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Abstract: During 1996–2006, the Ministry of Agriculture and Forestry in Finland (MAFF), 

MTT Agrifood Research and the Finnish Geodetic Institute performed a joint remote sensing 

satellite research project. It evaluated the applicability of optical satellite (Landsat, SPOT) 

data for cereal yield estimations in the annual crop inventory program. Four Optical 

Vegetation Indices models (I: Infrared polynomial, II: NDVI, III: GEMI, IV: PARND/FAPAR) 

were validated to estimate cereal baseline yield levels (yb) using solely optical harmonized 

satellite data (Optical Minimum Dataset). The optimized Model II (NDVI) yb level was 

4,240 kg/ha (R
2
 0.73, RMSE 297 kg/ha) for wheat and 4390 kg/ha (R

2
 0.61, RMSE 449 

kg/ha) for barley and Model I yb was 3,480 kg/ha for oats (R
2
 0.76, RMSE 258 kg/ha). 

Optical VGI yield estimates were validated with CropWatN crop model yield estimates using 

SPOT and NOAA data (mean R
2
 0.71, RMSE 436 kg/ha) and with composite SAR/ASAR 

and NDVI models (mean R
2
 0.61, RMSE 402 kg/ha) using both reflectance and 

backscattering data. CropWatN and Composite SAR/ASAR & NDVI model mean yields 

were 4,754/4,170 kg/ha for wheat, 4,192/3,848 kg/ha for barley and 4,992/2,935 kg/ha  

for oats. 

Keywords: optical vegetation Indices models; classification; NDVI; GEMI; FAPAR; 

PARND; SAR/ASAR; CropWatN; LAI-bridge; Finland; CAP; Kalman Filter; data fusion; 

harmonized data 
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1. Introduction 

Remote sensing and optical satellite systems have been extensively exploited globally in national 

crop inventory programs. They provide valuable information especially when estimating the total 

cultivation areas and yield production for commercially important crops like spring and winter wheat 

(Triticum aestivum L.), durum wheat (Triticum turgidum L. subsp. durum), soybean (Glycine max L.) 

maize (Zea mays L.) and rice (Oryza sativa L). Previous studies have described attempts to apply both 

optical and microwave SAR (Synthetic Aperture Radar) satellite data for crop yield modeling and crop 

inventory monitoring, e.g., Brown et al. [1], Henning et al. [2], Maas and Dunlap [3] and  

Kondratyev et al. [4] for wheat and maize, Shibayama and Akiyama [5] and Le Toan et al. [6] for rice.  

Optical and microwave satellite imagery data combined with cereal crop modeling and 

agrometeorological weather data has been extensively applied in crop yield inventory and cultivation 

area programs both on Pan-American and European scale. McNairn et al. [7] applied composite 

multispectral approach for Canadian wheat, maize and soybean classification by using both optical and 

SAR data with Neural Network and Decision Tree classification techniques. In USA the Lanworth 

Company [8,9] together with the United States Department of Agriculture (USDA) provides 

commercial early crop inventories for wheat, soybean and maize. In addition, Lanworth has expanded 

its operations to Eastern Europe countries like Russia, Kazakhstan and Ukraine for wheat and also to 

South America (Brazil, Argentina) for maize and soybean crop yield estimations.  

The European Union (EU) has been active in agricultural remote sensing programs in order to 

establish Pan-European crop inventory mechanism to support EU CAP (Common Agricultural Policy) 

policies and objectives. The Directorate General for Agriculture of EU (DGA [10]) and  

EUROSTAT [11] provide annual estimates of the total wheat and other cereal yield production on 

national level. Currently EU is funding an agricultural remote sensing program ‘Monitoring 

Agriculture with Remote Sensing’ (MARS) operated by the Joint Research Centre, Institute of Remote 

Sensing Applications (JRC/IRSA) [12,13]. The JRC (Space Applications Institute) of the EU is 

monitoring agricultural production and cultivation areas for different crops by using remote sensing 

techniques in EU countries. In the JRC, Narciso et al. [14] reviewed agrometeorological aspects and 

requirements for common and durum wheat, barley (Hordeum vulgare L.), oats (Avena sativa L.), 

soybean and oil crops in Italy, Spain and Greece and, respectively, Hough [15] for UK and Ireland. 

Recent research studies have applied satellite derived information combined with crop simulation 

models for winter, spring and durum wheat yield forecasting in EU crop inventory campaigns.  

Dente et al. [16] applied CERES-Wheat/DSSAT crop model [17,18] combined with ENVISAT 

Advanced Synthetic Aperture Radar (ASAR) and MERIS data for durum wheat yield potential and LAI 

(Leaf Area Index) assimilation estimations at catchment scale in southern Italy. de Wit and  

van Diepen [19] applied dynamic WOFOST crop model [20] combined with modified Ensemble 

Kalman filter (EnKF) [21] to improve winter wheat and maize regional crop yield forecast accuracy in 

Spain, France, Italy and Germany during the 1992–2000 period. EnKF-filter was applied to correct low 

resolution microwave satellite soil moisture estimates in the WOFOST water balance model. During 

1995–2003 de Wit and van Diepen [22] applied WOFOST crop model for the EU regional winter 

wheat yield forecasting in Spain, Poland and Belgium. In their study, the applicability of  

MeteoSat-satellite derived weather and agrometeorological variables were tested to replace interpolated 
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data from weather stations (temperature, evapotranspiration and radiation). Modeling results were 

spatially aggregated to regional and national levels and results were evaluated by comparing the 

simulation results of both approaches and by assessing the relationships with EUROSTAT crop yield 

statistics during 1995–2003. This consolidation methodology approach was also optimal in modeling 

study presented by Supit [23] for Pan-European wheat forecast evaluation and for Supit and van der 

Goot [24] wheat yield forecast study in France. Supit [23] estimated national wheat yield levels and 

yield volumes for 12 European countries during a 10 year period by using multiplicative and additive 

prediction models in conjunction with trend functions for weather and nitrogen input effects.  

Vegetation Indices models (VGI) derived from optical and microwave satellite data have been 

extensively used in recent cereal yield potential estimations. Moriondo et al. [25] studied wheat yield 

variation with CROPSYST model using NDVI (Normalized Difference Vegetation Index) and FAPAR 

Index (Fraction of Absorbed Photosynthetically Active Radiation) estimates. Brown et al. [1] and 

Henning et al. [2] studied crop canopy and microwave SAR (Synthetic Aperture Radar) backscattering 

interactions. Prasad et al. [26] evaluated the use of Spectral Reflectance Indices (SRI) similar to VGI 

indices applied in this study, for assessing grain yield variabil   ity in winter wheat genotypes under 

Great Plains (USA) growing conditions. Mangiarotti et al. [27] applied a similar composite approach to 

the one applied by McNairn et al. [7]. Both studies assimilated optical SPOT/NDVI reflectance and 

microwave ENVISAT/ASAR backscattering data to model semi-arid herbaceous vegetation dynamics 

with Step and Radiative Transfer (RT) models. Serrano et al. [28] studied winter wheat yield and 

biomass variation in Spain under different nitrogen supply levels by using fIPAR Index (fraction of 

Intercepted Photosynthetically Active
 

Radiation, PAR) in conjunction with wheat LAI canopy 

development and chlorophyll A content. The FAPAR Index is extensively applied by the JRC of EU in 

remote sensing applications (http://fapar.jrc.ec.europa.eu/Home.php). FAPAR is an indicator of the 

state and productivity of vegetation. It represents the fraction of the solar energy which is absorbed by 

vegetation during the plant photosynthetic process. The FAPAR algorithm minimizes the effects of 

atmospheric particle scattering, the variation of different soil covers and the changing geometry  

of illumination.  

Research studies in northern high latitude agricultural production countries have focused on 

integrating multispectral remote sensing techniques, which combine both optical and microwave SAR 

imagery data. In Finland, Kuittinen et al. [29], Kuittinen [30] and Karvonen et al. [31] have reviewed 

spring wheat and barley yield forecasting with crop models using Landsat and SPOT data for Nordic 

high latitude agricultural regions. According to Kuittinen et al. [29], cloudiness in northern latitudes 

especially during growing season significantly reduces the applicability of optical spectrum satellite 

data. Matikainen et al. [32] applied microwave ERS-2 and optical SPOT data for crop species 

interpretation and Karjalainen et al. [33] applied ENVISAT ASAR data for spring cereal  

yield monitoring. 

During 1996–2006, the Ministry of Agriculture and Forestry in Finland (MAFF), MTT Agrifood 

Research Finland (MTT), the Finnish Geodetic Institute (FGI) and the Technical Research Centre of 

Finland (VTT, Department of Space Research) performed a joint remote sensing satellite research 

project. It evaluated the applicability of multispectral optical and SAR satellite data for cereal yield 

estimations in the annual crop inventory program. Both optical and composite SAR microwave 
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Vegetation Indices models (VGI) were validated to estimate spring cereal yield levels using solely 

optical and SAR satellite data. 

In Finland the applicability of multispectral classifying techniques for different agricultural crops 

(e.g., McNairn et al. [7] for Canadian growing conditions) is less relevant, since MAFF as part of the 

EU regulated CAP policy has established a national Finnish Land Parcel Identification System (FLPIS) 

with digitized parcel boundaries [34]. The FLPIS system is incorporated with the Integrated 

Administration and Control System (IACS). The IACS system controls the payments of cultivation 

area based agricultural subsidies for Finnish farmers. The ground based stratum sampling similar to 

USDA methodology [9] is currently being applied in Finland in the annual crop inventory sampling. 

MAFF together with the Finnish Agricultural Advisory and Rural Development Centres perform 

annually a crop yield inventory sampling. 

Recent research results in EU have stated the need of integrated Agricultural Information System 

(AIS) to enable easy dissemination of geo-referenced data for agricultural system research on EU scale. 

Russell et al. [35] reviewed the Barley Knowledge Base and AIS system for the European Community. 

Janssen et al. [36] demonstrated the need of Integrated Database System by combining both remote 

sensing satellite data and ground truth data in order to establish Pan-European agricultural database 

system to support EU CAP objectives. The SEAMLESS database system integrates agricultural 

management (crop phenological calendar, cropping patterns, yield production and soil and 

agrometeorological climate data) and CAP policy information.  

In summary, new combined multispectral optical and SAR VGI modeling and phenological 

classifying techniques, which use solely optical and SAR satellite data (Minimum Datasets) through 

data fusion, provide new integrated tools for cereal yield predictions during the MAFF annual crop 

inventory program. New remote sensing techniques integrated with Finnish national FLPIS and IACS 

systems will support Finnish national and EU CAP goals and objectives. 

In a recent publication by Laurila et al. [37], spring cereal yield modeling results were presented for 

Finnish high latitude growing conditions using multispectral composite SAR backscattering and NDVI 

data (Composite Minimum Dataset). Cereal maximum yield capacity is limited by environmental (e.g., 

drought periods) and vegetation stresses (e.g., nutrient deficiencies, pathogen epidemics) during 

growing season.  

In this publication the optical reflectance data, obtained through data fusion and harmonization 

from the Landsat and SPOT satellites (Optical Minimum Dataset) were used as input for the optical 

VGI models (Models I-IV).  

The overall goal of the present study was by integrating optical composite data to estimate actual 

non-potential grain baseline yield levels (yb) for high latitude spring cereals in large area field 

conditions in southern Finland using optical vegetations indices.  

The specific objectives of the present study were:  

(i) Calibration of the optical VGI models (Models I-IV) by using phenologically classified Optical 

Minimum Datasets containing harmonized Landsat and SPOT reflectance data for spring wheat, 

barley and oats (Avena Sativa L.)  

(ii) Validation comparison of optical VGI model baseline yield estimates (yb) vs. CropWatN dynamic 

crop model yield estimates [29] using Landsat, SPOT, NOAA reflectance data and MAFF 
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inventory yield statistics and MTT Agrifood Research Finland Official Variety Trial averaged 

yield results (1996–2006) were used as a ground truth reference.  

(iii) Validation comparison of optical VGI model baseline yield estimates (yb) vs. composite 

multispectral VGI models with SAR/ASAR and NDVI components and using both reflectance and 

backscattering data from Envisat, ERS and Radarsat.  

(iv) Estimation of cereal non-potential baseline yield levels (yb) in growing zones (I–IV) using VGI 

models as a yield inventory tool for the annual MAFF inventory statistics.  

2. Methodology and Study Area  

2.1. System Analysis and Strategy 

In this study, four optical Vegetation Indices (VGI models (VGI, Infrared polynomial, NDVI, GEMI, 

and PARND/FAPAR, Table 1) were calibrated and validated with optical satellite data (Landsat and 

SPOT Optical Minimum Datasets 1996–2006) without extensive agrometeorological ground truth data 

required by conventional dynamic crop models [17,18]. The System Analysis overview is reviewed in a 

recent publication by Laurila et al. [37] and in [38-41]. Respectively, the Integrated LAI-bridge 

coupling mechanism applied in this publication is depicted in Figure 1 (I-Calibrated optical reflectance 

data, II–III phenological classification, VGI model yield estimates, IV-LAI bridge coupling, GEMI 

index, dynamic crop model yield estimates). Optical minimum datasets were measured in five different 

experimental locations (Mellilä, Porvoo, Kirkkonummi, Jokioinen and Lapua experimental sites) in 

southern Finland. 

Figure 1. Integrated LAI-bridge coupling mechanism with adaptive Kalman Filter [19,21] 

between phenologically pre-classified optical data (GEMI model III, Table 1) and dynamic 

crop model (Model V, CropWatN, [29,31]). 
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Table 1. Vegetation Indices Models (I–VI), dependent baseline yield (yb) and independent variables [29,37,53,54]. 
1), 2), 5) 

 Model Model equation 1), 2) Independent driving 

variables 2) 

Model name, description of derived satellite parameters used in regression equations 

 I 

 

yb = ρRED (ap, bp, cp) + ρNIR (ap, bp, cp) 

 

 

ρRED(ap, bp, cp), 

 ρNIR(ap, bp, cp) 

Polynomial infrared model 

Calibrated reflectance (ρ or rfchannel) values for infrared (ρRED, TM channel = 3) and  

near infrared (ρNIR, TM channel = 4) during growing season in different phenological stages. 

- ap, bp, cp, dp classes correspond on average to Zadoks crop phenological growth scale with cereals:  

ap: 0-12, bp: 12-50, cp: 50-90, dp:>90 [44]. 2) 

 II  yb = NDVI(ap, bp, cp) 

NDVI = (ρNIR (ap, bp cp) - ρRED(ap, bp, cp))/ 

(ρNIR(ap, bp, cp)+ ρRED(ap, bp, cp)) 

 

NDVI(ap, bp, cp)  Normalized Difference Vegetation Index (NDVI) model  

[ 25,53-54] 2). Ratio between near infrared and infrared channel surface reflectance (ρ or rfch) values  

 - ρRED / rf3 infrared ( = 0.63-0.69 µm)  

 - ρNIR / rf4 near infrared ( = 0.76-0.90 µm) 

 - Landsat NDVI = (rf4(ap, bp, cp)- rf3(ap, bp, cp))/(rf4(ap, bp, cp) + rf3(ap, bp, cp)),  

 - SPOT NDVI = (rf3(ap, bp, cp) - rf2(ap, bp, cp))/(rf3(ap, bp, cp) + rf2(ap, bp, cp)) 

 III 
3)

 yb = GEMI(ap, bp, cp) 

GEMI(ap, bp, cp) = η*(1 - 0.25 * η)-(( ρRED(ap, bp, cp) - 0.125)/ 

(1- ρRED (ap, bp, cp))  

η = (2 * ((ρNIR(ap, bp, cp))
2 - (ρRED(ap, bp, cp))

2)  

GEMI(ap, bp, cp) Global Environment Monitoring Index (GEMI) [29,55]. 2) 

 IV 
4)

 yb = PARND(ap, bp, cp) 

PARND = (ρRED(ap, bp, cp) - ρPAR(ap, bp, cp))/ (ρRED(ap, bp, cp) + 

ρPAR(ap, bp, cp)) 

PARND(ap, bp, cp) PARND/FAPAR (Normalized Vegetation Index for Photosynthetically Active Radiation, PAR) model 2) 

- ρPAR rf1 PAR ( = 0.45 - 0.52 µm), Landsat/TM1, SPOT/HRV/S1 

- ρRED rf3 infrared ( = 0.63 - 0.69 µm 

 V 
5)

 yb = DynModel(LAI(GEMI ap, bp, cp)) 

Equation 6 , Table 12, Appendix B 

LAI(GEMI ap, bp, cp) LAI-bridge coupling with GEMI index [3,29] and Kalman filter [19,21] using NOAA and SPOT data.  

Used only in validation part with the dynamic CropWatN crop model. 

