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Abstract: Monthly night averaged land surface temperature (LST) MODIS imagery was 

analyzed throughout a year-period (2006), in an attempt to segment the terrain of Egypt 

into regions with different LST seasonal variability, and represent them parametrically. 

Regions with distinct spatial and temporal LST patterns were outlined using several 

clustering techniques capturing aspects of spatial, temporal and temperature homogeneity 

or differentiation. Segmentation was supplemented, taking into consideration elevation, 

morphological features and landcover information. The northern coastal region along the 

Mediterranean Sea occupied by lowland plain areas corresponds to the coolest clusters 

indicating a latitude/elevation dependency of seasonal LST variability. On the other hand, 

for the inland regions, elevation and terrain dissection plays a key role in LST seasonal 

variability, while an east to west variability of clusters’ spatial distribution is evident. 

Finally, elevation biased clustering revealed annual LST differences among the regions 

with the same physiographic/terrain characteristics. Thermal terrain segmentation outlined 

the temporal variation of LST during 2006, as well as the spatial distribution of LST zones. 

Keywords: multi-temporal imagery; land surface temperature; thermal terrain 

segmentation; k-means classification 
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1. Introduction  

Biophysical parameters including landcover [1], land surface temperature (LST) [2], tree canopy 

density [3], etc., are of great importance in assessing environmental change. Modern operational  

space-borne sensors with spectral sensitivity in the thermal infra-red spectrum allow monitoring of the 

Earth’s thermal field at a moderate spatial resolution [4]. Thermal imagery products are available on a 

regular and frequent basis for both land and oceans [2,5].  

Accordingly, digital elevation models (DEMs) are freely available through the Internet [6], 

providing global coverage and assisting various environmental applications. Various quantitative 

techniques (terrain modeling) have been developed to automate the extraction of terrain features from 

DEMs [7]. Terrain modeling includes terrain segmentation into elementary objects, parametric 

representation and classification of objects, on the basis of their spatial three-dimensional  

arrangement [8]. These methods allow recognizing and monitoring of natural hazards and 

environmental change [9,10]. 

Egypt includes many regions of diverse environmental characteristics, landcover and biophysical 

conditions [11]. The quantification of the knowledge related to the various regions of Egypt is a key 

factor in the attempt to characterize the landscape, assess the sensitivity against natural hazards and 

support environmental analysis and planning at moderate resolution scale. 

The goal of this research was to integrate monthly MODIS Land Surface Temperature data with 

elevation data to map climatic zones of Egypt. Such effort could assist environmental assessment and 

urban planning at a country level. 

2. Methodology 

Initially, the digital elevation data and the LST multi-temporal imagery of the study area are 

presented. The terrain was segmented through k-means clustering into regions, representing a distinct 

annual thermal signature. Finally, each region was parametrically represented on the basis of both its 

thermal signature and elevation statistics. 

2.1. DEM of the Study Area 

The study area corresponds to Egypt, bounded by latitudes 21.75° to 31.65° North and longitudes 

24.72° to 35.77° East. The Shuttle Radar Topography Mission (SRTM) successfully collected 

Interferometric Synthetic Aperture Radar data over 80% of the landmass of the Earth between 60° 

North and 56° South latitudes on February 2000 [12]. In its original release, SRTM data contained 

regions of no-data (named voids), specifically over water bodies (lakes and rivers), and in areas where 

insufficient textural detail was available in the original radar images to produce three-dimensional 

elevation data. The existence of voids causes significant problems in using SRTM DEMs [6]. The 

Consortium for Spatial Information of the Consultative Group for International Agricultural Research 

is offering post-processed void-free 3-arc second SRTM DEM data for the globe [13]. The DEM data 

is available in 5° tiles, referenced to WGS-84 ellipsoid, forming a geographic grid with spacing 3 arc 

seconds. The SRTM DEM of the study area is presented in Figure 1.  
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Figure 1. The Shuttle Radar Topography Mission (SRTM) digital elevation model DEM 

of the study area, forming a geographic grid referenced to WGS-84 ellipsoid with spacing 

3 arc seconds. The elevation range is within the interval [−170, 2,447] m. The Nile River 

crossing the east portion of Egypt from north to south is easily recognized as the elongated, 

smooth, low relief region in respect to the surrounding land. 

