [13,14]. Satellite imagery provides an accurate measure of forest cover 

and deforestation [15]. Changes in land use, derived from remotely sensed data, can be related to 

landscape and location attributes. A model can be established to describe the relationship between the 

dependent variable (forest cover change) and independent location variables [16]. Then, the model can 

be used for predicting the spatial patterns of forest cover changes.  

Tam Dao National Park (TDNP) is a protected area in Vietnam. It contains the last remaining 

primary forest. It is endowed with rich biodiversity and is known to host a number of rare and endemic 

animal species. Yet, the park has been experiencing considerable forest changes due to population 

pressure in the surrounding areas. As a result, several species are in danger. For example, 45 rare 

animal species are known to be threatened by habitat destruction [17]. Much of the primary forest has 

been cleared for cropland. These forest changes are exerting an increasing pressure on biodiversity 

conservation efforts. Different protection measures have been introduced to control forest logging, but 

illegal logging is still a significant threat to the remaining forest areas [12]. 

Modeling forest conversion can be an important instrument for understanding forest cover 

dynamics in the TDNP region. Forest change models can provide a better understanding of the factors 
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that drive forest changes, they can generate future forest cover scenarios, and they can support the 

design of policy responses to forest changes [18]. Forest change is associated with multiple factors. 

The relationships between change and its driving factors can be very complex and are often  

non-linear [19], requiring an appropriate modeling approach that accounts for such complex  

non-linear relationships.  

Forest change can be predicted using empirical models and simulation models [16]. The multi-layer 

perceptron neural network (MLPNN) with an integrated Markov model (M) (hereby referred to 

MLPNN-M) is a recently developed approach for spatiotemporal dynamic modeling of forest  

change [20]. The MLPNN allows the integration of the driving factors of forest change, whereas the 

Markov model controls the temporal dynamics of forest change. A multi-regression approach often 

performs poorly when the relationships between variables are non-linear and some variables must be 

transformed. Conversely, the MLPNN models are good at dealing non-linear relationships and do not 

require the transformation of variables [21]. It is generally recognized that the MLPNN models can 

perform better in land change modeling [19,21-23]. In a recent study, the MLPNN was found to be 

better than logistic regression and other empirical modeling tools, such as empirical probabilities and 

empirical likelihoods, in land change modeling [20] 

This paper aims to predict areas vulnerable to forest conversion in the TDNP region using remote 

sensing data and the MLPNN-M model. Multi-temporal satellite images were used to detect changes in 

forest cover, and then the MLPNN-M model was applied to predict changes in forest cover in the near 

future. Predicting forest change patterns provides important information for identifying priority areas 

for conservation and forest management in the TDNP region. These predictions may improve the 

efficiency of efforts to protect the remaining primary forest in the study area. 

2. Methods 

2.1. Study Area  

The study area covers a region of 141,238 ha that includes the TDNP (35,000 ha) and the buffer 

zone. The area is located in three provinces, namely Vinh Phuc (Binh Xuyen and Tam Dao district), 

Tuyen Quang (Son Duong district) and Thai Nguyen (Dai Tu and Pho Yen district) in the northern part 

of Vietnam (Figure 1). The TDNP is considered to be one of the best and largest examples of 

rainforest habitat in Vietnam. It is known to host a variety of insects, butterflies, birds, medical plants 

and rare animal species [24]. Furthermore, the TDNP supports some of the highest levels of recorded 

insect diversity in Vietnam. A recent biological survey identified 1,436 plant species and 1,141 animal 

species in the park [17]. The region is characterized by a tropical monsoon climate with a mean annual 

rainfall of around 2,600 mm, and most of the rainfall occurs from April to October. The elevation of 

the TDNP varies from 100 to 1,580 m above the mean sea level.  
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Figure 1. Tam Dao National Park region. 

 

 

Source: [12] 
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The TDNP is the last remaining primary forest close to Hanoi, the capital of Vietnam. In the early 

1960s, the population density in the area was relatively low; therefore, primary forest was dominant. In 

the 1970s, primary forest was gradually deforested by slash and burn farming. Due to the biological 

values of Tam Dao, the area was recognized as a nature reserve in 1977. Before 1985, forest logging 

took place at low level, but in the early 1990s, the intensity of logging increased in response to an 

increased demand for timber [17]. In 1996, Tam Dao nature reserve was declared to be a national park. 