VI 

Composite 

SAR/ASAR and 

NDVI [37]6) 

yb = NDVI (ap, bp, cp ) + σ0 HH5GHz,  

(ap, bp, cp, dp) + σ0 VV5GHz , (ap, bp, cp, dp) + σ0 HV5GHz,  

(ap, bp, cp, dp) + σ0 VH5GHz, (ap, bp, cp, dp) 

NDVI ( ap,bp,cp ), 

σ0 
5GHz ( ap,bp,cp, dp) 

 

Composite multispectral SAR/ASAR and NDVI model for spring cereals (swh, oats, barley) using 

NDVI reflectance and microwave backscattering (σ0 , f = 5.4 GHz) data (Table 12, [37]). Used only in 

validation of the optical VGI models 6) 

1) Equations applied after REG/Stepwise for linear models (Equation 1, Table 10, Appendix B [51,52]) and RSREG for polynomial non-linear models (Equation 2, Table 10, Appendix B) 2) Independent 

variables classified with SatPhenClass-algorithm. 3) GEMI LAI-bridge mechanism used only in validation part. 4) PARND model is similar to FAPAR (Fraction of Absorbed Photosynthetically Active 

Radiation Index, [56-59]) and fIPAR (fraction of intercepted PAR, [60]). 5) Model V used only in validation part with the dynamic CropWatN crop model (Figure 1, [29]). 6) Model VI used only in validation of 

the optical VGI models [37]. 
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More specifically detailed analysis strategy consisted of following specific procedures:  

(a) Classification of optical data with the SatPhenClass phenological classifying algorithm for spring 

cereals is reviewed by Laurila et al. [37]. The SatphenlClass algorithm exploits BBCH [42,43] and 

Zadoks [44] growth scales with four phenological classes for spring cereals (ap: BBCH 0–12,  

bp: BBCH 12–50, cp: BBCH 50–90, dp: BBCH > 90). The phenological ap class corresponds to 

development period between sowing and two leaf stage with double ridge formation. The bp class 

matches with the period between two leaf stage and ear emergence with maximum Leaf Area 

Index (LAImax) exposure and fully closed canopy structures. The cp class corresponds to period 

between ear emergence and anthesis with grain filling until full maturity. Finally, the phenological 

dp class relates to senescence and post-harvest phases. 

(b) Calibration of four optical Vegetation Indices (VGI) models (I–IV, Table 1) for cereal baseline 

yield (yb) estimations. VGI models were calibrated with phenologically classified satellite data 

containing solely optical satellite data (Optical Minimum Datasets).  

(c) Landsat/TM and Spot/HRV2 intersensory calibration by calculating NDVI indices from the 

Optical Minimum Datasets obtained from the five experimental locations in Southern Finland. 

(d) NDVI Phenological Spectral Signature Profile analysis (SSPPh) for spring cereals in different 

phenological phases (ap, bp, cp) derived from the TM and HRV2 intersensory calibration. 

(e) Validation of calibrated optical VGI models between years and locations by using separately two 

independent data sources: (i) the MTT Agrifood Research Finland Official Variety Trial data 

(1996–2006) (ii) the MAFF (Ministry of Agriculture and Forestry in Finland) annual crop yield 

inventory data (1996–2006). 

(f) Validation comparison of optical VGI models vs. CropWatN dynamic crop model using  

GEMI-index and LAI-bridge coupling system developed originally by Karvonen et al. [31] for 

cereals grown in Finnish growing conditions (Model V in Table 1). LAI-bridge coupling system 

was later revised and applied by Kuittinen et al. [29] for the EU MARS program in Finland. 

Spring cereal non-potential yield estimates (yb), calculated by VGI and CropWatN models, were 

compared by using the same optical satellite dataset in growing zones I–IV. The detailed  

LAI-bridge coupling system with GEMI index and adaptive Kalman filter [21] for cereal LAI 

development (LAISatellite,Cereal, LAICropModel) is presented in Figure 1. LAI-bridge exploits iterative 

Kalman filter [21] algorithm resembling Ensemble Kalman Filter (EnKF, de Wit and van Diepen 

[19]) to improve cereal LAI-estimates estimated from both optical satellite data and estimated by 

dynamic crop models [31]. Equation 6 and Table 12 (Appendix B) depict crop specific regression 

coefficients for cereal LAI estimation (LAISatellite,Cereal) using GEMI index [29]. Equation 7 

explains the Kalman solution for the corrected, optimal LAI estimate (LAIOptimal) corrected by 

standard deviations of LAISatellite,Cereal and LAICropModel estimates. The standard deviation of 

LAIOptimal estimate can be solved from Equation 8.  

(g) Validation comparison of optical VGI model baseline yield estimates (yb) vs. composite 

SAR/ASAR and NDVI models using both reflectance and backscattering data from Envisat, ERS 

and Radarsat in growing zones I–IV [37].  
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(h) Estimating non-potential baseline grain yield levels (yb) for different spring cereals in Finnish 

large area field conditions by applying the validated VGI models to optical reflectance data. 

2.2. Overview of Satellite and Ground Truth Sites and Measurements 

A general overview of satellite and ground truth experimental sites and agrometeorological weather 

stations is displayed in Figure 2(a–d). Growing zones (I–V) and MTT Experimental Stations applied in 

cereal yield modeling are displayed in Figure 2(a). Cumulative ETS (Tb 5 C) isolines applied in the 

SatPhenClass phenological classification [37] are depicted in Figure 2(b). Experimental sites consisted 

of five different locations (Mellilä, Porvoo, Kirkkonummi, Jokioinen and Lapua) in southern Finland 

(Figure 2(d)).  

A general scheme of the measuring satellite systems and calibration parameters used in this study is 

displayed in Tables 9–10 (Appendix A). The detailed soil profile classification in the experimental 

areas and growing zones I-IV are explained in a recent publication by Laurila et al. [37]. The ground 

truth sampling, the phenological crop calendar observations and LAI measurements were performed 

according to methodology applied by Kuittinen et al. [29]. The abbreviations used in this study are 

explained in Table 7 (Appendix A). 

Figure 2. (a) Growing zones (I–V) and MTT Experimental Station locations in Finland, 

(b) ETS (Tb 5 C) cumulative isolines, (c) Meteorological Weather Stations in Finland,  

(d) satellite and ground truth measurement locations in Finland (© Original Data, MTT 

Agrifood Research Finland, Finnish Meteorological Institute, NASA, 

visibleearth.nasa.gov/).  
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Figure 2. Cont. 

 

2.2.1. Design of Ground Truth Experimental Sites  

The field experimental design for satellite imagery was originally developed by Kuittinen et al. [29] 

for Finnish cereal growing conditions (Figure 3). Figure 3(a) depicts the basic experimental plot and 

Figure 3(b) illustrates the 2 × 2 and 2 × 3 randomized plots with replicates of the basic experimental 

plot growing the same cereal crop. The 2 × 2 and 2 × 3 randomized lattice design was applied in 

Mellilä, Porvoo, Kirkkonummi and Lapua experimental sites. 

The randomized 2 × 5 plot design with two replicates for early and late wheat, barley and oat 

cultivars is displayed in Figure 3(c). The 2 × 5 randomized plot design was only applied in the Kuuma 

Experimental Site (Jokioinen, MTT Agrifood Research, Figure 3(c)). 

The overlaying satellite imagery technique for Landsat/TM and Spot/HRV with different pixel sizes 

is depicted in Figure 3(a). Erdas/Ermapper software was used for digitization and to impose and 

overlay Landsat/TM (30 × 30 m pixel size) and Spot/HRV2 (20 × 20 m) images using the central point 

(Point 9) as a reference (Figure 3(a), Table 11, Appendix A). Concurrently with satellite 

measurements, growing density measurements were measured in points 1,5, biomass measurements in 

points 1,5,9 and LAI measurements in points 1–8 (Portable Li-Cor 2000 Plant Canopy Analyzer,  

Li-Cor Biosciences), based on methodology suggested by Kuittinen et al. [29].  
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Figure 3. Field experimental plot design after Kuittinen et al. [29]. 

Landsat 30 x 30 m pixel  size plot

Spot 20 x 20 m pixel  size plot

A - Exp. plot

B - 2 x 2

and 2 x 3

lattice,

same

cereal crop

C - 2 x 5

pairwise

randomized

block design,

different

cereal crops

10 m fallow/bare soil zone

Mellilä, Porvoo, Kirkkonummi, Lapua Exp. Areas 3 x 30 + 4 x 10 m

Jokioinen, Kuuma Exp. Area 5 x 30 + 6 x 10 m (fallow/bare soil zones)

20 m 30 m

10 m fallow/bare soil zone

btw. plots

20 m30 m

Swh Early

Swh Late Brl LateBrl EarlyOats Early

Swh Late

Row 1

Row 2

Row 2

Row 1

Replicate 1 Replicate 2

Replicate 1 Replicate 2 Replicate 3

Brl Late

Swh Early

Brl EarlyOats Late

Replicate 1 Replicate 1 Replicate 2

 

The Kuuma Experimental site in Jokioinen (60°48'5.82"N, 23°28'48.20"E) is illustrated in Figures 3 

and 4 and the MTT Agrifood Research Centre site in Figure 4 (Growing Zone II, Häme Agric. 

Advisory Centre). The detailed Figures 4(a1, f, g) in the Kuuma experimental site depict the 

randomized plot design with replicates for early and late wheat, barley and oat cultivars. The ground 

truth plot size was adjusted to Landsat 30 × 30 m pixel size (Figure 3(a)). Each cereal plot was 

surrounded by bare soil or fallow zone to enhance canopy x soil reflectance contrasts in different 

phenological phases (ap, bp, cp, dp). The main soil type in the Kuuma site was organic mould with 

mixtures of clay. During spring time, rain, flooding and excessive top soil water content close to field 

capacity (pF 1.5–2.0) reduced the cereal yield levels especially in replicate 1. Figure 3(b) depicts the 

plots in the Kuuma area affected by flooding and heavy rain (4f), the digitized Spot image is displayed 

on the right hand side (4g). 
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The Porvoo experimental site (60° 23'34" N, 25° 39'52" E) is depicted in Figure 4 (B1, Kullogård 

Experimental Farm) and B2 (Dräcksby Experimental Farm). Respectively the Kirkkonummi site 

(60°14'13"N, 24°23'49"E, Kylmälä Experimental Farm, Helsinki University of Technology) is depicted 

in Figure (C1,C2). Both Porvoo and Kirkkonummi sites were located in the Uusimaa Agric. Advisory 

Centre (Growing Zone I). The Mellilä site in Loimaa (60°46'41"N, 22°55'32"E, Nahi Experimental 

Farm) is illustrated in D1 and D2 (Zone I). The detailed E1 and E2 figures depict digitized field parcels 

in Lapua and Seinäjoki Experimental sites on clay type soils (62°85'17"N, 23°2'42"E, Zone III–IV in 

the Pohjanmaa Agric. Advisory Centre).  

Figure 4. (A1) Kuuma Experimental Site, (A2) Jokioinen (MTT Agrifood Research) 

Jokioinen Experimental Site, (B1) Porvoo Kullogård and Dräcksby (B2) Exp. Farms,  

(C1–C2) Kylmälä, Kirkkonummi Experimental Site (Uusimaa Agriculture Advisory Centre, 

Helsinki University of Technology), (D1–D2) Mellilä, Loimaa Experimental site, (E1–E2) 

Lapua Experimental site (Pohjanmaa Agriculture Advisory Centre),(F–G) detailed Kuuma 

Experimental site
 1)

.
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Figure 4. Cont. 

 
1) A1–D2 , G, multitemporal Landsat, SPOT composite images, E1–E2 Multitemporal Envisat 

composite image © Original data TeleAtlas, Terrametrics 2010, European Space Agency and 

the Finnish Geodetic Institute 2003 [29,33]. 

The detailed Figures (3B and 4B2) in the Dräcksby experimental site in Porvoo depict the 2 × 2 and 

2 × 3 randomized plot design for wheat, barley and oat cultivars. The main soil type in the Dräcksby 

site was clay with mixtures of organic peat. Especially both the Kuuma (Figure 4A1, Jokioinen) and 

Dräcksby (B2, Porvoo) experimental sites with clay and organic mould and peat topsoil layers  

(10–15 cm) were affected by excessive water from melting snow in the beginning of the growing 

season (ap) causing the topsoil to reach the soil field capacity (pF 1.5–2.0). During mid-summer, 

drought periods in generative phases (cp, dp), caused the soil moisture content to recede close to wilting  

point (pF 4.0–4.2).  

2.3. Calibration  

2.3.1. Phenological Classifying Algorithm (SatPhenClass) for Satellite Data  

The phenological classifying algorithm (SatPhenClass) [46,47] used for optical Landsat and SPOT 

data is presented by Laurila et al. [37]. The revised classifiers ETS and LAImax (Li-Cor 2000 Plant 

Canopy Analyzer [48]) for high latitude cereals were developed based on previous studies by  

Kontturi [49] for Finnish long day growing conditions [47,49,50]. 

2.3.2. Optical Vegetation Indices (VGI) Models I–IV 

Four different Optical Vegetation Indices (VGI) models (I: Infrared, II: NDVI, III: GEMI, IV: 

PARND/FAPAR, Table 1) were calibrated with linear (SAS REG/Stepwise and non-linear (SAS 

RSREG) [51,52] polynomial regression models (Equations 1–2, Table 12 , Appendix B). 

Figure 5 depicts typical optical Spectral Signature Curves (SSC) for barley (green vegetation) and 

bare soil in Nordic high latitude growing conditions [31]. In addition Chlorophyll A (λ 460, 680 nm), B 

(λ 480, 650 nm) and water (λ 1500, 2000 nm) absorption maximums and sensory bandwidths for 

Landsat and Spot are depicted. The measured optical reflectance data for different spring cereals were 

classified into phenological classes (ap,bp,cp,dp) with the SatPhenClass algorithm. 
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Figure 5. Spectral Signature Curves with scaled Reflectance Factor for barley and bare 

soil, Chlorophyll A, B in PAR spectrum, water absorption maximums and corresponding 

Landsat/TM and SPOT/HRV2 sensory bandwidths [31, Table 11, Appendix A]  

(© Original data Swedish National Environmental Board). 

 

2.4. Calibration Data 

2.4.1. Optical Reflectance Data 

The optical Landsat 5/TM (Thematic Mapper), SPOT/HRV2 (High Resolution Visible 2) and 

NOAA/AVHRR (Advanced Very High Resolution Radiometer) satellite data (1996–2006) is in  

Tables 9–11 (Appendix A). Satellite measurements with optical cloud free images and ground truth 

observations in the experimental sites in Nylands Svenska (Zone I in Kirkkonummi), Häme (Zone II in 

Jokioinen) and in Pohjanmaa Agricultural Advisory Centres (Averaged III–IV zone in Lapua, Seinäjoki 

and Ilmajoki) were temporarily evenly dispersed along the growing season between May and August 

(Figure 2, [37]). 

In addition, two older auxiliary optical [29,31] datasets consisting of Mellilä and Porvoo sites 

(Growing zone I in Nylands Svenska Agric. Advisory Centre) were used in calibration of SatPhenClass 

phenology and VGI models (I–V, Table 1). Total of 18 cloud free Landsat and Spot satellite images 

were obtained during the campaigns. NOAA/AVHRR data were only used for validation purposes to 

compare cereal yield estimations between VGI models and CropWatN crop model [29], results are 

reviewed in validation section.  

The VTT Technical Research Centre in Finland (Department of Space Research) and the Finnish 

Geodetic Institute digitized and performed the classification of field parcels from the satellite images 

(Figure 2). Optical Landsat and SPOT data were calibrated with geometric and radiometric corrections 

in the Finnish Geodetic Institute. The ortho-rectified and radiometrically corrected satellite data after 

Price [53] (Equations 3–5, Appendix B) was classified with the SatPhenClass algorithm into cereal 

phenological categories and was applied in VGI models (I–IV). Optical calibration details with 

atmospheric corrections (6S software, Second Simulation of the Satellite Signal in the Solar Spectrum) 
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were reviewed by Kuittinen et al. [29], the optical calibration parameters are given in Table 10 

(Appendix A). Correspondingly the SAR backscattering data calibration details were reviewed by 

Matikainen et al. [32], Karjalainen et al. [33] and Hyyppä et al. [61]. 

2.5. Validation 

2.5.1. Validation of Optical Vegetation Indices (VGI) Models and Validation Data 

After the calibration of optical VGI models (I–II, IV–V Table 1), the validation procedure was 

applied to test baseline grain yield (yb, kg/ha) predictions vs. independent observed ground truth yield 

values. During the validation procedure, the modeled baseline yield estimates (yb, kg/ha), calculated by 

the optical VGI models, were compared with corresponding measured yield estimates from (i) the 

1994–2006 MAFF official inventory statistics [62,63] and (ii) from the 1994–2006 MTT Agrifood 

Research Finland Official Variety Trial results [64-66]. Yield differences were calculated as absolute 

values (kg/ha) and percent (%) values in corresponding growing zones (I–IV) and years. 

The MAFF validation datasets consisted of yield inventory statistics from the Nylands Svenska 

(Growing Zone I), Häme (Growing Zone II) and Pohjanmaa (Averaged III–IV Zone) Agricultural 

Advisory Centres (Table 2). Figure 6 depicts scenes from the Seinäjoki, Lapua and Ilmajoki 

experimental areas in the Etelä-Pohjanmaa Agric. Centre. Especially in the Seinäjoki Experiment Area 

(62°85'17"N, 23°2'42"E) the fields were affected by severe flooding in the spring time (Figure 6(a)) 

and in the Lapua area heavy lodging reduced the spring cereal yield potential (Figure 6(d)). The MTT 

Official Variety Trial datasets consisted of yield trials from the Pernaja and Inkoo MTT Experimental 

Stations (Zone I), MTT Jokioinen (Zone II) and Ylistaro (Zone III) and Ruukki (Zone IV) MTT 

Experimental Stations Averaged to Zone III–IV. Zones III–IV were pooled together because the 

satellite and ground truth measurement sites in Lapua, Seinäjoki and Ilmajoki were located in the 

middle of 1100 ETS(Tb = 5 °C) isoline (Figure 2). 