 

2.2. Multi-Temporal LST Data of the Study Area  

The LST dataset used (with accuracy of 1 Kelvin) was derived from MODerate-resolution Imaging 

Spectroradiometer (MODIS) instrument on board the Terra polar orbiting satellite [4]. The MODIS 

LST Monthly L3 Global 0.05 Deg geographic Climate Modeling Grid (MYD11C3) product is used 

(https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/land_surface_temperature_emissivity/

monthly_l3_global_0_05deg_cmg/). 

The LST algorithm used to obtain MYD11C3 uses as input data including geolocation, radiance, 

cloud masking, atmospheric temperature, water vapor, snow, and land cover. Validated LST values 

within a calendar month are composited and averaged. MYD11C3 provides validated day/night LST 

values on a 0.05 degree latitude/longitude grid (5,600-meter at the equator) Thus, accuracy has been 

assessed over a widely distributed set of locations and time periods via several ground-truth and 
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validation efforts. These data are ready for use in scientific publications when monthly averaged LSTs 

are application-appropriate [14].  

The 12 images that correspond to the monthly averaged night (10:30 PM pass) LST of the year 

2006 are shown in Figure 2. 

Figure 2. Monthly night land surface temperature (LST) values (the darker a pixel is, the 

greater the LST). From March to October the Nile River is easily identified due to the 

observed lower LST values compared to the surrounding land. 

 

2.3. Thermal Terrain Segmentation 

K-Means cluster analysis was used to partition the 12-dimensional imagery into K exclusive 

clusters. In general, k-means initiate by positioning cluster centroids, then assigns each pixel to the 

cluster whose centroid is nearest, updates the centroids, then repeats the process until the stopping 

criteria are satisfied [15]. It uses Euclidian distance to calculate the distances between pixels and 

cluster centroids. 

The 12 thermal images (Figure 2) represented a common arithmetic range of values in the  

interval [−2, 35] degrees Celsius and there was no need for data standardization. In the current 

implementation of the method, small clusters with area extent (occurrence) less than 0.5% were 

eliminated by merging them with larger clusters that are closest to their centroids. The stopping 

criterion was defined as a threshold in the percentage of the migrating pixels during a specific iteration 



Remote Sensing 2010, 2                  

          

2087 

(if it was less than 0.1% of the entire image pixels, clustering was terminated). Eight clusters were 

mapped after 73 iterations. The cluster centroids are given in Table 1. 

Table 1. LST cluster centroids, as well as occurrence (percent area extent) and 

mean/standard deviation (S.D.) of elevation per cluster. The clusters are presented in 

decreasing mean LST order (7, 1, 8, 6, 3, 5, 4, 2) for the months May to September. 

Parameter Month 

Clusters  

(in decreasing mean LST order from May to September) 

7 1 8 6 3 5 4 2 

 

LST  

 

Centroids 

 

(°C) 

  

  

  

  

  

 

January 15.7 12.2 8.9 5.9 3.7 6.8 4.0 6.5 

February 17.0 13.7 11.1 8.5 6.4 9.4 6.6 7.8 

March 20.5 17.6 15.1 13.6 12.0 12.8 10.5 10.3 

April 22.9 20.4 17.9 16.9 15.7 16.0 14.3 14.2 

May 27.6 25.5 23.2 21.9 20.7 20.5 18.6 17.6 

June 31.0 29.3 26.6 25.9 24.8 24.2 22.5 22.0 

July 30.8 29.4 27.2 26.8 25.7 25.3 23.9 23.3 

August 31.0 30.0 28.4 28.3 27.5 26.6 25.2 24.4 

September 30.6 28.5 26.0 25.1 24.1 24.0 22.4 22.0 

October 26.6 23.8 21.3 19.9 18.6 19.2 17.5 18.3 

November 18.8 15.9 12.8 11.9 10.7 11.4 9.7 12.0 

December 15.0 11.7 8.4 6.9 5.1 7.1 4.6 8.5 

 Occurrence (%) 9.0 11.2 17.2 14.2 21.4 9.6 10.0 7.4 

Elevation 

(m) 

Mean 336 320 316 237 236 388 427 107 

S.D. 166 217 227 168 107 295 284 127 

The cluster occurrence (percent area extent per cluster), as well as elevation statistics (mean 

elevation and standard deviation of elevation) per cluster are shown in Table 1. The cluster occurrence 

and elevation statistics are graphically presented in Figure 3. 