The decision to establish the park halted commercial forest logging; however, illegal forest logging 

still exists. Intensive population pressure and weakly enforced management have seriously degraded 

the park’s natural resources and resulted in the destruction of most low-lying forest areas. The park is 

still threatened by deforestation (Figure 2) due to the high level of firewood extraction and agricultural 

encroachment. Most of the 200,000 inhabitants in the surrounding areas of the park generate their 

incomes from small-scale farming and timber extraction. The high incidence of poverty and the poor 

awareness of conservation are major challenges to forest management and biodiversity conservation 

efforts [12]. 
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Figure 2. Forest clearing for agricultural use in the TDNP region (Photo by author, 2009). 

 

2.2. Implementation of the Multi-Layer Perceptron Neural Network and the Markov Model 

We implemented the model MLPNN-M within the Land Change Modeler (LCM) available in 

IDRISI Taiga GIS and Image Processing software [20] to predict primary and secondary forest 

conversions. In general, two forest cover maps derived from satellite imagery from two different dates 

were used to predict a forest cover map for a third date. The prediction process can be characterized by 

the estimation of forest conversion potentials followed by the forest conversion prediction stage 

(Figure 3). Firstly, observed forest changes were used as the dependent variables and spatial variables 

were used as the independent variables (Table 2) to train the MLPNN and then estimate the primary 

and secondary forest conversion potential maps. Secondly, forest conversions were predicted using a 

competitive land allocation algorithm similar to the multi-objective land allocation (MOLA) 

algorithm. The MOLA looks through all conversions to list the host classes that lose some amount of 

land and the claimant classes that acquire some amount of land from each host. The quantities of 

conversions were determined by the Markovian conversion probabilities. After this, a multi-objective 

allocation was run to allocate land for all claimants of a host class. The results of the reallocation of 

each host class were then overlaid to produce a final prediction map [20]. Detailed descriptions of the 

multi-objective land allocation algorithm can be found in [25]. 
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Figure 3. Flowchart of the MLPNN-M model for predicting forest conversion. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.1. Observed Changes in Forest Cover Using Remotely Sensed Data  

Changes in forest cover are often related to the vicinity of land uses. Therefore, we interpreted  

land-use patterns to capture such variables for forecasting the location of changes in forest cover. 

Multi-temporal Landsat satellite images (path 127 and row 045) from December 27, 1993, October 04, 

2000, and November 11, 2007, were obtained from the Global Land Cover Facility 

(http://www.landcover.org), University of Maryland. The digital maps of general land use (1993 and 

2000), topography, and the road network were gathered from the TDNP office as reference data for 

land-use classification. In addition, field observations and interviews were conducted in March 2009 to 

supplement the reference data. 

Each LANDSAT satellite image was rectified to a common UTM/WGS84 coordinate system based 

on a 1:50,000 scale topographic map. These data were re-sampled using the nearest neighbor 

algorithm. The root mean square error of the image was found to be less than one pixel. The 

resolutions of all images were adjusted from 28.5 m × 28.5 m to 30 m × 30 m. Then, contrast 

stretching, color composites and normalized difference vegetation indexes were generated to enhance 
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the interpretability of features in the images. A number of land-use types were determined using 

unsupervised classification, reference maps and the authors’ a priori knowledge of the study area. The 

categorized classes were primary forest, secondary forest, rain-fed agriculture, paddy rice, settlement 

and water. Clusters of pixels representing various land-use types were identified as training sites based 

on unsupervised classification, field observations, interviews and the knowledge of the authors on the 

relative location of land-use types in the study area. After all training sites were identified and 

digitized by the on-screen method, class signatures were generated. A maximum likelihood classifier 

was used to classify these images into land-use maps. These procedures were applied to map land-use 

patterns in the years 1993, 2000 and 2007. Finally, the accuracies of the classified land-use maps were 

investigated. A stratified random sampling design was used to select a total of 270 points (pixels) for 

each land-use map (1993, 2000 and 2007). These point data were used for calculating Kappa statistics. 

The accuracy of the classified land-use maps for 1993 and 2000 was assessed with general land-use 

maps in 1993 and 2000 and point data gathered from GPS-based interviews. The accuracy of the  

land-use map for 2007 was evaluated with field survey data from March 2009. 