Table 2. Sensors, datasets, growing zones, locations and soil classification [44]. 

Sensor 

Type 1) 

Data 

set 

Growing 

Zone 2) 

MAFF Agriculture 

Advisory  

Centre  

(Figure 2) 

Location 

(Figure 2) 

Coarse soils (%) 
Clay soils 

(%) 

Organic 

(%) 

Mould, 

Peat  

Gravel 

with 

coarse 

sand  

Fine 

sand 

 

Coarse 

sand 

 

Silt 

 

Sandy 

clay 

 

Silt 

clay 

 

Gyttja 

clay 3) 

 

Optical/ 

SAR
4)

 

 

1.1 III (IV) Etelä-Pohjanmaa Lapua  

23°10'E, 62°50'N  

 11.2 19.8  23.5    

1.2 III (IV) Etelä-Pohjanmaa Seinäjoki 

23°10'E, 62°50'N 

 15.5 10.1  20.5   25.3 

1.3 III (IV) Etelä-Pohjanmaa Ilmajoki  

23°10'E, 62°50'N 

 13.2 12.0 3.9 21.4    

2.1 I Nylands Svenska  Porvoo  

25°50'E, 60°50'N  

6.2 17.8 8.5    38.0 10.9 
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Table 2. Cont. 

Sensor 

Type 1) 

Data 

set 

Growing 

Zone 2) 

MAFF Agriculture 

Advisory  

Centre  

(Figure 2) 

Location 

(Figure 2) 

Coarse soils (%) 
Clay soils 

(%) 

Organic 

(%) 

Mould, 

Peat  

Gravel 

with 

coarse 

sand  

Fine 

sand 

 

Coarse 

sand 

 

Silt 

 

Sandy 

clay 

 

Silt 

clay 

 

Gyttja 

clay 3) 

 

Optical 

 

3.1 I Nylands Svenska Kirkkonummi  

24°30'E, 6010'N  

 9.4   27.5 8.5 41.4 5.4 

Optical 3.2 II Häme Jokioinen  

23°50'E, 6050'N  

(Kuuma Exp. Area)  

    56.0 7.0 15.1 7.7 

(Kuuma: 

70–80) 

3.3 II Häme Mellilä  

22°20'E, 6050'N  

7.4 8.3 13.2  28.6  36.0  

1) 
For abbreviations refer to Table 7, Appendix B. 

2) 
Growing zones (I–IV) are depicted in Figure 4a. 

3) 
Gyttja 

clay contains peat and mud fractions 
4) 

Composite SAR/ASAR and NDVI datasets used only in validation of optical 

VGI models [37]. 

Figure 6. Optical and SAR composite images from the Etelä-Pohjanmaa Agric. Centre 

Experimental Areas (a) Flooding areas in the Seinäjoki Experimental Area in 2003,  

(b) NOAA/AVHRR low resolution image in Lapua Exp. Area, (c) digitized field parcels in 

Seinäjoki Exp. Area, (d) heavy lodging in oat cultivations in Lapua Exp. Area 2003,  

(e) Lapua Exp. Area, (f) Seinäjoki Exp. Area [29,33]. (© Finnish Geodetic Institute, 

original Radarsat data © distributed by Radarsat International/TSS/Novosat Ltd. and 

European Space Agency). 
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Figure 6. Cont. 

 

 

3. Results  

3.1. Grain Yield, Phenological Spectral Signature Profile (SSPph) and Vegetation Indices Variation  

Table 3 presents observed averaged grain yield variation for spring wheat, barley and  

oats (1996–2006) in growing zones I–IV. In addition Phenological Spectral Signature Profile (SSPph) 

variation during phenological development and crop calendar using ρRED and ρNIR reflectance values 

and optical VGI indices are tabulated. The averaged grain yield and SSPph variation is depicted 

between (i) species, (ii) cultivars and (iii) soil types with corresponding categories I–III. Category I 

depicts crop species variation with generic spring cereal cultivars. Category II depicts intracultivar 

variance with identified cultivars from field parcels in experimental areas, and category III species*soil 

covariance variation. Table 3 depicts averaged spring wheat, barley and oats observed grain yield levels 

(kg/ha), infrared (ρRED/Rf3) and near infrared (ρNIR/Rf4) reflectance, NDVI, GEMI and PARND/FAPAR 

variation during germination and emergence after sowing (ap, BBCH 0–12), ear emergence and 

maximum LAI exposure with fully closed canopy structure (bp, BBCH 12–50) and finally during 

anthesis in generative phase (cp, BBCH 50–90). The observed cereal yield, optical reflectance and 

Vegetation Indices varied significantly between different spring cereals, cultivars and soil types in the 

experimental areas in southern Finland. 
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Table 3. Averaged observed yields, Phenological Spectral Signature Profiles (SSPph) for cereals with Reflectance (Rf3/ρRED, Rf4/ρNIR) and 

NDVI, GEMI, PARND/FAPAR indices values between categories (I: crops, II: identified cultivars and III: soil types) with all  

data (1990–2006) pooled together
1), 2), 3), 7), 8)

. 

Category Yield (obs, X ± Sx)
7) Area SSPph : NDVI, GEMI, PARND (X ± Sx) 

1), 6) 

I  

Crop Species 1), 

kg/ha 

 

Cv% Ha ap (May) bp (June) cp (July) 

NDVI GEMI PARND NDVI GEMI PARND NDVI GEMI PARND 

Swh  4219 ± 290 14.5 415 0.0012 ± 004 0.257 ± 0.002 0.076 ±0.001 0.498 ± 0.007 0.411 ± 0.004 0.039± 0.002 0.332 ± 0.007 0.312±003 0.515±0.01 

Barley  4395 ± 229 33.8 235 0.0014 ± 002 0.193 ± 0.003 0.062 ±0.001 0.898 ± 0.003 0.660 ± 0.002 0.093 ± 0.003 0.256  ± 0.01 0.347  ± 0.006 0.443± 0.01 

Oats  3740 ± 345 27.6 47 0.0012 ± 005 0.331 ± 0.008 0.049 ± 0.002 0.766 ± 0.01 0.694 ± 0.005 0.231 ± 0.01 0.640 ± 0.02 0.678 ± 0.001 0.535±0.02 

Mean (Area sum.)  4118 ± 338 25.3 697 0.0013 ± 001 0.2603±0.690 0.0623 ±0.0135 0.7207 ± 0.204 0.5883± 0.154 0.1210±0.099 0.4093 ± 0.203 0.4457 ± 0.201 0.4960±0.047 

 

II  

Identified 

Cultivars 1) 

Yield (obs.) Mean ρRED – ρNIR for May. June and July 1). 2). 6) NDVI (mean) 1). 2) 

Mean 

Kg/ha 

Cv% ρRED 

ap May 

ρNIR  

ap May 

ρRED 

bp June 

ρNIR 

bp June 

ρRED 

cp July 

ρNIR 

cp July 

ap (May) bp(June) cp(July) 

Swh Kadett 3541 20.0 0.0820 0.1180 0.0012 0.2320 0.0014 0.203 0.0780 0.798 0,562 

Manu 4016 30.9 0.0011 0.0012 0.0560 0.2180 0.0940 0.259 0.0010 0.587 0.592 

Ruso 3900 11.0 0.0730 0.1040 0.0014 0.2420 0.0012 0.169 0.0730 0.887 0.679 

Satu 3181 31.9 0.0011 0.0014 0.0550 0.2550 0.0970 0.242 0.0014 0.557 0.646 

Mean swh 3659  ± 377 20.9 0.0393 ± 0.044 0.0562 ± 0.064 0.0284 ± 0.0312 0.236 ± 0.01156 0.0484 ± 0.054 0.2182 ± 0.0403 0.0383 ± 0.1001 0.707 ± 0.2474 0.619 ± 0.2211 

Brl 

MBrl 

FBrl 

9), 10)
 

Artturi
10)

 4656 18.5 0.0012 0.0011 0.0550 0.2020 0.0990 0.199 0.0012 0.601 0.569 

Arve
10)

 4785 34.2 ~ 0.0 0.0012 0.0011 0.2011 0.0390 0.106 0.0014 0.856 0.425 

Inari
10)

 4750 25.7 0.0014 0.0011 0.0490 0.1920 0.0910 0.158 0.0015 0.595 0.411 

Kymppi
10)

 3458 40.5 0.0012 0.0011 0.0012 0.2014 0.0410 0.102 0.0018 0.815 0.343 

Pokko
9) 

 5473max 19.6 ~ 0.0 0.0014 0.0013 0.2011 0.0560 0.219 0.0014 0.549 0.321 

Mean brl. 4624  ± 729 37.4 0.0007 ± 0.01 0.0011 ± 0.001 0.02152 ±0.0279 0.19952 ± 0.0042 0.0652 ± 0.028 0.1568 ± 0.0529 0.0015 ± 0.0002 0.6832 ±0.1412 0.4138 ± 0.318 
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Table 3. Cont. 

II  

Identified 

Cultivars 1) 

Yield (obs.) Mean ρRED – ρNIR for May. June and July 1). 2). 6) NDVI (mean) 1). 2) 

Mean 

Kg/ha 

Cv% ρRED 

ap May 

ρNIR 

ap May 

ρRED 

bp June 

ρNIR 

bp June 

ρRED 

cp July 

ρNIR 

cp July 

ap (May) bp(June) cp(July) 

Oats Puhti 4565 45.4 0.0014 0.0011 0.0350 0.2310 0.0840 0.285 ~ 0.0 0.547 0.437 

Salo 4680 14.7 ~ 0.0 0.0013 0.0012 0.2011 0.0370 0.181 0.0012 0.822 0.428 

Veli 4129 25.7 0.0011 0.0011 0.0580 0.2802 0.0360 0.108 ~ 0.0 0.867 0.655 

Mean oats 4458 ± 290 28.6 0.0008 0.0011 0.0314 0.23743 0.0523 0.1913 0.0004 0.745 0.464 

Cere

al 

Mean 

Tot. 

4261 ± 641.9 27.9 0.0133 ± 0.028 0.0195 ± 0.041 0.0265 ± 0.0257 0.2214 ± 0.0259 0.0566 ± 0.034 0.1859 ± 0.0581 0.0302 ± 0.065 0.7327 ± 0.1701 0.4830 ± 

0.367 

 

III  

Soil type 

Yield (observed) NDVI (mean)
5) 6)

 Mean ρRED /Rf3 and ρNIR Rf4 for bp.June and cp.July 4) 6) 10)
 

(kg/ha) X ± Sx Cv% bp (June) cp (July) ρRED / ρNIR (June) ρRED / ρNIR (July) 

Clay1) 

 

Swh 4224 ± 8.9 14.3 0.497 0.330 0.006 / 0.131 0.023 / 0.088 

Brl 4363 ± 30.8 34.5 0.910 0.224 0.016 / 0.256 0.023 / 0.104 

Oat 3485 ± 33.8 18.3 0.786 0.569 0.037 / 0.297 0.043 / 0.255 

Coarse2) 

 

Swh 4224 ± 8.9 14.3 0.482 0.112 0.004 / 0.214 0.029 / 0.065 

Brl 4363 ± 30.8 34.5 0.720 0.356 0.024 / 0.256 0.045 / 0.121 

Oat 3485 ± 33.8 18.3 0.686 0.487 0.052 / 0.316 0.064 / 0.197 

Organic3) 

 

Swh Erl. 3972 ± 483 19.7 0.596 0.429 0.056 / 0.218 0.107 / 0.348 

Swh Lt. 4984 ± 641 22.8 0.642 0.541 0.055 / 0.255 0.097 / 0.342 

Brl Erl. 4656 ± 862 26.9 0.569 0.401 0.055 / 0.202 0.099 / 0.399 

Brl Lt. 4741 ± 659 21.1 0.603 0.596 0.049 / 0.192 0.091 / 0.358 

Oat Erl. 3932 ± 824 29.9 0.655 0.557 0.058 / 0.280 0.114 / 0.401 

Oat Lt.  3257 ± 629 28.7 0.737 0.547 0.035 / 0.231 0.084 / 0.285 
1) Includes sandy and gyttja clay soil-classes (Lapua, Mellilä, Porvoo, Kirkkonummi Exp. Areas) 2) Includes fine and coarse sand soil-classes (Porvoo and Kirkkonummi Exp. Areas) 3) Early (Erl.; SwH: cv. 

Manu, Brl: cv. Artturi, Oat: cv. Veli) and Late (Lt. SwH: cv. Satu, Brl: cv. Inari, Oat: cv. Puhti) cereal cultivars measured in the Kuuma/Jokioinen (3 x 3 randomized lattice) and Porvoo Exp. (2 x 2 

randomized lattice) areas with organic mould and peat top soil profiles 4) Rf for May excluded from the table. 5) Rf and NVDI values for May close to ~0.0 6) Rf3 , Rf4, NDVI data categorized for ap (May, 

BBCH 0-12), bp (June, BBCH 12-50) and cp (July, BBCH 50-90) phenological classes during the growing season. 7) Cereal averaged yields (kg/ha corrected as 15% moisture content) were measured by the 

farmers in the experimental areas in the autumn after the harvest, yield samples were measured from the granary silos. 8) Averaged over years (1996-2006) and locations in growing zones I-IV. 9) Enzyme 

malting barley cultivar (MBrl) 10) Fodder barley cultivar (FBrl). 
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The observed spring cereal yields (kg/ha) in satellite measurement locations (Category I, Table 3) 

were measured by the farmers in the experimental areas in the autumn after the harvest. Yield samples 

were obtained from the granary silos in the experimental farms. The observed grain yield levels were 

4,219 kg/ha for spring wheat, 4,395 kg/ha for barley and 3740 kg/ha for oats when averaged over years 

(1996–2006) and locations (Growing zones I–IV). The total cultivation area 1996–2006 interpreted 

from satellite images in southern Finland (growing zones I–IV) with all crops was 1,253 ha, 697 ha for 

spring cereals and 256 ha for winter cereals (winter wheat and rye, Secale cereale L.), not reviewed in 

this publication).  

The spring cereal infrared (ρRED/Rf3) and near infrared (ρNIR/Rf4) reflectance values were higher in 

June (bp) and July (cp) when compared with May values (ap, Rf3 mean 0.0133, Rf4 mean 0.0195). 

Especially fodder barley and oat cultivars presented low Rf3 values (marked ~0.0) in May. The infrared 

Rf3 signal obtained low reflectance values (bp, Rf3 mean 0.0265) with spring cereal cultivars in June 

with high PAR-radiation absorbance in fully closed canopies (LAI > 1). Especially for the highest 

yielding enzyme malting barley cultivar Pokko (Hankkija Plant Breeding) the Rf3 values were low, but 

Rf4 levels (Rf4 mean 0.2214) were in average in June. 

Usually in Finnish long day growing conditions the maximum LAI (LAImax) and also the maximum 

photosynthetic capacity is observed in June (bp [41,67]). Correspondingly maximum Rf3 reflectance 

values peaked in July (cp, 0.057). Rf3 values were below average for wheat cultivars (0.048) but had 

high values with barley cultivars (0.065) in July. The near-infrared Rf4 signal peaked with maximum 

reflected mean value of 0.221 in June (bp) with lower mean reflectance in July (cp, 0.186). Fodder barley 

cultivars obtained Rf4 values higher than average in June and wheat cultivars below average in July. 

The VGI indices (NDVI, GEMI, PARND) for spring cereals in June (bp) and July (cp) were generally 

higher than the corresponding May values (ap). Currently in southern Finland the sowing of spring 

cereals occurs in May, and May indices values were low denoting sparse vegetation and canopy cover. 

With vegetation indices (NDVI, GEMI, PARND) a significant peak was observed between May and 

June values (Table 3, Category I). The NDVI ranged between 0.013 (May, ap), 0.7207 (June bp) and 

0.4093 (July cp), corresponding values were 0.2603, 0.5883 and 0.4457 for GEMI and 0.0623, and 

0.121 and 0.4960 for PARND. 

3.1.1. Cereal Intracultivar Variance  

The intracultivar variance of observed grain yield, reflectance and NDVI values are depicted in 

category II (Table 3). The identified cereal cultivars in the field parcels were reported by the farmers in 

the experimental areas. The averaged observed yield for all spring wheat cultivars was 4.3 t/ha 

(30.5% Cv). The maximum observed yield, 5.5 t/ha, was with enzyme malting barley (cv. Pokko, 

Hankkija Plant Breeding). Cv. Pokko optical infrared reflectance (ρRED) was below average in ap, bp and 

cp phases (BBCH 0-90) indicating active photosynthesis in PAR-region (Figure 3) and correspondingly 

the near-infrared reflectance (ρNIR) was higher than average in phase cp (BBCH 50–90). The minimum 

observed yield level (3.5 t/ha) was measured with fodder barley (cv. Kymppi). Especially in May 

(phenology class ap in vegetative phase, BBCH 0–12) the cereal reflectance in infrared wavelength 

(Rf3) was very low, close to zero (marked as ~0.0) with average of 0.0133. The fodder and malting 
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barley cultivars Arve and Pokko and oat cultivar Salo, especially, presented low reflectance values. The 

maximum infrared reflectance was observed with spring wheat cv. Kadett (0.082).  