Figure 3. (a) Percent area of each cluster class. (b) Mean elevation within each cluster class. 
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The spatial distribution of the eight clusters is shown in Figure 4, while the temporal distribution of 

the cluster centroids’ LST is presented in Figure 5. 

Figure 4. Spatial distribution of the eight cluster centroids. 

 

Figure 5. Temporal distribution of the eight cluster centroids.  
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2.4. Spatially Fused Clustering 

A variation of the multi-temporal image sequence clustering was also performed in order to 

explicitly incorporate spatial proximity, not addressed in the previously discussed process. Thus, the 

LST image dataset was supplemented with two additional parameters, corresponding to the spatial (x, y) 

coordinates. These additional images were defined in an arbitrary pixel coordinate system, scaled in 

accordance to the LST data.  

A 14-dimensional dataset was formed and the result of k-means clustering with increasing spatial 

influence is shown in Figure 6. Nevertheless, clusters remain spatially relevant and the general 

placement of the cluster’s borders resembles the SRTM DEM of Figure 1. Compared to the temporal 

clusters of Figure 4, the seven spatiotemporal regions preserve spatial concentration.  

Figure 6. Spatially fused clustering with gradually ascending spatial weights (a) 1/7,  

(b) 1/5 and (c) 1/4. The progressive spatial connectivity is apparent.  

 

(a)        (b)        (c) 

Additionally, spatiotemporal clustering tying both temporal variations and pixel distances was 

considered. The multidimensional cluster space was four dimensional, including space (x, y), time (t) 

and temperatures. As temporal variance was incorporated into spatial proximity, clusters formed  

three-dimensional concentrated regions. Since scale and spread of data are highly unrelated, a 

normalization step forced all dimensions to become comparable. Weighted coordinate arrangement 

was supported to enhance or weaken temperature and temporal contributions.  

Generalized visualization of the formed clusters revealed bulks of spatiotemporal similarities 

over the multi-temporal imagery (Figure 7(a)). The temporal axis (t) corresponds to the clustered 

scene snapshots of the first, fourth, seventh, and tenth months, while interpolated in-between scenes 

can be visualized. As seen in Figure 7(b), clusters in many instances are regularly spaced indicating 

reduced temperature variability and thus resembling the area’s geomorphology. Nevertheless, 

cluster irregularities shown in various instances indicate areas of possible interest or  

temperature differentiation.  



Remote Sensing 2010, 2                  

          

2090 

Figure 7. (a) Visualizing colored bulks of three-dimensional clusters under spatiotemporal 

clustering, (b) 12 two-dimensional temporal slices from spatiotemporal clustering. Slices 

with irregularly dispersed clusters indicate temperature discrepancies. 

 

2.5. Elevation Biased Clustering  

In the previous sections, clustering (Figure 4) and spatially fused clustering (Figure 6) were applied 

to LST data in an attempt to identify regions with common annual LST variation. On the other hand, 

geomorphology provides the framework for the interaction among various biophysical parameters, 

while planners, biologists, environmental scientists, etc., consider landscape as the framework for the 

integration of spatial relationships. Towards this end, geomorphologic data were integrated to LST 

data in an elevation biased clustering process, with the advantage of producing a terrain dependent 

organization of annual LST variations. Such an approach would probably reveal annual LST 

differences among the regions with the same physiographic characteristics.  

Elevation within each 0.05 degree MODIS LST pixel was computed as the mean of all SRTM 

elevation values in each MODIS pixel. K-means clustering was then performed based on 13 rasters:  

12 monthly LST rasters and the elevation raster. The clustering algorithm merged clusters with less 

than 0.1 percent area into larger clusters and clustering stopped after less than 0.02 percent of the 

pixels changed class membership. Sixteen classes were output after 276 clustering iterations.  

The cluster centroids are given in Table 2 and in Figure 8. Note that clusters were sorted in 

increasing centroid elevation value (Table 2) and grouped to 4 categories of mean (centroid) elevation 

(H), (a) < 71 m, (b) 121 < H < 261 m (c) 314 < H < 583, (d) H > 700 m. The occurrence and the H 

centroid statistics (mean and standard deviation of elevation) are presented in Figure 9. Thus, the relief 

of Egypt was classified to four groups on the basis the 16 cluster centroids and within each group the 

annual LST variation is provided (Figure 8). The interpretation of the spatial distribution (Figure 10) 

of the 16 clusters, grouped to four relief categories revealed annual LST differences among regions 

with common relief. 
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Table 2. Cluster occurrence and centroids (elevation and LST per month). Note that 

clusters were sorted in increasing mean elevation (negative mean elevation indicate 

clusters occupied by the Alexandria Lake). 