Finally, changes in forest cover for the periods 1993–2000 and 2000–2007 were detected using 

cross-tabulation technique. Cross-tabulation analysis was used to compare forest-cover maps. This 

analysis was implemented using the LCM change analysis procedure. 

2.2.2. Selection of Spatial Variables  

Spatial variables were selected based on the availability of reliable data and the ability to express 

the data as a spatially explicit variable. The spatial variables expected to compose a considerable share 

of the factors driving past and future forest cover changes in the area. The statistical summary and 

spatial distribution of the variables are presented in Table 1 and Figure 4. These variables are often 

highlighted in deforestation studies, such as in [26], and land-use change models, such as in [27,28].   

Table 1. Statistical summary of spatial variables. 

Spatial variable Mean S.D. Min. Max.

Elevation (m) 86 194 0 1,581

Slope (degree)  6.2 11.5 0 58

Proximity to road (m) 403 802 0 5,237

Proximity to water (m) 616 1,050 0 6,191

Proximity to primary forest in 2000 (m) 477 1,038 0 8,101

Proximity to primary forest in 2007 (m) 770 1,673 0 10,040

Proximity to secondary forest in 2000 (m) 146 406 0 4,248

Proximity to secondary forest in 2007 (m) 246 696 0 6,598

Proximity to settlement in 2000 (m) 1,169 1,818 0 8,517

Proximity to settlement in 2007 (m) 1,113 1,747 0 8,489

Proximity to cropland in 2000 (m) 122 392 0 3,506

Proximity to cropland in 2007 (m) 130 288 0 3,586
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The conversion of forest often relates to physical accessibility variables. Accessibility to a road is a 

significant factor of deforestation. For example, the role of road access was highlighted in predicting 

the location of deforestation in many areas, such as the Basho Valley, Northern Pakistan [29], 

Northern Thailand [30] and the Congo Basin [31]. The location of water affects to the location of 

cultivation; therefore, the proximity to water is closely related to deforestation. Permanent cultivation 

in the area seemed to be concentrated close to water. 

In addition to road and water access, forest conversion also depends on the type of land-use in the 

neighborhood. For instance, Ludeke et al. [32] found a strong relationship between deforestation and 

proximity to forest edge in a given period in Honduras. In this study, several of these variables were 

included: proximity to primary forest, proximity to secondary forest and proximity to settlement. The 

proximity to primary forest, secondary forest and settlement was measured as the shortest distance 

from each location to the nearest primary forest, secondary forest and settlement, respectively. 

Furthermore, we included the proximity to cropland, which was measured as the shortest distance from 

each location to the nearest cropland. Some studies found a strong relationship between deforestation 

and the expansion of cultivation in the mountains of northern Vietnam [9,33]. 

Topography often influences the spread and extent of forest conversion. For example, a case study 

in Costa Rica [34] found that as the slope gradient increased, deforestation decreased. In this study, 

topographic variables, including elevation and slope, were created from a contour map with a scale of 

1:50,000 and contour interval of 20 m. This map was collected from the TDNP office. 

The issue of correlated variables and data redundancy is minor because the neural network is good 

at solving these problems [27]. In this study, we examined the nature of the association between 

observed forest changes and spatial variables using Cramer’s V coefficient [20]. The quantitative 

variables were binned into 256 categories to conduct the test [20] (Table 2). A Cramer’s value close to 

1 indicates a higher potential explanatory value of the variable; however, it does not guarantee a strong 

performance because it cannot account for the mathematical requirements and the complexity of the 

relationship. However, a variable can be discarded if the Cramer’s V coefficient is less than 0.15 [20]. 