In May (phenology class ap, BBCH < 12), the infrared reflectance (ρRED/Rf3) between cultivars 

ranged between ~0.0 and 0.082 (cv. Kadett) denoting absorbed infrared covariance between partly 

covered top soil and early emergence of spring cereals with partly closed canopy structures  

(LAI < 1) [41,55-59,67-69]. Correspondingly in May, the near-infrared (ρNIR/Rf4) obtained higher 

emitted reflectance. Rf4 ranged between 0.0011 (barley cv. Arttu) and 0.118 (wheat cv. Kadett). 

In June (phenology class bp, BBCH 12–50) during generative phase with LAImax and full canopy 

closure (LAI > 1) the mean infrared reflectance was 0.0265 and near-infrared 0.2214 suggesting high 

photosynthetic activity in leaf canopy during ear emergence. Notably the oat cv. Veli contained both 

maximum infrared (0.058) and near-infrared (0.282) reflectances in bp phase. 

In July (phenology class cp, BBCH 50–90) during anthesis and initialization of grain filling the mean 

absorbed infrared reflectance was 0.0566 higher (0.099 max. for barley cv. Artturi) than the average bp 

value in June concurrent with active translocation of assimilates to cereal heads from leaf canopy and 

especially from the flag leaf. Correspondingly the average reflected near-infrared 0.1859 in July 

(0.285 max. for oat cv. Puhti) was lower than in June. 

3.1.2. Effects of Soil Type Variation on Spring Cereal Yield Formation  

Category III in Table 3 illustrates the spring cereal yield, reflectance and NDVI variation between 

different soil types containing all averaged 1996–2006 data. Category III includes sandy and gyttja 

clays for clay type
 
soils and coarse type

 
soils with gravel and coarse sand fractions and finally organic 

type soils with peat or mould top-layer (10–15 cm) with clay sub-soil profile (depth > 15 cm). The 

main soil type in the experimental areas was clay with mixtures of coarse elements and minor fraction 

of organic compounds. Soil types consisted of sandy and gyttja clays for clay soil types (Cla.) and 

coarse soil types (Crs.) with gravel and coarse sand fractions and also organic soil type (Org.). The 

Kuuma experimental area in Jokioinen (1995) was the only field with organic mould top layer  

(Figure 4A1) and correspondingly the Dräcksby site in Porvoo contained peat top-soil layer (Figure 4B2). 

The observed average yield levels (kg/ha) and Cv (%) in clay type soils under suboptimal growing 

conditions were highest for barley (4,363 kg/ha, 34%), intermediate for spring wheat (4,224 kg/ha, 

14%) and lowest for oats (3,485 kg/ha, 18%). Correspondingly in coarse type soils, the observed yield 

levels were highest for barley (4,803 kg/ha, 26%), intermediate for spring wheat (4,233 kg/ha, 16%), 

and lowest for oats (4,146 kg/ha, 32%). In organic type soils containing mixtures of peat and mould in 

the top soil layer (10–15 cm), the highest yield were recorded for oats (5,978 kg/ha, 28%), intermediate 

for barley (4,727 kg/ha, 26%) and lowest for spring wheat (3,390 kg/ha, 38%). Especially spring wheat 

yield levels were significantly reduced by the drought stress in mid-summer (bp, cp) in the Kuuma 

(Figure 4A1), and Dräcksby (Figure 4B2) experimental sites.  

Respectively, in the soil covariance category (III, Table 3) a significant NDVI peak was observed 

for June and July values when compared with May values (Category I). The NDVI ranged on different 

soil types between 0.582 (Crs.) and 0.848 (Cla.) and in June and between 0.3743 (Cla.) and 0.8103  

in July.  
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Infrared (ρRED /Rf3) and near-infrared (ρNIR/Rf4) covariances on clay, coarse and organic soil types 

were consistent on cultivar level (Category II, Table 3) in different phenological stages (ap, bp, cp,). 

Especially infrared signal presented high absorbance in June (bp) on clay type soils.  

3.2. Calibration Results 

The optical VGI model calibration results for spring cereals containing all optical Landsat and 

SPOT data are presented in Table 4. The optical data were phenologically pre-classified with the 

SatPhenClass-algorithm. Table 4 depicts cereal baseline yield (yb) estimates for Polynomial Infrared 

(I), NDVI (II, [25,53,54]), GEMI (III, [55]) and PARND/FAPAR (IV, [56-60]) models. In addition, 

Table 4 presents corresponding R
2 

and RMSE, coefficient of variation (Cv, %) and Anova F-test 

significance level estimates for linear, quadratic, cross product and finally for the total model [51,52]. 

Statistical significance levels are given in Table 7 (Appendix A). 

The optical baseline yield (yb) calibration results indicate that the R
2 

of the VGI models varied 

significantly between spring sown cereals over years and locations in growing zones I-IV in southern 

Finland. The overall optical R
2 

for baseline yield (kg/ha) was 0.630 for spring sown cereals (mean 

response yield 3958 kg/ha, RMSE 360 kg/ha) ranging between 0.056 and 0.794. The R
2 

varied with 

spring wheat cultivars between 0.510 (PARND-model (IV), RMSE 406 kg/ha) and 0.790 (Infrared model 

(I), RMSE 42 kg/ha), with barley cultivars between 0.587 (IV, RMSE 463 kg/ha) and 0.615 (I, RMSE 

449 kg/ha) and with oats between 0.06 (IV, RMSE 998 kg/ha) and 0.760 (I, RMSE 55 kg/ha).  

The average VGI modeled baseline yield response (yb) varied between 3.5 t/ha and 4.2 t/ha with 

spring wheat, between 4.1 t/ha and 4.4 t/ha with barley and between 3.4 t/ha and 3.7 t/ha with oats. The 

coefficient of variation (Cv, %) varied between 1.6% and 28.7% with spring sown cereals, respectively 

with F-test all the VGI model (I-IV) subcomponents (linear, quadratic and cross products) were 

significant on 0.1% error level. 
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Table 4. VGI optical linear
 
and non-linear model (I-V) non-potential baseline yield estimates (yb, kg/ha) [51,52] 

1) 2) 3) 4)
. 

Crop Model 

(Table1) 1) 

Grow.zone1) Main soil type1) Dataset /Model 

Equation 

(Table 11) 1) 

R2 lina)/non-

lin.polyn. b) 
RMSElin.c)/non-

lin polyn.d) 

(kg/ha) 

Response mean 

baseline yield 

(yb, kg/ha) 2) 

Cv (%) Pr > F  

linear  

 

Pr > F 

quad 

ratic 

Pr > F  

cross 

product 

Pr > F  

total  

model  

Swh 

 

I 7) 
IR 

I-IV Gyttja and Sandy 

clay 
1.1,2.1, 3.1-3.3 1.1) 

1.1,2.1, 3.1-3.3 1.2) 

0.764a) 

0.794a) 

282.3.c) 

42.46c) 

4219.0 

3768.6 

6.66 

5.89 

<.0001  

*** 

<.0001  

*** 

<.0001 

*** 

<.0001  

*** 

II 7)  
NDVI  

I-IV Gyttja Sandy clay 1.1,2.1, 3.1-3.3 1.3) 

1.1,2.1, 3.1-3.3 1.4) 

0.737b) 

0.732 a) 

297.6d)  

300.1 c) 

4219.0 

3556.7 

7.02 

7.88 

<.0001  

*** 

<.0001  

*** 

<.0001  

*** 

<.0001  

*** 

IV5)  

GEMI 

I-IV Gyttja and Sandy 

clay 
1.1,2.1, 3.1-3.3 1.5) 

1.1,2.1, 3.1-3.3 1.6) 

0.704b) 

0.570 a) 

316.1d) 

536.8 c) 

4219.0 

3556.7 

7.45 

8.11 

<.0001 

 *** 

<.0001  

*** 

<.0001  

*** 

<.0001  

*** 

V6) PARND I-IV Gyttja and Sandy 

clay 
1.1,2.1, 3.1-3.3 1.7) 

1.1,2.1, 3.1-3.3 1.8) 

0.712 b) 

0.509 a) 

311.6d) 

406.3 c) 

4219.0 

3768.6 

7.34 

7.34 

<.0001  

*** 

<.0001 

*** 

<.0001  

*** 

<.0001  

Brl  

 

I 7) 

 IR 

I-II,IV Gyttja and Sandy 

clay 
1.1-1.3, 2.1,3.3 2.1) 0.615.a) 449.3.c) 4395.0 10.3 <.0001  

*** 

<.0001 

*** 

N.S. <.0001  

II 7)  
NDVI 

I-II,IV Gyttja and Sandy 

clay 
1.1-1.3, 2.1,3.3 2.2) 0.611b) 449.6d) 4298.0 10.3 <.0001  

*** 

<.0001 

*** 

0.0014  

* 

*** 

IV5) GEMI I-II,IV Gyttja and Sandy 

clay 
1.1-1.3, 2.1,3.3 2.3) 0.614b) 448.6d) 4310.0 10.3 <.0001  

*** 

<.0001 

*** 

0.0081 

* 

<.0001  

V6) PARND I-II,IV Gyttja and Sandy 

clay 
1.1-1.3, 2.1,3.3 2.4) 0.587b) 463.7d) 4150.0 10.6 <.0001  

*** 

<.0001 

*** 

<.0001  

*** 

*** 

Oats  

 

I 7) 

IR 

I-II, IV Sandy clay 1.1-1.3, 2.1,  

3.1 - 3.3 2.5) 

0.760.a) 55.0.c) 3740.0 1.58 <.0001  

*** 

<.0001 

*** 

<.0001  

*** 

<.0001  

I e)  I-II, IV Sandy clay e)  0.756 55.1 3488.7 1.58 <.0001  

*** 

N.S. N.S. *** 

II 7) NDVI e)  I-II, IV Sandy clay e)  0.056 994.8 3462.0 28.7 <.0001  

*** 

<.0001  

*** 

N.S. <.0001  

Cereal 

mean 
    0.630 360.6 3958.0 8.16     

1) Model equations 1.1 – 2.5 (Table 11, Appendix B) applied after SAS REG/Stepwise for linear models (Equation 1, Appendix B, [51,52]) and SAS RSREG for polynomial models (Equation 2, 

Appendix B), experimental datasets used, soil types and Growing Zones are listed in [37]. 2) Grain baseline yields (yb, kg/ha) estimated by the corresponding VGI model. 3) Optical data classified with 

SatPhenClass-algorithm (Figure 3a,b [37]) 4) The Composite NDVI and SAR modeling results are reviewed in [37] 5) GEMI VGI model (Table 1, [55]) 6) 
PARND VGI model (Table 1, [56-60]) 7) Presented 

also in Part I a) R2 linear b) R2 non-linear polynomial equation c) RMSE linear d) RMSE (kg/ha) non-linear polynomial equation sc) Spring cereal (spring wheat, barley, oats) e) Equation not shown. 
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3.3. Intersensory Calibration Results with NDVI Phenological Spectral Profiles (SSPph) 

Figure 7 displays NDVI based intersensory calibration results between Landsat/TM and Spot/HRV2 

sensors using Phenological Spectral Profiles (SSPPh) in different phenological phases (Pa, Pb, Pc) on 

clay, coarse and organic soil types. The original radiometrically and geometrically calibrated and 

harmonized TM and HRV2 reflectance data were classified with the SatPhenClass algorithm [37] using 

BBCH and Zadoks phenological classes [43,44]. The NDVI values used in the VGI model II (Table 1, 

Table 12, Appendix B) were calculated from the calibrated ρNIR (ap, bp, cp) and  

ρRED (ap, bp, cp) reflectance values. 

Figure 7. Landsat/TM and Spot/HRV2 sensory calibration with NDVI Phenological 

Spectral Profiles (SSPph) in different phenological phases (Pa, Pb, Pc) and soil types.  

(A) depicts unadjusted Landsat/TM and Spot/HRV2 NDVI values for spring cereals in 

major phenological phases (Pa, Pb, Pc) and soil types. (B) displays transformed and 

enhanced NDVI values in early Pa phase after spring cereal germination and emergence on 

logarithmic scale. 

 

The NDVI values in early Pa phase in May (Figure 7(B)) after germination and emergency is 

displayed on logarithmic scale to enhance NDVI values. In general, the NDVI with HRV2 and TM 

sensors ranged between 0.01 and 0.1 in the initial Pa phase during the cereal germination and 

emergence on all soil types, the maximum level of 0.03 was obtained with HRV2 on barley cultivars 

grown on organic type soils (Figure 7(B)). In phase Pb during the maximum LAI exposure (LAIMax), 

the NDVI increased on 0.60–0.80 level and was decreased on 0.4-0.50 level in phase Pc after anthesis 

and grain filling (Figure 7(A)). In phase Pb the maximum NDVI level of 0.80 was obtained using HRV2 

sensor on oat cultivars grown on organic soils and respectively in phase Pc the maximum level of 0.55 

with TM on oat cultivars grown on clay type soils. 

Figure 8(A,I) displays digitized TM and HRV2 pairwised images from the Porvoo Experimental site 

(Kiiala, Dräksby, Kullogård and Bosgård Experimental Farms) in June with LAI maximum (Pb) and in 

July after cereal anthesis (Pc). Pairwised composite images were composed of ρRED(bp,cp)/ρNIR(bp,cp) 

reflectance data, which were used in calculating corresponding NDVI values (Figure 7). The pairwised 

Figure 8(A,B) illustrates the Kiiala experimental farm with digitized and classified cereal experimental 
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plots used for ground truth sampling (Figure 3(b)). More specifically, Figure 8(A) image was composed 

of Landsat TM reflectance data (channels ρRED(bp)/ρNIR(bp) and correspondingly Figure 8(B) of Spot 

HRV2 data (ρRED(cp)/ρNIR(cp). Respectively, Figure 8(C,D) illustrates Dräcsby Farm, Figure 8(F,G) 

Kullogrd Farm and Figure 8(H,I) Bosgård Farm. Figure 8(J) depicts a Spot HRV2 composite image 

(ρRED(cp)/ρNIR(cp) from the Jokioinen site in July, Kuuma Experimental area in the middle.  

Figure 8. Landsat/TM and Spot/HRV2 pairwised ρRED (bp, cp)/ρNIR (bp,cp) composite 

images from the Porvoo Experimental site in June (Pb , Figures 8(A,C,F,H)) and July (Pc , 

Figures 8(B,D,G,I)) (© Original Data Finnish Geodetic Institute).  

 

 

 

Figure 9 displays combined phenologically clustered Landsat/TM vs. Spot/HRV2 NDVI values 

averaged over different experimental locations (Me: Mellilä, Po: Porvoo, Kn: Kirkkonummi,  

Lp: Lapua, Ku: Kuuma, Jk: Jokioinen, Figure 2(d)) and soil types (Clay, Crs: Coarse, Org: organic ) 

and clustered into different phenological classes (Pa, Pb, Pc). In addition a logarithmic scale adjustment 

for the initial Pa phase after germination is displayed to enhance calibrated TM vs. HRV2 NDVI values 

(swh: Figure 9(A,B), brl: Figure 9(C,D), oat: Figure 9(E,F). Clustering analysis results indicate that 

cereal NDVI values ranged between 0.01 and 0.1 in the initial Pa phase after germination and 
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emergence. The NDVI values reached maximum values in class Pb on all soil types ranging between 

0.60 and 0.90 during the maximum LAI exposure (LAIMax). In class Pc after the cereal anthesis the 

NDVI ranged between 0.30 and 0.60. 

With spring wheat (Figure 9(A,B)) the TM had the maximum NDVI value (0.865) on clay types 

soils and HRV2 NDVI (0.648) on organic soils (peat, mould) in class Pb. Respectively, with barley (Pb, 

Figure 9(C,D)) the TM had the maximum NDVI value (0.710) on organic soils and HRV2 NDVI 

(0.760) on coarse soils. With oat cultivars (Pb, Figure 9(E,F)) the TM had the maximum NDVI value 

(0.701) on clay soils and HRV2 NDVI (0.760) on organic soils in class Pb. 

Figure 9. Phenologically clustered Landsat/TM vs. Spot/HRV2 NDVI values averaged over 

different experimental locations and soil types 1). (A, C, E) depict spring cereal (A-wheat, 

C-barley, E-oats) unadjusted Landsat/TM vs. Spot/HRV2 NDVI values in major 

phenological phases (Pa, Pb, Pc), soil types and experimental locations. (B, D, F) display 

spring cereal (B-wheat, D-barley, F-oats) transformed NDVI values on logarithmic scale in 

early Pa phase [29,37]. 

 

3.2.1. Soil*Species and soil*Cultivar Covariance Calibration Results 

The soil*species
 
and soil(clay)* cultivar covariance interactions on clay type soils with Infrared 

Model I are depicted in Table 5 with spring wheat (cv. Manu and Satu) and barley (cv. Inari) cultivars 
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currently cultivated in Finland. Different soil types have significant effect on cereal yield potential: The 

Infrared and NDVI models (I, II) calibration results with soil*species covariances indicated that the R
2
 

was considerably higher for spring wheat (R
2 

0.764) than for barley (R
2 

0.166). In addition, the 

soil*cultivar covariance calibration results with spring cereal cultivars on clay type soils indicated a 

low R
2
, varying between 0.089 and 0.144. 

Table 5. Spring wheat and barley non-potential yield estimates (kg/ha) for soil*species and 

soil (clay) * cultivar covariance categories (VGI Model I)
1)

. 