Clus-

ter  

ID 

 

Occur

-rence 

% 

Elevation 

(m) 
LST per Month (degrees Celsius) 

Mean S.D. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

9 1.5 −74 15 8.4 9.9 13.8 18.1 22.5 25.1 28.5 26.1 26.5 21.4 15.1 11.0 

4 0.9 −21 14 6.7 8.2 12.5 16.8 21.0 25.2 27.1 27.3 25.3 20.4 13.4 8.9 

12 7.0 19 13 8.2 9.3 12.4 15.9 19.8 25.5 25.2 27.6 23.6 19.8 13.7 9.9 

15 4.9 71 15 7.1 8.8 12.7 16.6 20.8 25.3 26.3 28.8 24.7 20.1 13.2 8.7 

14 7.4 121 13 6.1 8.2 12.7 16.8 21.3 24.1 26.6 26.1 24.9 19.9 12.4 7.7 

16 11.7 163 13 6.3 8.5 13.2 16.8 21.5 24.8 26.5 27.0 25.1 20.1 12.1 7.5 

3 13.2 209 14 7.0 9.0 13.3 16.8 21.7 26.1 26.4 28.0 25.1 20.3 12.3 7.7 

11 11.0 261 15 7.8 10.1 14.8 17.8 23.0 27.0 27.2 28.3 25.9 21.1 12.7 7.9 

7 13.9 314 18 7.1 9.7 14.6 17.4 22.6 26.4 26.8 30.4 25.6 20.6 12.1 7.0 

8 8.8 394 23 9.0 11.1 15.6 18.4 23.4 26.6 27.3 28.0 26.3 21.8 13.4 8.5 

10 7.0 477 27 8.7 11.1 15.2 18.1 23.0 26.6 27.1 28.3 26.0 21.2 13.2 8.4 

13 5.5 583 31 8.1 10.9 14.7 17.5 22.4 24.1 26.6 26.1 25.5 20.4 12.3 7.8 

2 3.8 700 38 7.9 10.9 14.2 17.0 21.9 25.8 25.9 27.8 24.9 19.8 11.6 7.4 

6 1.8 858 50 8.0 10.9 13.9 16.7 21.6 25.6 25.6 28.1 24.4 19.4 11.3 7.2 

5 1.1 1047 76 7.4 10.2 13.0 16.0 20.8 25.2 24.7 27.7 23.5 18.5 10.6 6.5 

1 0.3 1452 217 6.5 9.0 12.6 15.2 20.6 25.5 24.9 28.0 23.9 18.1 11.0 6.0 

Figure 8. The LST centroids of the 16 clusters (Table 2) organized into four categories in 

increasing mean elevation (H) (Figure 10). The mean elevation (H) range per category is 

indicated in each figure. 
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Figure 9. (a) Percent area of each cluster class. (b) Mean elevation within each cluster 

class. Clusters were sorted in increasing mean elevation (Table 2). 

 

Figure 10. The spatial distribution of the 16 clusters corresponding to the elevation biased 

clustering. The clusters were organized in four groups in increasing mean elevation 

according to Figure 8. Both seasonal LST variations and the spatial distributions of regions 

with the same elevation range are revealed. Thus the most elevated clusters (2, 6, 5, 1) map 

the spatial extent of two regions with different annual LST variability in Sinai (NE) while in 

the lowland (clusters 9,4,12,15) LST differences are identified among regions in Nile Delta, 

Nile River, Alexandria Lake and the coastal zone in the north (Mediterranean Sea) and east 

(Red Sea). 
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3. Results and Discussion 

The eight clusters presented more or less distinct centroids (Figure 5, Table 1), with specific spatial 

arrangement (Figure 4), while the mean elevation of each cluster played a significant role (Table 1, 

Figure 3). The clusters were arranged in decreasing mean LST centroid co-ordinates order for the 

months May to September as follows: 7, 1, 8, 6, 3, 5, 4, 2 (Table 1, Figure 5). In order to assist 

interpretation, a satellite image map of Egypt [16] is shown (Figure 11) in which selective places of 

interest are identified. 