2.2.3. Forest Conversion Potential Estimation 

We trained the MLPNN as a network with the three layers: an input layer with the number of nodes 

equal to the number of spatial variables; a hidden layer with the same number of nodes; and an output 

layer with one node representing a conversion potential map (Figure 3). The neural network is trained 

to derive the appropriate connection weights between the input layer and hidden layer and between the 

hidden layer and the output layer for classifying unknown pixels. The training process starts by 

iteratively presenting input data to the network. The connection weights are adjusted during network 

training to minimize the difference (error) between the network output and the desired  

output [35].  
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Figure 4. Spatial variables. 
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Figure 4. Cont. 
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In the study area, selective logging directly converts primary forest into secondary forest. Another 

pathway is the conversion of primary forest into cropland by shifting cultivation. The third way is the 

conversion of secondary forest into cropland. Therefore, we estimated three forest conversion potential 

maps for the prediction of forest cover. Each of the three conversions was trained individually. Then, 

we estimated the 2007 conversion potential maps for the prediction of forest cover in 2007 (model 

validation) and the conversion potential maps for the prediction of forest cover in 2014 and 2021. For 

the 2007 forest conversion potential maps, elevation, slope, proximity to road, proximity to water and 

the dynamic variables (proximity to primary forest, proximity to secondary forest, proximity to 

settlement and proximity to cropland) for the year 2000 were presented to the MLPNN for training as 

independent variables while the 1993–2000 forest changes were presented as the dependent variables 

(Table 2). With the same procedure, spatial variables and the 2000–2007 forest changes were 

presented to the network for training to estimate the 2014 and 2021 forest conversion potential maps. 

The dynamic variables were recalculated for the years 2007 and 2014. We followed the MLPNN 

automatic dynamic training mode where all training parameters were automatically changed to better 

model the data. A detailed of the MPL training procedure can be found in [20].  

In general, the training results indicated a quick decline in the root mean square (RMS) error after 

1,000 iterations, and the RMS error was mostly stable from 3,000 to 5,000 iterations. The RMS error 

flattened with little decline after 5,000 iterations; therefore, we stopped the training of the network 

after 5,000 iterations with a minimum loss of accuracy. According to [20], the accuracy rate of training 

should be achieved in the vicinity of 80%. Therefore, we terminated network training when the 

accuracy rate exceeded the minimum level. Once the network was trained, new data could be run 

through it.  

2.2.4. Prediction of Forest Conversion for Identifying Vulnerable Areas 

The prediction procedure used by the IDRISI’s LCM is based on a competitive land allocation 

procedure similar to the MOLA [20]. The MOLA combines the predictions of the location and the 

quantity of land cover change. For the prediction of the 2007 forest cover, the MOLA looks through 

the three forest conversion potential maps from 2000 to 2007 and the quantity of area for each 

conversion. These forest conversion potential maps were produced by MLPNN. The quantities of area 

were estimated using Markov chain analysis. The purpose of using the Markov chain is to determine 

the amount of change that may occur to some point in the future. A Markovian process is one in which 

the state of a land-cover is identified by knowing its previous state and the probability of conversion 

from each state to another [20]. During the MOLA process, IDRISI’s Markov module was employed 

to produce the 1993–2000 forest conversion probability matrix (Table 4) based on the forest-cover 

maps of 1993 and 2000. In the matrix, the diagonal represents the self-replacement probabilities, 

whereas the off-diagonal values show the probability of a change occurring from one land cover to 

another. The MOLA allocated land for each category. For example, in order to allocate the primary 

forest to cropland, the MOLA used both the conversion potential map from the primary forest to 

cropland and the quantity of the conversion. Using this conversion potential map, the MOLA allocated 

the pixels with the highest potential to cropland according to the amount. Other forest conversions 

were done in the same way. Finally, the predicted forest cover map of 2007 was generated by 
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overlaying all results of the MOLA procedure. By using the same prediction procedure, the forest 

cover maps of 2014 and 2021 were predicted. The forest cover map of 2014 was predicted using the 

forest conversion potential maps from 2007 to 2014  and the 2000–2007 forest conversion 

probabilities (Table 6). The forest cover map of 2021 was predicted using the forest conversion 

potential maps from 2014 to 2021 and the 2000–2007 forest conversion probabilities. 

Table 2. The relationship between observed forest changes and spatial variables. 