Cereal, VGI 

Model 

Equation 1)  

Soil 

type/Cultivar 

R2 

lin.a)/non-

lin. 

polyn.b) 

RMSE 

lin..a)/non-lin 

polyn.b) 

(kg/ha) 

Yield 

response 

mean 

(kg/ha) 

Cv (%)  Pr > F 

(Linear) 

Pr > F 

(Quad-

ratic) 

 

Pr > F 

(Cross-

prod.) 

 

Pr > F 

(Tot. 

model) 

 

Soil*species covariance category 

Swh 

(2.6) 
Clay 0.764 a) 282.3 a) 4240.9 6.66 

<.0001  

*** 

<.0001  

*** 

<.0001  

*** 

<.0001  

*** 

Brl  

(2.7) 
Clay 0.166 a) 1382.3 a) 4428.0 31.22 

<.0001  

*** 
N.S. N.S. 

<.0001  

*** 

Soil (clay) * cultivar covariance category 

Swh  

(3.1) 
Clay*Manu 0.089 b) 1292.1 b) 4015.5 32.18 N.S. N.S. N.S. N.S. 

Swh  

(3.2) 
Clay*Satu 0.046 b) 1031.7 b) 3181.1 32.43 N.S. N.S. N.S. N.S. 

Brl  

(3.3)  
Clay*Inari 0.144 b) 1220.9 b) 4749.8 25.70 0.02013 * N.S. N.S. N.S. 

1) Data classified with SatPhenClass-algorithm, model equations 2.6–3.3 (Table 11, Appendix B) a) R2 for linear model (Tables 1, 3, 

Appendix B: Equation 1, Table 11) b) R2 for non-linear polynomial model (Tables 1,3, Appendix B: Equation 2, Table 11) with 

corresponding RMSE linear and non-linear error estimates (kg/ha). 

More specifically, the yield and soil interactions were estimated on two category levels by 

estimating the (i) soil*species and (ii) soil*cultivar covariances: (i) The soil*species covariance on clay 

type soils was higher for spring wheat (R
2 

0.764, RMSE 282 kg/ha) than for barley (R
2 

0.166, RMSE 

1,382 kg/ha), denoting a statistically more significant fit for spring wheat cultivars. The corresponding 

average baseline response levels for yield (yb) were 4,240 and 4,428 kg/ha respectively and the 

Coefficient of Variation (Cv, %) ranged between 6 and 31 percent including both species. Both linear, 

quadratic, cross product and the total model terms were statistically significant for wheat. 

Correspondingly with barley only the linear component was significant. The R
2 

for barley model, 

especially on clay type soils, was significantly lower than for wheat. 

(ii) The soil*cultivar covariance interaction (Table 5) with clay type soils was further tested on 

cultivar level with cv. Manu and cv. Satu for spring wheat and cv. Inari for barley. With the 

soil*cultivar as category variable, the number of observations in each class remained low thus 

decreasing the R
2 
varying between 0.089 and 0.144 and respectively increasing the RMSE value. For cv. 

Manu the R
2 
was 0.089 (RMSE 1,292.1 kg/ha, the model response for yield was 4,015 kg/ha), for cv. Satu 

0.046 (RMSE 1,031.7 kg/ha, response yield 3,181 kg/ha) and for cv. Inari 0.144 (RMSE 1,221 kg/ha, 

response yield 4,749 kg/ha), respectively. The Coefficient of Variation (Cv) ranged between 25 and 32 
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percent with different cultivars; the linear component was statistically significant only with barley (cv. 

Inari) grown on clay type soils. 

3.3. Validation Results 

3.3.1. Optical VGI Model and CropWatN Crop Model Validation Results for Baseline Yield Levels (yb)  

The optical VGI model validation results using two independent datasets (i) MAFF inventory 

statistics [62,74] and (ii) MTT Agrifood Research Finland Official Variety Trial results [64-66] are 

presented in Table 6 to assess the VGI baseline yield estimates (yb, kg/ha) for different spring cereals.  

Yield estimates are depicted using four categories: (I) Crop category, (II) Crop*Growing Zone  

(I–IV) covariance category, (III) the soil cultivar covariance validation results using Models I and  

II [37] and (IV) the SAR/ASAR and NDVI Composite Model (VI, Table 1) validation results using 

Envisat, ERS and Radarsat backscattering data (σ0 ) [37]. Both MAFF and MTT observed yield values 

averaged over years and locations were compared with corresponding simulated VGI baseline yield 

estimates (yb) using absolute (DYMAFF , DYMTT , kg/ha) and percent differences (%, DPMAFF , DPMTT).  

The optical VGI models (I–II) used solely phenologically pre-classified optical reflectance data 

(Optical Minimum Dataset). The dynamic CropWatN crop model exploited both optical reflectance 

and extensive ground truth agrometeorological data. The CropWatN model was linked through  

LAI-bridge [29] and GEMI index [55] coupling system to use both Spot/HRV2 (zones III–IV) and 

NOAA/AVHRR (zones I–IV) sensory data (Tables 9 and 10, Appendix A). The adaptive Kalman filter 

([19,21], Figure 1) was applied in the LAI-bridge coupling system to obtain the optimal LAI estimate 

(LAIOptimal) from the optical satellite data (LAISatellite,Cereal) and from the initial crop model LAI estimate 

(LAICropModel ) in different phenological phases (Equations 6–8). The corrected LAI estimate was used 

for the final grain yield estimation in the CropWatN crop model [29]. 

The soil*species and soil*cultivar covariance validation results are depicted in Table 6  

(Category III, [37]). Two spring wheat (cv. Manu, Satu) and one malting barley (cv. Inari) cultivars 

grown on heavy clay type soils were analyzed by using optical VGI Infrared and NDVI models. The 

response mean yields (kg/ha) were compared with the MTT Official Variety Trial mean yield results 

correspondingly grown on clay type soils in cultivation zone I (Pernaja and Inkoo Exp. Stations), II 

(Jokioinen Exp. Station) and III–IV (Ylistaro and Ruukki Exp. Station, Figure 2a). The validation 

results indicated with the optical Model I and II using MTT Agrifood Finland Official Variety Trial 

validation data, that both observed wheat and barley yield levels from the MTT official variety trials 

(kg/ha) exceeded corresponding modeled spring wheat and barley yield levels. In both categories 

(soil*species, soil*cultivar) the VGI models underestimated the baseline yield levels (yb) when 

compared with the corresponding observed MTT yield levels. The modeled results for spring wheat 

and barley baseline yield levels (yb) in both categories were lower than the corresponding yield levels 

in MTT Official Variety trials. The model I (Infrared) and Model II (optical NDVI) indicated an 

underestimated yield difference (DPMTT,%) by −10% in soil*species category and between −31% and 

−14% in soil*cultivar category. Spring wheat and barley cereals in MTT field trials were grown on 

more optimal, non-limiting growing conditions. 
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Table 6. Averaged VGI optical and CropWatN dynamic crop model validation estimates for baseline yields (yb)
 
vs.

 
observed MAFF yield 

inventory and MTT Official Variety Trials [29,65,66,74]. 

 VGI model (yb) yield estimate MAFF Inventory estimate 

Category and  

Crop 1) 

Model 

 

Model mean  

response kg/ha,  

X ± Sd 

MAFF mean  

inventory yield  

kg/ha, X ± Sd 

DPMAFF  

(%,100 ref.) 8)  

DYMAFF  

(kg/ha) 9)  

 

Category I Crop      

Swheat I-II 4240 ± 228 3783 ± 212 112oe) 458 ± 97oe) 

Barley I-II 4394 ± 279 3520 ± 108 125oe) 874 ± 112oe) 

Oats I 3488 ± 352 3458 ± 131 101oe) 31 ± 22 oe) 

   

Category II Growing  

Zone (I-IV)  

 

VGI model estimate MAFF Inventory yield estimate [62,74] MTT Official Variety trial 

yield result [64-66] 

CropWatN Dynamic Model 

yield estimate with GEMI [55] 

and LAI-bridge [29]
 12,13)

 

Model 

yb, 

kg/ha, 

X ± Sd 

kg/ha, 

X ± Sd 

DPMAFF,VGI 

100% ref. 8)
 

(DYMAFF,VGI, kg/ha) 9)
 

kg/ha, X ± 

Sd(DPMTT,VGI%,100 ref.) 10)
 

NOAA data
12)

 

DP MAFF,NOAA, kg/ha, X ± Sd 

Spot data
13) 

 

DPMAFF,SpotKg/ha,  

X ± Sd
 

Zone I-II  

Mean 2), 3) 

Swh I-II 4218 ± 579 3530 ± 339 120%oe)(+710 kg/ha) 3789 ± 318(112%)oe) 3620 ± 908 (115%)oe) - 

Brl 5) I-II 4428 ± 719 3570 ± 297 124%oe)(+858 kg/ha) 4867 ± 107(91%)ue) 3490 ± 539 (91%)ue) - 

Oat I 3488 ± 105 3605 ± 431 97%ue) (−116 kg/ha) 4634 ± 226 (75%)ue) 3315 ± 877 (93%)ue) - 

Zone III-IV  

Mean 4), 5) 

Swh I-II 3768 ± 1042 3556 ± 160 106%oe)(+200 kg/ha) 4522 ± 271(83%) ue) 4605 ± 518(146%)oe) 4609 ± 227 (146%)oe) 

Brl 

7)  

I-II 4470 ± 1339 3430 ± 458 130%oe)(+1040 kg/ha) 4250 ± 432(105%)oe) 4022 ± 99 (120%)oe) 3984 ± 182(119%)oe) 

Oat I 3462 ± 1046 3370 ± 279 103%oe)(+92 kg/ha) 4913 ± 217(71%)ue) 3811 ± 75(112%)oe) 3752 ± 167 (110% ) oe) 
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Table 6. Cont. 

Category III 

[37] 

 

Species Model 
Category 

 
Soil type/Cultivar1) 

Averaged 

Model (I,II) yield (yb 

, X ± Sd)
  

MTT mean 

(X ± Sd kg/ha) 3) 

DYMTT Difference  

(kg/ha) from 

MTT obs 7) 

DPMTT, Difference (%) 

from MTT obs (100 

ref.) 6) 

Optical 

Infrared (I), 

NDVI (II) 

Swheat I+II Soil*Species 

 

Sandy clay 4240 ± 52 4645 ± 546 −404*ue) 91.3*ue) 

Barley I+II Sandy clay 4428 ± 48 4791 ± 29 −363*ue) 92.4*ue) 

Swheat I+II 

Soil*Cultivar 

Sand clay*Manu 4015 ± 62 4423 ± 72 −408*ue) 90.8*ue) 

Swheat I+II Sandy clay*Satu 3181 ± 31 4608 ± 92 −1427*ue) 69.0*ue) 

Barley  I+II Sandy clay*Inari 4749 ± 89 5483 ± 44 −733*ue) 86.6*ue) 

Category IV  

[37] 

 
Crop 

SAR and 

NDVI 

Model 

(Table 12) 

Category Soil type  

(Table 2) 
SAR Sensor 

Mean yb , kg/ha, X ± 

Sd 

MAFF estimate (X 

± Sd)
 2) 

DYMAFF Difference 

(kg/ha) from MAFF 

obs.1) 5) 

DPMAFF Difference (%) 

from MAFF obs.(100 

ref.) 4) 

Composite 

SAR/ASAR 

and NDVI 

(Model VI 

[37])  

Swh VI/6.1 
Fine coarse sandy 

clay 

Envisat ASAR 4127 ± 68 3950 ± 72 −177.0 oe 104.4 

 VI/5.1 Radarsat SAR 4213 ± 41 3840 ± 86 −373.0 oe 109.7 

 Swh ave.  4170 ± 54 3895 ± 78 −275.0 oe 107.1 

Brl general VI/6.2  

Fine coarse sandy 

clay 

Envisat ASAR 3750 ± 91 3880 ± 47 130.0 ue 96.6 

 VI/4.1 ERS2 SAR 3835 ± 98 3 420 ± 82 −415.0 oe 112.1 

Brl malt VI/5.2 Radarsat SAR 3909 ± 24 4050 ± 76 141.0 ue 96.5 

Brl feed and 

fodder 

VI/5.2 Radarsat SAR 3899 ± 32 3820 ± 82 −79.0 oe 102.7 

 Brl ave.  3848 ± 74 3792 ± 72 −55.7 oe 101.8 

Oats VI/6.3 

Fine coarse sandy 

clay 

Envisat ASAR 2826 ± 85 3310 ± 54 484.0 ue 85.4 

 VI/4.2 ERS2 SAR 2942 ± 49 3330 ± 54 388.0 ue 88.4 

 VI/5.3 Radarsat SAR 3038 ± 23 3520 ± 81 482.0 ue 86.3 

 Oats ave.  2935 ± 28 3386 ± 48 451.3 ue 86.7 

 Mean tot.   3615 ± 12 3680 ± 49 64.5 ue 98.2 
1) MAFF average yield statistics in the Nylands Svenska and Etelä-Pohjanmaa Agricultural Advisory Centres [74] 2) Averaged zone I-II, Nylands Svenska and Häme Agricultural Advisory Centres [66] 3.) 

Pernaja and Inkoo MTT Experimental Stations 4) Averaged III-IV Zone, Etelä-Pohjanmaa Agricultural Advisory Centre [66] 5) Ylistaro (Zone III) and Ruukki (Zone IV) MTT Experimental Stations 6) MTT 

Official Variety Trial results averaged yield levels over the years and different soil types in MTT experimental locations. 7) Contains both malting and fodder barley 8) DPMAFF,VGI - difference (%) VGI 

modeled vs. MAFF average inventory result (100%) 9) DYMAFF,VGI - difference (kg/ha) VGI modeled vs. MAFF average inventory result. 10) DPMTT,VGI - difference (%) VGI modeled vs. MTT Official Variety 

Trial result (100%) 11) DYMTT,VGI - difference (kg/ha) VGI modeled vs. MTT Official Variety Trial result. 12) DPMAFF,NOAA - difference (%) modeled (CropWatN) vs. MAFF average inventory result (100%), 

model CropWatN with GEMI LAI-bridge, NOAA data [29] 13) DPMAFF,Spot - difference (%) modeled (CropWatN) vs. MAFF average inventory result (100%), model CropWatN with GEMI LAI-bridge, 

Spot data [29] ue) - underestimated by the corresponding model vs. observed oe) - overestimated by the corresponding model vs. observed. 
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Table 6 (Category IV) illustrates the ASAR/SAR and NDVI Composite Model (VI, Table 1, [37]) 

validation results from the MAFF Etelä-Pohjanmaa Agricultural Advisory Centre (Table 2, [29]). The 

SAR and NDVI modeling results, using phenologically classified backscattering data from the Envisat, 

ERS and Radarsat ASAR/SAR sensors with different polarization levels (HH, VV, VH, HV), depict 

detailed soil*canopy interactions between cereal canopies and soil top cover (5–10 cm) with fine and 

coarse sand soil textures. The ASAR/SAR and NDVI composite model validation results take into 

account both the pre-anthesis ap and bp phenological phases using the NDVI component and  

post-anthesis and senescence phases (cp and dp) using the SAR component with HH and VV levels. 

The Model VI soil*species validation results using MAFF validation data, indicated with spring wheat 

an overestimation (DPMAFF, %) between +104% (Envisat) and 107% (Radarsat) from the observed 

MAFF inventory reference (100% [29]). With oat cereals, the underestimation was between 85% 

(Envisat) and 88% (ERS2). Respectively with barley between 97% (Envisat) and 112% (ERS) and 

more precisely with malt barley 96% underestimation (Radarsat) vs. fodder barley 102%. Respectively, 

the yield difference calculated as kg/ha (DYMAFF) ranged between 177 kg/ha (swh, Envisat ASAR) and 

484 kg/ha (Oats, Envisat ASAR).  

The VGI validation results (Table 6, Categories I–IV) with spring cereals indicate, that in general 

the average baseline yield (yb) estimates tend to stabilize between the observed non-potential yield 

levels and potential maximum yielding capacity levels at non limiting environmental factors (e.g., 

vegetation water stress, nutrient deficiencies). Results suggest that optical VGI models tend to 

overestimate the baseline yield levels (modeled/observed ratio, DPMAFF,VGI) ranging between 101 (oats) 

and 125 (barley) percent vs. annual MAFF non-potential yield inventory estimations (ref. 100%). The 

optical VGI mean baseline yield response (yb) for spring wheat was 4,240 kg/ha (Zone I: 4,218,  

III–IV: 3,768), for barley 4,394 kg/ha (Zone I: 4,428, III–IV: 4,470) and for oats 3,488 kg/ha (Zone I: 

3,488, III–IV: 3,462). Respectively the mean ASAR/SAR and NDVI composite model (VI) baseline 

yield (yb, kg/ha) was 4,170 kg/ha for wheat, 3848 kg/ha for barley (3,909 for malting barley and  

3,899 kg/ha for fodder barley) and 3,386 kg/ha for oats [37]. 

Figure 10(A–D) illustrates the combined validation results for spring cereals using VGI models and 

for CropWatN crop model on clay, coarse and organic soil types in growing zones I–IV [29]. In 

addition, the corresponding observed MAFF stratum sampling estimates from the farm level and the 

averaged MTT Agrifood Official Variety Trial results during the 1990–1997 period are plotted. 