Figure 11. Orthorectified Landsat Thematic Mapper Mosaic [16], Band 7 (mid-infrared 

light) is displayed as red, Band 4 (near-infrared light) is displayed as green, Band 2 (visible 

green light) is displayed as blue. 

 

Clusters 2 and 4 present the coolest centroids (Figure 5, Table 1). Cluster 2 corresponds to the low 

elevated (Table 1, Figure 3) plain (since standard deviation of elevation is minimized in Table 1) north 

coastal region along the Mediterranean Sea (Figure 4). Cluster 4 is located further south than Cluster 2, 

and occupies the most elevated (Figure 3) and dissected (standard deviation of elevation is maximized 

in Table 1) regions, for example the Sinai (Figure 8), South-East of Suez Canal. 

The warmest (Figure 5) clusters (7, 1, 8, 6, and 3) are spatially distributed along east to west 

direction (Figure 4). Clusters 7, 1 and 8 present almost similar elevation statistics (Table 1, Figure 3), 

with a mean elevation that is higher than the mean elevation of clusters 6 and 3. Cluster 5 (it is a rather 

cool cluster since its LST centroid approaches the centroids of clusters 2 and 4) is distributed almost 
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uniformly all over the country. The high elevation (Table 1, Figure 3) of the regions forming cluster 5 

interprets the behavior of the corresponding LST centroid, while a portion of Nile River is also 

interpreted to belong to cluster 5 (Figure 4). 

Each of the 16 clusters derived by the elevation biased clustering were formed by regions with 

almost common elevation range as it was concluded by the standard deviation of clusters centroid 

(Figure 9, Table 2).  

The category that includes the most elevated clusters 2, 6, 5, 1 is formed by the Sinai Mountains in 

the NE and the elevated region in SW according to Figure 10. The 4 LST centroids (Figure 8) for this 

group indicate a variation of the annual LST that is elevation dependent. The four lowest in elevation 

clusters (9, 4, 12, 15) are grouped in a category that includes the coastal regions along the 

Mediterranean Sea, Red Sea, Alexandria Lake (clusters 4 and 9 with negative elevation centroid) as 

well as the Nile Delta (Figure 10). The four LST centroids (Figure 8) for this group indicate a variation 

of the annual LST that depends on the proximity to inland waters and sea as well as latitude. 

For the two groups of intermediate elevation (a) 121 to 261 m and (b) 314 to 583 m (Table 2,  

Figure 10), it is concluded that the lower elevated group is represented by a cooler annual LST curve 

(Figure 8), due to its proximity to the sea and the Nile River. The four LST centroids (Figure 8) for 

each group, indicate a variation of the annual LST that is elevation dependent.  

The GlobCover landcover map, available from the European Space Agency Ionia Portal 

(http://ionia1.esrin.esa.int/) was used to identify the major landcover classes in Egypt. It was 

developed using as input observations from the 300m MERIS sensor on board the ENVISAT satellite 

mission over a period of 19 months (December 2004–June 2006). The majority of Egypt is occupied 

by two landcover classes (a) bare area (92.1) and (b) post-flooding or irrigated croplands or aquatic 

(5.2%), with the last one corresponding mainly to cluster 12 (Table 2, Figure 10, Figure 12). 

Figure 12. The GlobCover (© ESA/ESA GlobCover Project, led by MEDIAS-France) 

lancover map of the study area. 
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4. Conclusions 

Thermal terrain segmentation from multi-temporal monthly night imagery outlined objectively both 

the temporal variation of LST during 2006 and the spatial distribution of LST zones. The Northern 

coastal region along the Mediterranean Sea, occupied by lowland plain areas, corresponded to the 

coolest clusters indicating a latitude/elevation dependency of seasonal LST variability. On the other 

hand for the inland regions, elevation and terrain dissection play a key role in LST seasonal variability, 

while an East to West variability of clusters’ spatial distribution was revealed. Finally, the elevation 

biased clustering revealed annual LST differences among the regions with the same 

physiographic/terrain characteristics.  

Mapping of regions with common annual LST variability would assist planning, decision making 

and climatic change studies at moderate resolution scale. The derived Egypt’s LST signatures could 

provide a tool for environmental assessment comparison and evaluation between different countries. 
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