1993–2000 Cramer’s V 2000–2007 Cramer’s V

Conversion from primary forest to secondary forest  
Proximity to settlement in 2000 0.3459 Proximity to settlement in 2007  0.3302
Proximity to water 0.5903 Proximity to water 0.6431
Slope 0.7053 Slope 0.6843
Elevation 0.7161 Elevation  0.7680
Proximity to road 0.8082 Proximity to road 0.8582
Proximity to primary forest in 2000 0.9132 Proximity to primary forest in 2007 0.9347
Conversion from primary forest to cropland   
Proximity to settlement in 2000  0.2911 Proximity to settlement in 2007 0.2525
Proximity to road 0.3204 Proximity to road 0.2750
Elevation 0.4289 Elevation  0.4471
Slope 0.5014 Slope 0.4938
Proximity to water 0.5700 Proximity to water 0.5701
Proximity to cropland in 2000 0.6552 Proximity to cropland in 2007 0.6986
Proximity to primary forest in 2000 0.8139 Proximity to primary forest in 2007 0.8087
Conversion from secondary forest to cropland  
Proximity to settlement in 2000  0.3811 Proximity to settlement in 2007 0.3536
Proximity to road 0.4101 Proximity to road 0.3652
Elevation 0.5089 Elevation 0.5473
Slope 0.6012 Slope 0.5835
Proximity to water 0.6803 Proximity to water 0.6903
Proximity to cropland in 2000 0.7554 Proximity to cropland in 2007 0.7961

Proximity to secondary forest in 2000 0.8935 Proximity to secondary forest in 2007 0.8743
Notes: The test was conducted in the LCM of IDRISI Taiga. The Cramer’s V coefficients were tested with 

the p value of less than 0.05.  

In order to apply the MLPNN-M model for the prediction of forest cover in the study area, the 

model needs to be validated. The purpose of model validation is to assess the predictive ability of the 

model for predicting changes in forest cover in the study area. The calibration data were separated 

from the validation data. The 1993–2000 forest cover maps and the 2000 spatial variables were used to 

calibrate the model. The 2007 actual forest cover map was only used for model validation. After the 

model was validated, forest cover scenarios were then predicted for the years 2014 and 2021 based on 

the assumption of forest conversions following the 2000–2007 Markovian dynamics. These prediction 

maps of future forest cover were used to identify areas vulnerable to forest conversions. 
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3. Results  

3.1. Observed Changes in Forest Cover 

The Landsat images for the years 1993, 2000 and 2007 were classified into primary forest, 

secondary forest, rain-fed agriculture, paddy rice, settlement and water (Figure 5). The overall 

accuracy of the classified maps for the years 1993, 2000 and 2007 ranged from 86.67% to 90.01%, and 

Kappa indices varied from 0.83 and 0.87. In this study, we focused on forecasting forest conversions; 

therefore, these classified maps were aggregated into primary forest, secondary forest and non-forest 

areas (Figures 6 and 7). Figure 6 shows the spatial patterns of forest changes for the periods of  

1993–2000 and 2000–2007. The total primary forest loss for the period of 1993–2000 was 7,870 ha, 

equivalent to 20.59% of the primary forest area in 1993. For the period of 2000–2007, the primary 

forest loss was 4,893 ha, equivalent to 16.12% of the primary forest area in 2000. Some primary forest 

was converted into secondary forest. As a result, secondary forest for the first period increased by 

3,970 ha, equivalent to 9.51% of the secondary forest area in 1993. In the second period, secondary 

forest increased by 385 ha, equivalent to 0.88 % of the secondary forest area in 2000 because the 

conversion of primary forest into secondary forest was reduced substantially. The low conversion may 

be attributable to better management of the primary forest. As a result of the conversion of primary and 

secondary forest into non-forest areas, non-forest areas increased over the periods. The increase in 

non-forest areas for 1993–2000 and 2000–2007 were 4,080 ha and 4,508 ha, respectively. 

Figure 5. Land-use maps derived from Landsat in 1993, 2000 and 2007. 
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Figure 6. Forest persistence and change for the periods of 1993–2000 and 2000–2007. 
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Figure 7. Areas of primary forest, secondary forest and non-forest. 
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3.2. Model Validation 

Figure 8 shows the results of the training and the projection of the conversion potential maps for the 

year 2007. A forest conversion potential map consists of pixels with continuous scores varying from 0 

to 1. A higher score pixel indicates a higher potential for forest change for that pixel. The higher 

potential areas for primary forest conversion are visible across the primary forest edges within the park 

and the surrounding areas. Similarly, the higher potential areas for secondary forest conversion are 

visible on the edges of the existing secondary forest segments. The forest conversion probability 

Area (ha) 
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matrix was then estimated using the maps of forest cover for 1993–2000 (Table 4). Figure 9 presents 

the predicted map of forest cover in 2007 using the 2007 forest conversion potential maps and the 

1993–2000 Markovian conversion probabilities. This output was used for model validation. 