With spring wheat (VGI Model II/NDVI, 1.3, Table 12), the simulated yield was 4,218 kg/ha 

(R
2
 0.729) in Zone I–II and correspondingly in Zone III–IV 3,768 kg/ha (R

2
 0.742, Figure 10(A)). The 

simulated CropWatN/Spot yield for wheat was 4609 kg/ha and CropWatN/NOAA 4605 kg/ha in Zones 

(III–IV) [29]. Corresponding averaged MAFF estimate for wheat was 3,556 kg/ha and MTT trial result 

4,522 kg/ha in Zones (III–IV). 

With barley (VGI Model II/NDVI, 2.2, Table 12), the simulated yield was 4,428 kg/ha in Zone I–II 

(R
2
 0.609) and in Zone III–IV 4470 kg/ha (R

2
 0.615, Figure 10(B)). The simulated CropWatN/Spot 

yield for barley was 3,984 kg/ha and CropWatN/NOAA 4,022 kg/ha in Zones (III–IV) [29]. 

Corresponding averaged MAFF estimate for barley was 3,430 kg/ha and MTT trial result 4,250 kg/ha 

in Zones (III–IV). 
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With oat (VGI Model I, 2.5, Table 12), the simulated yield was 3488 kg/ha in Zone I–II (R
2
 0.762) 

and in Zone III–IV 3460 kg/ha (R
2
 0.748, Figure 10(C)). The simulated CropWatN/Spot yield for oats 

was 3,752 kg/ha and CropWatN/NOAA 3,811 kg/ha in Zones (III–IV) [29]. Corresponding averaged 

MAFF estimate for oats was 3,370 kg/ha and MTT trial result 4,910 kg/ha in Zones (III–IV). 

Figure 10(D) depicts the simulated CropWatN/CGMSF model spring cereal yield levels vs. MAFF 

Information Centre (IC) averaged statistics in the 1990–1997 period in Zones I–IV (R
2
 0.740,  

RMSE 391 kg/ha, [29]). 

Figure 10. Validation results for spring cereal VGI models using NDVI VGI models in 

growing zones I–IV. (© Original data Finnish Geodetic Institute,[29]). 

 

 

3.3.2. Time Series Validation Analysis for Baseline Yield Levels (yb)  

Figure 11 displays simulated spring cereal yield trends (yb, kg/ha) in the 1990–1997 period modeled 

with different VGI models for spring wheat and barley (Model II/NDVI, Table 12, Appendix B) and 

for oats (Model I) in growing zones I–IV. Simulation time series input data were extracted from Spot 

and Landsat optical minimum datasets measured in the experimental locations (Me: Mellilä, Po: 

Porvoo, Kn: Kirkkonummi, Lp: Lapua, Ku: Kuuma, Jk: Jokioinen, Figure 2(d)). In addition, simulated 
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CropWatN crop model estimates [29] and MAFF stratum sampling estimates from the sampling farms 

in Zone I, II and in the averaged Zone III/IV (Figure 11(A–I)) are displayed. In general, the CropWatN 

model simulated yield levels were below the MAFF estimates in Zones I–IV [29]. 

In Zone I (Uusimaa Agric. Advisory Centre, Figure 11(A–C)) the VGI simulated spring wheat 

baseline yield levels (yb) were below the MAFF stratum sampling levels in 1990 but above in 1994, 

with barley above MAFF estimates in 1990 but below in 1994 and with oats below MAFF estimates 

both in 1990 and 1994.  

In Zone II (Häme Agric. Advisory Centre, Figure 11(D–F)) the VGI simulated wheat, barley and oat 

baseline yield levels (yb) were above the MAFF levels in 1994 and 1995. 

In the averaged Zone III/IV (Pohjanmaa Agric. Advisory Centre, Figure 11(G–I)) the VGI wheat and 

oat baseline yield levels (yb) were below the MAFF level but above with barley in 1996. 

Figure 11. Simulated baseline (yb, kg/ha) and observed spring cereal yields in the  

1990-1997 period in Zone I (Uusimaa Agric. Advisory Centre), Zone II (Häme Agric. 

Advisory Centre), Zone III/IV (Pohjanmaa Agric. Advisory Centre, © Original data Finnish 

Geodetic Institute [29]). 
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When comparing the averaged optical VGI validation results in growing zones I-IV (Category II, 

Table 6), the modeled yield estimates were between MAFF sub-optimal inventory statistics (DPMAFF) 

derived from actual field conditions and MTT variety trial results (DPMTT,VGI) grown on experimental 

fields with more optimal growing conditions. This baseline yield trend (yb, kg/ha) is outlined in 

simulation results illustrated in Figure 11 with time series analysis using 1990–1997 optical  

minimum datasets. 

When combining validation and time series analysis results (Table 6, Figure 11), in growing zone I 

(Jokioinen and Kirkkonummi), the overestimation (oe) was 124% for barley and underestimation (ue) 

96% for oats vs. MAFF inventory statistics (Nylands Svenska Agric. Advisory Centre). Respectively 

the overestimation was 112% for wheat and underestimation (75%) for oats vs. MTT Official Variety 

Trial results (Pernaja and Inkoo MTT Experimental Stations). 

In growing zones III–IV in Lapua (Table 5, category II) the overestimation was 130% for barley and 

102% for oats vs. MAFF inventory statistics (Etelä-Pohjanmaa Agric. Advisory Centre). Respectively 

the overestimation was 105% for barley and 70% for oats vs. MTT Official Variety Trial results in 

Ylistaro (Zone III) and Ruukki (Zone IV) MTT Experimental Stations. 

When comparing CropWatN model validation results (Model V in Table 1, category II in Table 5) 

vs. MAFF Inventory mean estimates, the DPMAFF,NOAA difference ratio (%) calculated as modeled 

(CropWatN) vs. MAFF average inventory reference (100%) varied between 93% (oats, growing  

zones I–II) and 146% (wheat, zone III–IV) using NOAA/AVHRR data. With Spot/HRV2 data, the 

difference ratio (DPMAFF,Spot) varied between 110% (oats, zone III–IV) and 146% (wheat, zone III–IV). 

LAI-bridge linked CropWatN average yield levels were 4,754 kg/ha for spring wheat, 4,192 kg/ha for 

barley and 4,992 kg/ha for oats in growing zones I–IV [29]. The average R
2 

was 0.57 (RMSE  

561 kg/ha) for spring cereals with NOAA/AVHRR data and 0.85 (RMSE 310 kg/ha) with Spot data. 

The VGI modeled baseline yield levels (yb, kg/ha) varied between 3,315 (oats, zone I–II) and 

4,609 kg/ha (wheat, zone III–IV). 

When comparing averaged optical VGI baseline yield level estimates (yb) vs. CropWatN dynamic 

crop model results using Spot/HRV2 data in growing zones III–IV in the Pohjanmaa Agricultural 

Advisory Centre, the comparison Difference Ratio (%) (DRMAFF,VGI/DRMAFF,CropWatN,Spot) indicated a 

slightly higher accuracy with VGI models for oat and spring wheat cultivars. With malting and fodder 

barley cultivars the CropWatN results indicated a higher accuracy. The averaged MAFF inventory 

grain yield data were used as a reference (100%). The DR MAFF,VGI/DR MAFF,CropWatN,Spot ratio was 

106/14 for spring wheat,130/119 for malting and fodder barley and 103/110 for oats in growing zones 

III–IV mainly on clay type soils (Table 5, Category II). 

Correspondingly, in growing zones I–II (Nylands Svenska and Häme Agric. Advisory Centres) on 

sandy and clay type soils the comparison Difference Ratio (DRMAFF,VGI/DR MAFF,CropWatN,NOAA ,%) 

indicated underestimation (91%) with CropWatN using NOAA data and overestimation (124%) with 

VGI models. With oat cultivars both models (DRMAFF,VGI/ DRMAFF,CropWatN,NOAA) underestimated yield 

levels (97/93%). In growing zones I–II the comparison ratio was 120/115 for spring wheat, 124/91 for 

malting and fodder barley and 97/93 for oats. On clay type soils in zones III–IV both models 

overestimated yield levels, the DR ratio was 106/146 for spring wheat, 130/120 for barley and 103/112 

for oats.  
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4. Discussion 

4.1. Implications from the Optical Infrared Reflectance Data for Baseline Yield (yb) Estimations 

The optical reflectance is a combination of reflected, transmitted and absorbed radiant fluxes from 

cereal canopies and soil cover varying during growing season. During cereal germination and 

emergence in spring time, optical vegetation indices are low in May (ap phenology class, BBCH 0–12) 

countries with only partly covered soil surfaces (LAI < 1). In June (bp, BBCH 12–50, LAI > 1) and July 

(cp BBCH 50–90, LAI > 3) the cereal vegetation indices are higher due to increased photosynthetic 

activity with maximum LAI values usually observed in June [41]. The PARND Index (Model IV) is 

similar to JRC-FAPAR algorithm (Fraction of Absorbed Photosynthetically Active Radiation [68]). 

Green vegetation with completely closed canopies (LAI > 1) strongly absorbs solar radiation in the red 

spectral region (ρRED) and, respectively, emits and scatters in near-infrared (ρNIR). The reflectance in the 

blue band is sensitive to the optical thickness of aerosols in the atmosphere. The blue band has been 

applied in the JRC-FAPAR algorithm to decontaminate the red and the near-infrared bands from 

atmospheric effects [56-59]. The JRC-FAPAR algorithm simulates with Radiative Transfer Models 

(RT, [55]) bidirectional radiant fluxes both inside the vegetation canopy and in the soil beneath. 

When interpreting the optical Infrared (I) and NDVI (II) modeling results for spring cereals in this 

study, a significant change in NDVI, GEMI, PARND/FAPAR values was observed between May 

(phenological class ap) and June (bp) with maximum peaks. Correspondingly in July (cp) the values were 

reduced from those in June. In this study, the VGI model I (Table 1) independent variable, infrared 

reflectance in PAR/RED region (ρRED/Rf3, λ = 630–690 nm for Landsat/TM and λ = 610–680 nm for 

SPOT/HRV2, Table 10), was low especially in June (bp) coinciding with high photosynthetic and 

translocation activity (Figure 7). The low infrared reflectance values also indicated high absorbance of 

incoming radiation in cereal leaf chlorophyll A and B pigments in generative phase during heading and 

anthesis initialization. Respectively, the infrared reflectance (ρRED/Rf3) reached maximum values in 

July (cp) and near-infrared reflectance (ρNIR/Rf4) in June (bp). Previous crop physiological studies 

(Ledent [75], Reynolds et al. [76]) and in Finland Laurila [41] and Peltonen-Sainio et al. [77,78] have 

emphasized the role of cereal flag leaf and the 2nd uppermost leaf below the cereal head for final 

baseline (yb) yield determination. According to Reynolds et al. [76] the flag leaf area through LAI and 

flag leaf dry-weight through Harvest Index (HI) were significant yield component factors, when setting 

the final yield levels for wheat ideotypes grown under actual non-potential field conditions. Yield 

components affected through photosynthetic capacity and translocation in  

SS-metabolism (Source-Sink) mechanism. Cereal flag leaf and the 2nd uppermost leaf below head 

contain Chlorophyll A with absorption maximums at 460 and 680 nm and Chlorophyll B at 480 and 

650 nm, respectively (Figure 3, [79]).  

The other independent variable in VGI model I (Table 1), the near infrared reflectance values 

(ρNIR/Rf4, λ = 760–900 nm for Landsat/TM and λ = 790–890 nm for SPOT/HRV2/S3, Table 10) were 

relatively high in June (bp) between heading and anthesis near to LAImax proximity compared with 

corresponding lower ρNIR / Rf4 values in May (ap) and July (cp). According to Price [53], Maas [73], 

Flowers et al. [80] and Hadria et al. [81] the reflectance signal measured by the optical satellite sensors is 

a combined interacting signal reflected from both soil cover and vegetation canopies. The soil/canopy 
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reflectance ratio (SCR) similar to Spectral Reflectance Indices applied by Prasad et al. [26] for winter 

wheat grain yield estimations is varying along with spring cereal phenological development during 

growing season. In spring time before cereal sowing and emergence, the bare soil reflectance is 

prevailing in optical SCR reflectance ratio [53,73,80]. The SCR is reduced by germinating cereal 

tillers, which develop gradually into full canopy coverage and closure between heading and anthesis 

with maximum LAI exposure. With spring cereals the maximum LAI values are commonly observed 

between July and August in Finland corresponding to Phase III with SatPhenClass (cp,  

BBCH 50–90) [42-44,47,49].  

The VGI modeling results indicate, that during the generative grain filling phase (dp-class,  

BBCH > 90) after the cereal anthesis the reflectance data from the infrared and near-infrared channels 

was less significant for the final yield prediction [47,49]. The leaf and other organs with high 

chlorophyll concentration begin to disintegrate. They become senescent as cereals translocate 

assimilates from source organs (e.g., flag leaf) to sinks (head) using SS-translocation mechanism [76].  

4.2. Intersensory Calibration Results 

Intersensory calibration results using Phenological Spectral Signature Profile (SSPPh) Analysis for 

cereals indicate that both the TM and HRV2 sensors measured NDVI maximum values especially 

during the vegetative Pb phase with cereal maximum LAI exposure (LAIMax). The Spectral Signature 

Profile Analysis suggests that the averaged NDVI values from both HRV2 and TM sensors in the early 

Pa vegetative phase in May after germination and emergency had very low values ranging between 0.01 

and 0.1 on all soil types. In the vegetative phase Pb during the maximum LAI, the NDVI increased on 

average on 0.60–0.80 level. The averaged NDVI was decreased on 0.4–0.50 level in generative phase 

Pc after anthesis and grain filling. In Pb phase, the maximum NDVI level of 0.80 was obtained using 

HRV2 sensor with oat cultivars grown on organic soils and respectively in phase Pc the maximum level 

was 0.55 with TM sensor with oat cultivars grown on clay type soils. 

4.3. The soil*Species, Soil*Cultivar and Cultivar*Canopy Interactions 

Soil*canopy and soil*crop yield covariances including total evapotranspiration, canopy 

transpiration through stomatal cavity and evaporation from soil surfaces with remote sensing 

techniques have been reviewed by Kondratyev et al. [70], Ulaby [71] and Henderson and Lewis [72].  

The optical reflectance and microwave backscattering measured by satellite sensors contain 

combined interacting signal reflected from soil cover and vegetation canopies, varying with spring 

cereal phenological development during growing season. In spring time before cereal sowing in May, 

the bare soil reflectance dominates the reflectance signal. Soil reflectance fraction is reduced by 

germinating cereal tillers developing gradually into full canopy coverage and closure between heading 

and anthesis with maximum LAI values [33,53,72,73]. 

Currently spring cereal sowing in southern Finland generally occurs in the beginning of May. In 

May most of the soil on spring cereal cultivations is still a mixture of bare soil combined with 

germinating and emerging spring cereals. Thus the soil component absorbance is high compared to 

combined reflectance and albedo.  
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The optical Infrared modeling results in southern Finland are especially affected by the soil*canopy 

interactions in the beginning of growing season (ap, May, BBCH 0–12) when the soil is only partly 

covered with emerging spring cereal canopies. Because of this infrared, near infrared and also Landsat 

Thermal Infrared (λ = 10.4–12.5 m) reflectance values are close to zero ranging between 0.010 and 

0.020 on species and cultivar level.  

The optical Infrared VGI calibration results in the soil (clay)*species covariance category indicated 

that the non-potential baseline yield (yb) response was 4,240 kg/ha for spring wheat with high R
2 

(0.764) and 4,420 kg/ha for barley with low R
2 (

0.166) on cultivars grown on clay type soils. In general, 

the results indicated a significantly better polynomial fit for spring wheat cultivars on clay type soils. 

The more detailed soil*cultivar covariance calibration for spring cereals with clay type soils indicated a 

low R
2
 varying between 0.089 and 0.144. 

The optical covariance validation results with non-potential VGI Infrared models indicated an 

underestimated yield difference between −8.2% and −9.5% in soil*species category and between −10.1 

and −44.9% in soil*cultivar category. In both categories the Infrared models underestimated the spring 

wheat and barley yield levels compared with corresponding MTT Agrifood Official Variety trial yield 

levels grown on more optimal non-limiting growing conditions. On more detailed soil*species and 

soil*cultivar level the Infrared models underestimated the baseline yield levels compared with the 

corresponding observed MTT yield levels. Especially the spring wheat cv. Satu yield level on clay type 

soils was clearly underestimated (−44.9%). Respectively the yield difference calculated as kg/ha varied 

between −363 kg/ha (barley*clay) and −1,427 kg/ha (Satu*clay).  

The enzyme malting barley cv. Pokko (breeder Hankkija Kasvinjalostus) with maximum yielding 

capacity had optical infrared reflectances below average in ap bp cp phases (BBCH 0–90) indicating 

active photosynthesis in PAR-region and near-infrared reflectance above average in phase cp (BBCH 

50–90). In Finland, the minimum protein content of 10.5% for malting barley genotypes is generally 

required. Typically the protein content is controlled by nitrogen fertilization. The nitrogen requirement 

for cv. Pokko grown on clay type soils is 90 kg N/ha and 70–80 kg/ha on coarse type soils in growing 

zones I–IV [82]. Especially fodder and malting barley experimental plots with clay topsoil layer in 

Porvoo experimental area were affected by severe drought with low water table and water deficiency 

stress periods especially in generative phases (cp, dp). This affected the translocation of assimilates to 

cereal heads and a reduction in final grain filling.  