A validation technique that compares a predicted model with a null model was applied for model 

validation [36]. Basically, this technique considers the agreement between two pairs of maps according 

to percent correct criterion. In this study, the first comparison was between the 2000 actual forest 

cover map and the 2007 actual forest cover map (the null model). The second comparison was between 

the 2007 predicted forest cover map and the 2007 actual forest cover map (the predicted model). 

Finally, the predicted model was compared with the null model. The components of agreement and 

disagreement of the two models were calculated using the Validate Module within the IDRISI 

software (Table 3).  

For the agreement components, both the two models have some similar characteristics. The largest 

component of agreement was due to location, followed by due to chance and due to quantity. Overall, 

the percent correct of the predicted model (96%) was greater than the percent correct of the null model 

(92%). Therefore, the prediction model performed better than the null model at the 30-meter 

resolution. According to [36], a prediction model should be used in an area where the model predicts 

as well as or better than the null model. Therefore, the model can be used for predicting forest cover in 

the region. By individual class, the non-forest class had the best agreement, followed by the primary 

forest and the secondary forest (Figure 10). The model appeared to predict contiguous patterns better 

than fragmented patterns. Both the non-forest and primary forest were characterized by contiguous 

patterns, but the secondary forest showed fragmented patterns. These characteristics may explain why 

the accuracy of the predicted secondary forest is less than the others. 

Table 3. Agreement and disagreement of the null and predicted models at 30-meter 
resolution (percent of the landscape). 

Components of agreement and disagreement The null model The predicted model
Agreement due to chance 33 33
Agreement due to quantity 6 7
Agreement due to location 53 56
Disagreement due to location 3 3
Disagreement due to quantity 5 1

The disagreement due to location and quantity is important in evaluating the accuracy in quantity 

and location of the predicted forest cover. In particular, these components help to improve the 

prediction. For the null model, the disagreement due to quantity was greater than the disagreement due 

to location. On the other hand, for the prediction model, the disagreement due to quantity was less than 

the disagreement due to location. This result showed that the MLPNN-M model was more accurate at 

predicting the quantity than the location of forest cover in the region. The disagreement due to location 

can be improved by enhancing the forest conversion potential maps because the forest conversion 

potential maps alone determine the location of forest conversion. This can be undertaken by 

considering additional explanatory variables. For example, soil variables such as soil organic carbon 

and soil fertility may improve the forest conversion potential maps because forest is mainly converted 

into agricultural land in the region. However, soil data are not available in the area.  
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The success of the model in predicting the location and the quantity of forest cover can be 

explained separately. With respect to the prediction of the location, selected spatial variables proved to 

be a considerable part of the variables driving the forest cover change in the area; therefore, the model 

was accurate at predicting the location of forest cover change. For the conversion from primary forest 

to secondary forest, the proximity to road and slope was found to be more important than the others. 

For the conversion of primary and secondary forest into cropland, the proximity to cropland, proximity 

to water and slope were determined to be more important than the others. These variables were also 

found to be important drivers of forest conversion in other areas such as in [13,40]. For the prediction 

of the quantity, the trends of forest conversion were conservative for the periods 1993–2000 and  

2000–2007. This may explain the success of the prediction of the quantity of forest cover in the area. 

However, increasing demand for agricultural land driven by population pressure may affect to forest 

conversion. Population pressure may accelerate in the future; therefore, it is hard to infer whether the 

model predicts the correct quantity in the future. 

Table 4. Forest conversion probability matrix for 1993–2000. 

Category  Primary forest Secondary forest Non-forest 
Primary forest 0.7941 0.1959 0.0100 
Secondary forest  - 0.9072 0.0928 
Non-forest  - - 1.0000 

3.3. Areas Vulnerable to Future Forest Conversions  

The forest conversion potential maps for the years 2014 and 2021 are presented in Figure 8. Table 5 

indicates the estimations of the forest conversion probabilities for 2000–2007. These inputs were 

combined within the model to simulate the forest cover patterns up to 2014 and 2021 (Figure 11). 

Within the study area, the MLPNN-M model predicts that the remaining primary forest will decrease 

from 18.03% in 2007 to 15.10% in 2014 and 12.66% in 2021. The secondary forest areas will decline 

only slightly from 31.17% in 2007 to 30.88% in 2014 and 30.18% in 2021 because a large portion of 

primary forest is converted into secondary forest. The non-forest areas increase from 50.81% in 2007 

to 54.01% in 2014 and 57.16% in 2021 as a result of the conversion of both primary and secondary 

forest into these areas (Table 6). 

Table 5. Forest conversion probability matrix 2000–2007. 

 Category Primary forest Secondary forest Non-forest 
Primary forest 0.8379 0.1527 0.0094 
Secondary forest  - 0.9026 0.0974 
Non-forest  - - 1.0000 
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Figure 8. Forest conversion potential maps consisting of pixels with continuous scores 

varying from 0 to 1 (the legend is the same in all conversion potential maps). 
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Figure 9. Actual versus predicted forest cover in 2007. 
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Figure 10. Correctly and incorrectly predicted areas of the predicted forest cover map in 2007. 
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In order to visualize the spatial patterns of forest changes, overlay analysis was conducted to 

highlight such areas. The forest change patterns are shown in Figure 11. The decline in primary forest 

is projected to be 4,127 ha in 2014 and 7,585 ha in 2021, equivalent to 16.21% and 29.79% of the 

2007 remaining primary forest, respectively. The conversion of secondary forest into non-forest areas 

(cropland) is predicted to be 4,287 ha in 2014 and 8,535 ha in 2021, equivalent to 9.74% and 19.39% 

of the secondary forest in 2007, respectively. Many areas within the park appear to be vulnerable to 

conversion. This area may require intensified protection measures if the remaining primary forest is to 
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be maintained in the future. The areas susceptible to secondary forest conversion often overlay with 

the areas near the edges of secondary forest in the buffer zone. 

Figure 11. Predicted forest cover and areas vulnerable to forest changes in 2014 and 2021. 
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Table 6. Forest cover for 1993–2007 and predicted forest cover in 2014 and 2021 (percentages). 

Category  1993 2000 2007 
(Real) 

2007
(Predicted) 

2014 2021

Primary forest 27.06  21.49 18.03 16.82 15.10  12.66 
Secondary forest  28.21  30.89 31.17 32.60 30.88  30.18 
Non-forest 44.73  47.62 50.81 50.58 54.01  57.16 

4. Discussion  

The conversion of primary and secondary forest for the periods from 1993–2000 and 2000–2007 

was observed within the strictly protected primary forest and the buffer zone. The primary forest loss 

for 1993–2000 was bigger than that for 2000–2007. Thus, primary forest loss still continues by illegal 

forest logging [12]. Similarly, a considerable primary forest loss was observed across the country 

during the period from 1990 to 2005 [6]. This conversion is a common trend in tropical forests [37,38]. 

The conversion of secondary forest to non-forest during the first period may be linked to a 1993 land 

law that provided land-use rights to individual households. Furthermore, government agricultural 

production input subsidies, such as crop varieties and fertilizers and improved access to credit and 

markets could contribute to this conversion trend. Similar conversions have been observed in other 

protected areas [11] and mountainous areas of Vietnam [33], and they have occurred in many other 

countries, particularly in developing countries. For example, [39] found that deforestation was strongly 

correlated with the extension of cropland area in Asia and Latin America.  
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There may be many driving factors of forest conversion, and they may vary from place to place. In 

our case study, selected spatial variables composed a considerable share of the factors driving forest 

changes. In particular, the accessibility variables seemed to be more important than the topographical 

ones. Many of these factors have been found to be important in other areas. For example, [40] 

identified proximity to road, town and forest/non-forest edge as important drivers of forest change in 

southern Cameroon. Elevation and proximity to road were highlighted as important factors of forest 

change in the lowlands of Sumatra, Indonesia [13]. Elevation, slope, proximity to road, settlement and 

proximity to forest/non-forest edge were the key factors of forest change in southeast Mexico [19]. 

Aside from these biophysical factors, socio-economic factors are often recognized as underlying 

driving forces of forest cover changes [39,41] and also play an important role in changing landscape. 