The combined cultivar*canopy covariance results from both VGI optical modeling results (stages 

ap–cp) from this study and SAR backscattering analysis and VGI Composite modeling results (stages 

cp–dp [37]), indicate specific morphological differences in canopy structure between different spring 

cereal species. Oat cultivars with more planophile leaf and canopy structure (i.e., leaves aligned 

perpendicular to the plane of incident light and PAR-radiation) and panicle inflorescence differ both in 

optical PAR spectrum and also with SAR polarization properties from those of wheat and barley with 

more erectophile head and canopy structures [6,72,83].  

With planophile crops, flag leaf and upper canopy structure are more perpendicular to incoming 

PAR-radiation. The planophile canopy structure is affected by mutual shading attenuating lower 

canopy photosynthesis. Frantz et al. [83] reported significant changes in Photosynthetic Photon Flux 

(PPF) and in PAR radiation conditions especially in lower canopy layers with planophile species. 
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In this study, oat cultivars in June (bp) had infrared reflectance (ρRED 0.031) above average and in 

July (cp) near infrared reflectance (ρNIR 0.191) above average. Notably the cv. Veli oat reflectance data 

contained both maximum infrared (ρRED 0.058) and near-infrared reflectance values (ρNIR 0.282) in bp 

phase in June indicating lower photosynthetic absorbance compared to wheat and barley cultivars. In 

general, oat cultivars yielded lower final grain yield levels under actual field conditions compared to 

wheat and barley cultivars (Table 3). In addition, the SAR modeling results with oat cultivars presented 

in a recent publication by Laurila et al. [37] indicated, that during later phenological stages especially 

after the anthesis (cp) and grain filling and canopy senescence (dp, BBCH > 90) the SAR VH  

cross-polarization (σ0) amplitude was higher when compared with VV vertical levels both in anthesis 

(cp) and full maturity (dp) on clay and sandy type soils. Both the horizontal and vertical (HH, VV) 

signal amplitudes were higher in anthesis stage (cp, BBCH 50–90) compared to full maturity stage (dp).  

4.4. The optimal VGI Modeling Results for Baseline Yield Estimations  

The optical VGI Composite modeling results for spring cereals obtained from this study suggest that 

the best VGI models for both spring wheat and barley cultivars were NDVI based VGI models (Model II) 

using phenologically classified and harmonized Landsat/TM and SPOT/HRV2 data. With spring wheat 

cultivars the Model II overall accuracy was 0.737 (R
2
) for spring wheat cultivars (mean baseline yield 

yb 4,240 kg/ha, RMSE 297 kg/ha) and for barley cultivars R
2
 was 0.611 (mean yb 4,390 kg/ha, RMSE 

449 kg/ha) grown on different soil types in growing zones I–IV. With oat cultivars the best VGI model 

was the Polynomial Infrared VGI model (Model I, yb 3,480 kg/ha, R
2
 0.70, RMSE 258 kg/ha).  

The Time Series Validation Analysis results for cereal yields indicated varying baseline yield levels 

between years with optimized VGI models when compared with annual MAFF stratum yield estimates 

in growing zones I–IV. The Time Series Analysis suggests using 1990–1997 optical validation  

data [29] from growing zones I–IV that the VGI simulated spring wheat baseline yield levels (yb) in 

Zone I were below the MAFF stratum sampling levels in 1990 but above in 1994, with barley above 

MAFF estimates in 1990 but below in 1994 and with oats below MAFF estimate both in 1990 and 

1994. In Zone II the VGI simulated wheat, barley and oat baseline yield levels (yb) were above the 

MAFF levels in 1994 and 1995. In the averaged Zone III/IV the VGI wheat and oat baseline yield 

levels (yb) were below the MAFF level but above with barley in 1996. In general, the CropWatN model 

simulated yield levels were below the MAFF estimates in Zones I–IV [29]. 

4.5. Validation of Optical VGI Composite Models vs. Dynamic Crop Models 

The VGI Composite modeling results for spring cereals seem to be in line with previous optical and 

SAR measurement campaigns and modeling results for winter wheat and maize on EU scale. The mean 

R
2
 was 0.630 when both optical and SAR [37] were integrated. The modeling results obtained in this 

study seem to be in accordance with EUROSTAT crop inventory statistics reported from Spain, 

France, Belgium, Italy, Poland and Germany [19,20,85].  

Previous optical crop modeling results in Finland reported by Kuittinen et al. [29] and Karvonen  

et al. [31] indicated that the R
2
 range varied between 0.57 and 0.78 for spring cereal yield estimations 

in southern Finland when optical SPOT/HRV2 and NOAA/AVHRR data were combined with 

CropWatN [31,84] and WOFOST [20] dynamic crop models.  
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More specifically, a cereal specific LAI-bridge (Figure1, Phase XI(c) scheme) using GEMI index 

(Global Environment Monitoring Index [55]) was established between optical reflectance data and 

dynamic crop models. LAI estimates LAI(Satellite, Cereal) using red and near infrared GEMI index were 

derived from SPOT and NOAA optical data in the Nylands Svenska, Häme and Etelä-Pohjanmaa 

Agricultural Advisory Centres in growing zones I–IV [29].  

Crop specific LAI values LAI(Optimal) estimated by the LAI-bridge were used as input data for 

CropWatN [29,84] and WOFOST [20] dynamic crop models combined with CGMS GIS system (Crop 

Growth Monitoring System managed by JRC/IRSA [85]). The CropWatN dynamic crop model is 

analogous to CERES-Wheat [17,18], CROPSYST [25] and AFRCWHEAT2 [40] dynamic crop 

models. It uses cumulative ETS temperature sum as a phenological driving variable with cumulative 

biomass and yield integrations during growing season.  

According to Kuittinen et al. [29] the mean R
2
 and RMSE results using CropWatN model were in 

Etelä-Pohjanmaa (R
2
 0.57, RMSE 561 kg/ha), Nylands Svenska (R

2
 0.85, RMSE 310 kg/ha) 

Agriculture Advisory Centres when compared with the corresponding MAFF annual inventory 

statistics [62,74]. The CROPWATN modeled mean yield levels (yb) combined with optical SPOT 

reflectance data were 4,754 kg/ha for spring wheat, 4,192 kg/ha for barley and 4,992 kg/ha for oats [29]. 

Correspondingly the VGI modeling results, obtained in this study, indicated that the mean  

non-potential baseline yield level (yb) were 3,960 kg/ha for spring cereals (R
2 

0.63, RMSE 360 kg/ha) 

averaged over the years and locations in growing zones I–IV.  

4.6. Validation of optical VGI models vs. Composite ASAR/SAR and NDVI models 

The optical VGI model vs. ASAR/SAR and NDVI Composite Model (VI) validation results in the 

Etelä-Pohjanmaa Agricultural Advisory Centre indicated varying results between the modeled vs. 

observed MAFF inventory statistics. The Composite model (VI) validation results indicated that the R2 

accuracy tends to stabilize on the 60–70% level similar to optical VGI models (I–II).  

 The Composite Multispectral models combined with the SatPhenClass phenological classification 

algorithm for spring cereals provides a promising integrating technique for combining both microwave 

SAR/ASAR and optical reflectance data. The Composite Multispectral model takes into account both 

the pre-anthesis phenological phases (ap, bp) using the NDVI component and post-anthesis and 

senescence phases (cp, dp) using the SAR component with backscattering polarization levels. In 

addition, the Composite multispectral model can be used in assessing the soil*canopy covariances 

between cereal canopies and soil top layers on different soil types [37]. 

With ENVISAT/ASAR sensory data, the Model VI overestimated the MAFF averaged stratum 

estimate for spring wheat and feed barley, but underestimated it for malting barley and oats in Zones 

III-IV. Respectively the Model VI overestimated the SAR/Radarsat and SAR/ERS spring wheat and oat 

averaged yield levels, but overestimated SAR/ERS barley yield levels when compared with the MAFF 

averaged inventory estimates.  

The ASAR/SAR and NDVI composite model VI mean yield accuracy was 0.61 (R
2
) and RMSE  

402 kg/ha using both phenologically classified reflectance and backscattering data. However with 

Envisat and Radarsat composite models, the inclusion of ASAR/SAR in conjunction with the NDVI 

component increased the overall accuracy from 60% to 70% level. 
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The Composite model (VI) validation results indicated that the use of the Envisat ASAR additional 

cross-polarization component (VH) did not increase the R
2
 level compared to ERS (VV) and Radarsat 

(HH) with only one polarization level in the 5.3 GHz measurement spectrum.  

The mean ASAR/SAR and NDVI model baseline yield (yb, kg/ha) was 4,170 kg/ha for spring 

wheat, 3,848 kg/ha for barley (3,909 for malting barley and 3,899 kg/ha for fodder barley) and  

3,386 kg/ha for oats [37]. 

The NDVI optical model II overall accuracy with spring wheat yield was 0.73 using R
2 

(RMSE 

297 kg/ha) and with barley (R
2 

0.61, RMSE 449 kg/ha). Respectively with the Composite 

ASAR/Envisat and NDVI model VI, the overall accuracy with spring wheat yield was 0.72
 
(RMSE 

302 kg/ha) and with barley (R
2 

0.69, RMSE 349 kg/ha) and with oats (R
2 

0.62, RMSE 389 kg/ha).
 
With 

the Composite SAR/Radarsat and NDVI model, the overall accuracy with spring wheat yield was 0.73
 

(RMSE 300 kg/ha) and with barley (R
2 

0.70, RMSE 322 kg/ha) and with oats (R
2 

0.62, RMSE 

483 kg/ha).  

Contrary to Envisat and Radarsat model estimates, the ERS yield accuracy was significantly lower, 

with the Composite SAR/ERS and NDVI model, the overall accuracy with barley yield was R
2 

0.45
 

(RMSE 480 kg/ha) and with oats (R
2 

0.42, RMSE 584 kg/ha). This lower accuracy with ERS model 

can be partly explained by the missing horizontal (HH, available in Envisat and Radarsat) and  

cross-polarization components (VH, only in Envisat). The ERS model (VI) contains only the vertical 

(VV) polarization component in conjunction with the optical NDVI component modeling the spring 

cereal yield in different phenological phases (ap, bp, cp).  

In summary, the Envisat and Radarsat validation results suggest the inclusion of the horizontal 

polarization component (HH) in the SAR/ASAR composite models, thus increasing the overall 

accuracy of the composite VGI models. The VH cross-polarization component, available only in the 

Envisat data, did not significantly increase the Model VI overall accuracy. The oat canopy and head 

morphological structures differ from those of wheat and barley potentially changing the backscattering 

polarization properties [37].
 

4.7. Synthesis for cereal baseline grain yield estimation using VGI models and Minimum Datasets 

The recent SAR modeling results by Laurila et al. [37] for Finnish growing conditions and optical VGI 

modeling results obtained from this study for cereal baseline yields (yb) indicate that the R
2
 tends to 

stabilize on the 0.60–0.70 level in southern Finland (growing zones I–IV). The VGI modeling results 

indicate that the average R
2
 for yield (kg/ha) varied significantly during growing season. The overall R

2
 

average for spring sown cereals in growing zones I–IV in Southern Finland was 0.63. Results indicate that 

with relatively few observations (n < 500) the R
2 

tends to increase above 0.80, whereas with larger 

datasets (n > 1,000) the R
2
 stabilizes between 0.50-0.60. One possible explanation to this extensive R

2
 

variance lies in the algorithm itself, with large datasets, the Least-Square Estimation-algorithm (LSE) 

applied in linear and non-linear regression models is unable to fit all the variables into a linear or 

polynomial model. In addition, when simulating spring cereal non-potential yield levels, soil component 

with different soil types, affects significantly on final grain yield level. 

The Vegetation Indices models using solely Minimum datasets using only optical and SAR data lack 

the plasticity of dynamic crop models, which can adapt to adverse climatic conditions by using extensive 
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ground truth agrometeorological and crop phenological data [29,31]. However, the SatPhenClass 

submodel, combined with VGI models and using dynamic ETS and LAI classifiers, increases the 

adaptability of VGI models during cereal phenological development both in vegetative phase before 

anthesis and also in generative phase during the head ripening stage. In northern latitudes the cloudiness 

and rain during the growing season seriously reduce the applicability of optical Landsat and SPOT 

satellite data. Based on Finnish field experiment results it should be possible to obtain two or three  

cloud-free optical satellite images during growing season in southern Finland. It was known a priori that 

the probability of obtaining a cloud-free image in Finland in June is ca. 50%, the corresponding 

probability in southern France lies between 15 and 31% [29,30]. Previous studies have critically reviewed 

problems with atmospheric modeling and radiometric correction of satellite signal, especially the 

complicated correction of reflectance signal interacting with atmospheric aerosols and clouds has been 

reviewed by Kondratyev et al. [70].  

On other hand, remote sensing satellites provide a well calibrated multitemporal and multispatial data 

source for crop monitoring and input data for yield estimation models. In addition, new microwave based 

satellite systems can map images through cloud coverage and during the night-time. Scurlock and  

Prince [79] suggested that in order to obtain statistically significant yield estimations one should 

concentrate on obtaining cloud free optical satellite images especially in the beginning of growing season 

during the vegetative growth. Dynamic crop models would improve the accuracy of final yield 

estimations specifically in generative grain filling phase after the cereal anthesis.  

4.8. Rationale and Implications for the Finnish CAP Policy  

Recently McNairn et al. [7] applied multispectral Decision Tree and Neural Network classification 

techniques with integration of SAR and optical satellite data for Canadian crop inventory monitoring. In 

Canadian growing conditions Decision Tree Classifier (DTC) with composite optical and dual 

polarization mode SAR (VV–VH) data produced highest classification accuracy over 85% overall 

accuracy (Kappa κ 0.47–0.89) for wheat, maize and soybean. In comparison, the SatPhenClass 

phenological classification results for Finnish spring cereals, indicated a general classification accuracy 

exceeding 74% in different vegetative phenological (ap, bp) and generative classes (cp, dp). The Canadian 

growing conditions with latitudal variation between 45°N and 60°N resemble those of Scandinavia and 

southern Finland. However, in Finland, the applicability of multispectral classifying techniques for 

different crops is less relevant, since MAFF as part of the Pan-European effort and EU regulated CAP 

policy (Common Agricultural Policy) has established a national Finnish Land Parcel Identification 

System (FLPIS [34]) with digitized parcel boundaries. The FLPIS system is incorporated with the 

Integrated Administration and Control System (IACS). The IACS system controls the payments of 

cultivation area based agricultural subsidies for Finnish farmers. The USDA ground based stratum 

sampling methodology [8] is currently applied in Finland in the annual crop inventory sampling. MAFF 

and the Finnish Rural Development Centres perform annual crop yield inventory sampling. Inventory 

program is based on farm level interviews three times every growing season in June, July for intermediate 

yield estimates and in August for the final yield level estimations after the harvest [62,74].  

According to recent MAFF official inventory statistics [74] for spring cereals the averaged  

2006–2007 Finnish total cultivation area (ha), the total grain yield production (Mkg) and average yield 
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levels (kg/ha) were 172,000 ha, 684 Mkg, 3,560 kg/ha for spring wheat, 563,000 ha, 1,972 Mkg, 

3,500 kg/ha for barley containing both malt (129,800, 515, 3,970) and feed barley (403,500, 1,469, 

3,640) and for oats 352,000, 1,082 Mkg, 2,920 kg/ha, respectively. 

The calibrated VGI models, using phenologically pre-classified satellite data and applied in this study, 

would significantly reduce the operating costs and time compared to traditional ground based crop 

inventory and monitoring systems applied currently in Finland.  

The optical VGI Composite modeling results for spring cereals obtained from this study suggest that 

the best VGI models for both spring wheat, barley and oat cultivars were NDVI and Polynomial Infrared 

based VGI models. With spring wheat cultivars the VGI Model overall accuracy R
2 

was 0.737 (mean 

baseline yield yb 4,240 kg/ha, RMSE 297 kg/ha), for barley cultivars (yb 4,390 kg/ha, R
2
 0.611, RMSE 

449 kg/ha), and for oat cultivars (yb 3,480 kg/ha, R
2
 0.70, RMSE 258 kg/ha) grown on different soil types 

in growing zones I–IV.  

The calibrated optical VGI models using Optical Minimum Datasets in cereal vegetative growth phase 

(ap and bp) before anthesis and grain filling could be applied as a supplementary method for farm level 

sampling interviews in June and July in the annual MAFF cereal yield inventory estimations. Optical VGI 

models could be also applied in cultivation areas where extensive crop phenological and 

agrometeorological data is missing during vegetative growth, if traditional dynamic crop models are 

applied in crop inventory programs [29].  

The calibrated optical VGI models evaluated in this study and composite multispectral ASAR/SAR VGI 

models, reviewed by Laurila et al. [37], using SAR and NDVI Minimum datasets, could be applied 

especially in cereal generative phase (cp, dp) as a supplementary method for estimating inventory final 

yield levels in August. The Composite Multispectral VGI model takes into account both the pre-anthesis 

phenological phases using the NDVI component and post-anthesis and senescence phases using the SAR 

component [72].  