Although these underlying factors are the main pressures on forest conversions, their effect frequently 

comes from outside the forested areas. For example, the population in the secondary forest edge may 

have less influence on the conversion of secondary forest to tea plantations than populations outside 

these areas. This conversion may be caused by tea demand that originates from places further away. 

Therefore, our empirical analysis was based solely on the site factors of forest conversions.   

The predicted forest changes are based on the assumption that forest changes will follow the  

2000–2007 Markovian dynamics. In this area, the trends used in our predictions were largely driven by 

population pressure, and may be conservative. Increasing population, the high incidence of poverty, 

and the poor awareness of conservation among local residents have contributed to the loss of the 

primary forest and the conversion of secondary forest into cropland [12]. Forest conversion tended to 

occur in land suitable for agriculture. Shifting cultivation and commercial tea plantations were causes 

of cropland expansion into primary and secondary forest areas in the past. In particular, commercial 

tea plantations exist within the boundary of the park. Tea plantations may continue to extend into the 

primary forest area in the future because the area is highly suitable for tea plantations. 

The identification of the areas vulnerable to forest changes is fundamental in the TDNP and has 

important implications for biodiversity conservation in the region. One of the most important 

applications would be to relate the spatial patterns of forest changes to the spatial distribution of 

species. This is particularly important for large protected areas. Surveys on the distribution of plant 

species in the area showed that the remaining primary forest within the park is the most structurally 

complex and richest in plant species composition, particularly in the areas from 350 to 800 meters 

above mean sea level [42]. According to our predictions, forest loss is likely to occur within this range 

of elevation. The loss of the remaining primary forest will threatens the survival of many species in the 

region. In particular, cultivation within primary forest areas drastically altered the composition and 

abundance of plant species [24]. In addition, the conversion of secondary forest into cropland indicates 

increasing pressure on the steep land areas in the surrounding areas, and may cause severe land 

degradation in the future due to soil erosion. Continuing soil degradation may pose a threat to the 

natural resource-based local economy.  

From a protected area management perspective, the prediction maps of forest change patterns can 

help protected area managers identify where conservation and forest management efforts should be 

focused. This approach is particularly significant in Vietnam because limited finance resources for 

protected areas require focused efforts for conservation. Most of the government funding for protected 

areas is spent on salaries of forest rangers and not on development activities for affected populations. 
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At a larger scale, the prediction of forest change patterns can aid long-term sustainable  

forest management. 

5. Conclusions  

This study investigated the conversion of primary and secondary forest using remote sensing and 

the MLPNN-M model in Vietnam’s TDNP region. We parameterized the MLPNN-M model to 

simulate the conversion of primary forest and secondary forest in the near future. The rates and driving 

factors of forest changes were identified using remote sensing data. Then, these data were used to 

calibrate the model for projecting forest change patterns. The results of model validation showed that 

selected spatial variable proved to be a considerable part of the variables driving forest conversion in 

the area; therefore, the model was accurate at predicting the location of forest cover in 2007. However, 

the more successful component of the model was its prediction of the quantity of forest cover in 2007. 

Based on the 2007 model validation scenario, the forest cover in 2014 and 2021 was simulated to 

identify areas that are vulnerable to conversion of primary and secondary forest. According to our 

model predictions, a considerable portion of primary forest within the park is threatened by forest 

clearance, which indicates that intensified protection measures are required to prevent further loss of 

primary forest. The secondary forest in the steep areas in the buffer zone of the park is likely to be 

converted into agricultural land, and these areas are susceptible to soil erosion. The methodology and 

results produced in this study can be a vital tool for monitoring the remaining primary and secondary 

forest in the TDNP region. The monitoring process can be implemented by regularly updating 

Landsat-derived maps of forest cover and predicting forest change patterns. Moreover, the prediction 

maps can be used to focus biological conservation efforts. The methodology can also be used more 

widely for conservation planning and management in other protected areas that are experiencing forest 

changes in Vietnam.  

The model predicted quite reasonably the spatial patterns of forest changes in the study area; 

however, reforestation was not taken into account. Recently, deforestation and reforestation has been 

occurring simultaneously in the TDNP region. Therefore, future studies should attempt to include the 

reforestation process in order to further understand the dynamics as well as the patterns of forest 

changes in this area.  
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