The optical VGI models evaluated in this study resemble Rapid Monitoring Estimates (RME) 

applied by EU MARS program [12,13,85] for crop inventory programs on EU scale and also simple 

regression based predictive models with trend functions for weather and nitrogen input effects applied 

by Supit [23] and Supit and van der Goot [24]. According to Supit [23] the optimum prediction 

accuracy for wheat yield levels may be obtained by first modeling regional wheat levels, e.g., on 

Agriculture Advisory Centre level and subsequently upscaling and consolidating yield estimates on 

national level.  

The validated VGI models obtained in this study could also be applied for cereal yield consolidation 

estimations on Finnish national level, when the total cultivation area for spring cereals is available 

from the MAFF FLPIS/IACS Administration and Control System [34]. 

5. Conclusions 

The optical VGI modelling results obtained from this study, indicate that the overall R
2
 accuracy tends 

to stabilize on the 60%–70% level with different spring cereal baseline yield predictions. The accuracy 

level is similar to results obtained from the previous SAR/ASAR and NDVI composite modelling results 

in southern Finland and also with the results obtained on large area crop inventory estimations on the EU 

scale. The validation results indicated with the best optimized VGI models, that especially the combined 
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inclusion of NDVI and SAR/ASAR components with different polarization levels in the VGI models 

yielded highest baseline yield accuracy for the spring cereals over the years, different soil types and 

varying climatic growing conditions. Especially the NDVI component supported the cereal vegetative 

development estimation during maximum LAI exposure before anthesis and SAR/ASAR component 

supported yield accumulation, grain filling and senescence estimation during generative phase.  

Optical VGI models, validated in this study and combined with phenologically classified satellite data 

would significantly reduce the operational costs and time required compared to traditional ground based 

crop inventory surveys. Alternatively, optical VGI models using Minimum Datasets could be applied as a 

supplementary method for dynamic crops models in the MAFF crop yield inventory estimations in areas 

where extensive crop phenological and agrometeorological data required by the dynamic crop models  

is missing. 

In conclusion, both methodology approaches could be applied as a yield inventory tool supporting the 

annual crop inventory program and Finnish IACS/FLPIS system. In addition, these new inventory tools 

could also be applied for the construction of EU scale Agricultural Information System (AIS) integrating 

all national AIS Systems. 
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Appendix 1. Electronic Supplementary Information (ESI) and Additional Figures and Tables 

Appendix A–D, figures and tables can be downloaded from the link: 

http://koti.armas.fi/~hlaurila/download/Pb4 

Alternative mirror-site is http://cid-c669a6f402aa3b2b.skydrive.live.com/self.aspx/.Public 

The SatPhenClass algorithm can be downloaded from the link: 

http://koti.armas.fi/~hlaurila/download/Pb4  

file: SatPhenClass-Appendix.pdf 

Appendix A. Abbreviations, significance levels and tables, satellite systems and locations. 

Table 7. Abbreviations used. 

Definition, abbreviation Unit, (range) Description 

X  Mean of sample 

Sd  Standard deviation of sample (n) 

Cv  Coefficient of variation (%) = Sd/X 

Sx  
 

Standard error of mean =  

MSE  Mean squared error  

 

RMSE  Root Mean Square Error , square root of MSE 

R2  Coefficient of determination  

LSE  Least-Square Estimation-algorithm  

VGI with submodels (I-III)  Vegetation Indices submodels (I-III: I—Infrared polynomial, II—NDVI, III—

composite NDVI and backscattering model (Table 6) 

ap, bp, cp, dp  

(SatPhenClass Phenology 

classes  

Pa, Pb, P c, Pd ) 

 DVS (Phenological Development stage, [37, 43]) four classification values in 

SatphenlClass algorithm. Used in VGI models:  

ap—vegetation stage class from emergence until 2 leaf and double ridge stages, 

bp—generative stage class until heading, cp—grain filling stage in generative phase 

between anthesis and full maturity, dp—senescence phase (Used only in microwave 

polynomial model III) 

SatphenlClass algorithm contains corresponding phonological classification classes 

(Pa, Pb, P c, Pd ) 

SSPPh Phenological Spectral 

Signature Profile 

Phenologicallly classified NDVI values for a specific cereal crop in a phenlogical 

class Pa, Pb, P c, Pd .Classfication with the SatPhenClass algorithm [37]. 

DYMTT  Yield Difference (kg/ha) modeled (VGI)—observed MTT average  

(Table 11,14) 

DRTMTT  Yield Difference Ratio, Modeled (VGI)/MTT Observed; over/underestimation (%) 

from the reference (100%) (Table 11, 14) 

DYMAFF  Yield Difference (kg/ha) modeled (VGI)—obs. MAFF average (Table 10, 13). 

DRTMAFF  Yield Difference Ratio, modeled (VGI)/MAFF Observed; over/underestimation (%) 

from the reference (100%) (Table 10,13) 

n

Sd 
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Table 7. Cont. 

Oe / ue   Overestimated / Underestimated by the corresponding VGI model vs. observed 

(Tables 12–14). 

spc., Cv.  species, cultivar 

spc.  Spring sown cereal species (spring wheat, barley, oats) 

Swh  Spring wheat (Triticum aestivum L.) including cv. Heta, Kadett, Manu, Reno, 

Ruso, Satu, Tjalve 

Brl  Barley (Hordeum vulgare L.) including cv. Arra, Arttu, Artturi, Arve, Eero, Ida, 

Inari, Kustaa, Kymppi, Loviisa, Mette, Pohto, Pokko 

Oats  Oats (Avena Sativa L.) including cv. Aarre, Salo 

loc.  Loc—Location: J-Jokioinen, K—Kirkkonummi, M-Mellilä, P—Porvoo, L—Lapua 

Tb degree (°C) Threshold temperature 

DD Degree Days  

ETS(Tb) dd—degree days Cumulative temperature sum over threshold temperature (Tb = 5°) 

PAR MJ/d/m2 (10–20) Photosynthetically Active Radiation ( = 400–700 nm) 

IR 

NIR—Near IR 

Mid IR 

Thermal IR  

MJ/d/m2 infrared radiation (IR),  = 630–690 nm  

near infra,  = 760–900 nm  

mid infra,  = 1.55–1.75 m 

thermal IR,  = 10.4–12.5 m 

 

Rf (Ch, ap,bp,cp) 

 

(0.0– 1.0) Optical ( = 400–

700 nm) and infrared sensors 

( = 630–12.5 m). 

Reflectance; reflected radiation from soil and vegetation canopies and measured by 

optical satellites [22-23,57-58,68-69]. Landsat or SPOT calibrated reflectance 

values with index denoting channel and phenlogical stage with 

correspondingaverage month for spring cereals (ap–May, bp–June, cp–July); used in 

VGI Infrared model (I) as independent variables for crop*cultivar*soil covariance 

interaction and yield estimations (Table 3, Models. 1.1–7.3, Table 12 Appendix C),  

* - general notation for covariance effects 

ρRED (ap,bp,cp) 

ρNIR (ap,bp,cp) 

ρPAR (ap,bp,cp) 

 ρRED , ρNIR, ρPAR specific Landsat or SPOT infrared, near infrared and PAR 

calibrated reflectance values with index denoting phenological stage for spring 

cereals (ap–May, bp–June, cp–July), see also Rf-value. 

σ0 (sigma zero) 

σ0
HH 

σ0
HV 

σ0
VH 

σ0
VV 

(–20–10 dB). Calibrated SAR 

(Synthetic Aperture radar) 

backscattering signal with 

microwave 5.4 GHz (C-band, 

 = 5.7 cm) and 9.8 GHz (X-

band) and polarization levels 

(HH, VV, VH, HV). 

Backscatter coefficient (sigma zero) for microwave backscattering signal, which is 

a combined signal reflected from soil and vegetation canopies [60-63,26-28]. 

Potential,  

non-limited yield, 

yield potential 

kg/ha Modeled maximum yield capacity (kg/ha) for a specific cultivar without limiting 

environmental stress factors during growing season (vegetation water stress, 

nutrient deficiencies, pathogen epidemics etc.) 

Non-potential, limited yield kg/ha VGI modeled yield level (kg/ha) for a specific cultivar with limiting environmental 

stress factors during growing season reducing maximum yield capacity, see 

potential yield. 
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yb(spc, cv, soil type.) 

spc=swh,brl,oats 

 

kg/ha, 15% moisture content Baseline yield for spring cereal species (swh, brl, oats).VGI (I-III) modeled cereal 

yield level (kg/ha) using time series for a specific cultivar under field conditions, 

see non-potential yield. 

Index denotes crop, cultivar and soil type; used as dependent variable in VGI 

models (Models. 1.1–7.3, Table 12, Appendix C). 

NDVI % Normalized Difference Vegetation Index  

SatphenlClass  BBCH and Zadok’s scaling Satellite data classification algorithm based on cereal phenology  

Minimum dataset  Experimental dataset without ground truth or meteorological data, containing only 

optical or microwave satellite data 

VGI with submodels (I-II)  Vegetation Indices submodels (I-IIII: I—Infrared polynomial,  

II—NDVI, III—composite NDVI and backscattering model. 

MAFF  Ministry of Agriculture and Forestry in Finland 

IIASA  The International Institute for Applied Systems Analysis [32]  

Table 8. Statistical significance levels. 

Significance levels ( = reference probability)
 (1)

 

N.S. Statistically non-significant 

0 Moderately significant on 10% error level, (0.10) 

* Significant on 5% error level, (0.05) 

** Highly significant on 1% error level, (0.01) 

*** Highly significant on 0.1% error level,  (0.001) 
(1) 

Used in testing the p-value (Pr) in F-test
 

Table 9. Satellite measurements in Finnish experimental locations [23,26,28,37]
 6)

. 

Location  

 

Date  

(Satellite measurement) 

Satellite type, sensor and  

Image no. 

Incidence 

angle  

() –1) 

Major soil types4)  

Lapua, Seinäjoki , 

Ilmajoki 

23°10'E, 62°50'N 

 

1994:6.7 , 1995: 24.6  

1996: 21.5., 3.7. 

Optical: 

SPOT XS 65 220 

–21.3, –4.3,  

10, 0.2 

Clay (Sandy clay 56%), 

coarse  

(Coarse sand 33.5%) 

1997: 17.5.,7.6.,1.7 Optical: 

SPOT XS 65 220–221 

9.3,5.9,–23.8 

1996: 17.6, 30.7, 25.8, 

25.9 

 

Microwave SAR: 

ERS1 

SAR5), f = 5.3 GHz, C 

band, ( = 5.7 cm), VV 

polarization 

 

2001: 6.5,16.5, 30.5, 6.6, 

16.6, 23.6.,10.7, 17.7, 

24.7, 3.8, 17.8, 27.8, 

10.9, 17.9, 20.9, 27.9, 

28.10. 

Microwave SAR: 

Radarsat1 

SAR, f = 5.3 GHz, C 

band, HH polarization 

 

2003–2004: 

15.6,18.6,21.6,28.6,4.7,7.

7,14.7,23.7,02.8,11.8,24.

8,15.9 

2005–2006: Only ground 

truth observations 5) 

Microwave ASAR: 

ENVISAT 

ASAR , f = 5.3 GHz,  

C-band), VV, HH, 

VV/HH, HV/HH, or 

VH/VV polarizations 
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Kirkkonummi  
24° 30' E, 60 10' N 

1994:25.7,1995:3.6 
 
1994: 6.6., 7.7 

LANDSAT TM 189 18 
 
SPOT XS 73 227 

23.0, - 
 
24.5, –21.6 

Clay (2) 
(gyttja clay  
41.4%) 
 1995:15.6. 

 
 
 

 
 

   

Jokioinen  
23° 50' E, 60 50' N 

1994: 25.7 
 
1994: 13.7 
1995: 25.6, 15.7 
1996: 25.7 

LANDSAT TM 189 18 
 
SPOT/HRV2/XS 69 225 
SPOT/HRV2/XS 69 225 
SPOT/HRV2/XS 69 225 

– 
 
-2.2 
+23.4, -1.6 
-197.7 

Clay (Sandy clay 56%), 
Kuuma exp. area  
(70–80% organic  
top layer, Table 3) 
 

Mellilä  
22° 20' E, 60, 50' N 

1989:24.5, 25.6, 27.7 
 

LANDSAT 5/TM  48.28, 50.39,  
46.05 

Clay (Sandy clay 29%,  
gyttja clay 36%)(2) 

Porvoo  
25° 50 ' E, 60° 50' N 

1990: 13.5, 21.6 
1990: 13.5, 29.7 
 

LANDSAT 5/TM  
SPOT/HRV2/XS  
 

50.01 
48.1 

Clay (2) 
(gyttja clay 38%, 
organic peat, 11%) 

1994: 14.6 
1995: 25.6, 15.7  
1996:25.7 

SPOT XS 65 220 
SPOT XS 69 225 
SPOT XS 69 225 

5.2 
-1.6 
- 

1990: 25.7, 24.8 Microwave SAR: 
HUTSCAT  
Scatterometer (f = 5.4 
GHz, C-band, 9.8 GHz, 
X-band), VV, HH, VH, 
HV polarizations(3)  

 

1) Used in Equation 2 (Appendix C) 2) Gyttja clay contains peat and mud fractions) 3) Helicopter mounted [61-63] 4) Main soil type 

classification with soil sub fractions 5) No Envisat data obtained in 2005–2006 because of re-programming of ASAR sensors and 

technical problems in ESA. Only ground truth phenological and LAI measurements measured in experimental areas. 6) SAR/ASAR 

sensory data applied only in the [37]. 

Table 10. SAR and optical satellite systems used in remote sensing campaigns [29,37]
7)

. 

Satellite type Name Sensor Experimental 

locations and years 

Reference 

 

Microwave 

ASAR 

ENVISAT 

(3) 

ASAR(6), f = 5.3 GHz,  

C-band), VV, HH, VV/HH, 

HV/HH, or VH/VV 

polarizations 

Seinäjoki, Lapua (2002–

2004, Table 11). 

http://earth.esa.int, 

http://envisat.esa.int/object/index.

cfm?fobjectid=3772, 

[27,28] 

Microwave 

Scatterometer 

HUTSCAT

(1),(6) 

Scatterometer (f = 5.4 GHz, 

C-band, 9.8 GHz, X-band), 

VV, HH, VH, HV 

polarizations 

Porvoo, calibration data 

(1990, Table 11). 

www.space.hut.fi/research/equip

ment/ hutscat.html. [61-63] 

Microwave 

SAR 

ERS12) SAR (5), f = 5.3 GHz, C 

band, ( = 5.7 cm), VV 

polarization 

Seinäjoki, Lapua (1995–

1996, Table 11). 

http://earth.esa.int/ers, 

earth.esa.int/ers/sar,  

[26,62] 

Microwave 

SAR 

Radarsat1 SAR(5), f = 5.3 GHz, C 

band, HH polarization  

Seinäjoki, Lapua 

(2001, Table 11). 

Reference [27], Canadian Space 

Agency (CSA). ccrs.nrcan.gc.ca/, 

radar/spaceborne/radarsat1/index_

e.php 

Optical Landsat 5 Thematic Mapper (TM) 

( = 450 nm–2.35 m) 

Porvoo, Mellilä, 

Kirkkonummi, Jokioinen, 

Lapua (1989–1997, Table 

11). 

www.landsat.org, [76,22-23] 
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Optical SPOT 2 HRV2/XS 

( = 450 nm–890 nm) 

Porvoo, Mellilä, 

Kirkkonummi, Jokioinen, 

Lapua (1989–1997, Table 

11). 

www.spot.com, 

www.spotimage.fr, [77,22,23] 

Multi- 

sensor 

 

ADEOS1  

Advanced 

Earth 

Observing 

Satellite4) 

AVNIR, ILAS, RIS, 

IMG,TOMS: 

atmospheric 

greenhouse gas (CO2, O3, 

CH4) columns (4) 

(1996-1997,  

non-operational) 

Collaboration with Prof. 

Hiroshi Koizumi, NIAES/ 

Tsukuba, Japan 

NASDA/ JAXA, 

http//home.gna.org/adeos/ 

http://kuroshio.eorc.jaxa.jp/ADEO

S,http://msl.jpl.nasa.gov/QuickLo

oks/ adeosQL.html 

1) HUTSCAT is helicopter mounted, see space.hut.fi/research/equipment/hutscat.html [63]  

2) European Remote Sensing satellite (ESA, European Space Agency) 

3) ENVISAT (Environmental satellite, ESA) AOS (Announce of Opportunity) contract: AOE-488 for ENVISAT 

4) ADEOS1 AOS contract: NASDA Contract 1062/Vegetation and Biology, MAFF, 5118/416/94 

5) SAR, Synthetic Aperture Radar (6) Advanced Synthetic Aperture Radar 

6) HUTSCAT used for calibration verification purposes only (helicopter mounted) 

7) SAR/ASAR sensory data applied only in the [37]. 

Table 11. Optical calibration parameters of Landsat and SPOT satellites [53]. 

Satellite/ sensor 
(1),(2)

 

Sensor channel/ 

(wave length)/type 

Date Sun 

elevation 

Angle (deg.) 

S
(6)

 
(7)

 
(8)

 

TM1
(1)

 450–520 nm/PAR
(3) 

24.5.1989 48.28 620 0.602 –1.5 

TM2
(1)

 520–600 nm/PAR
(3)

 25.6.1989 50.39 577 1.17 –2.8 

TM3
(1)

 630-690 nm/infrared
(3)

 27.7.1989 46.05 493 0.806 –1.2 

TM4
(1)

 760–900 nm/ 

near infra 

21.6.1990 50.01 332 0.815 –1.5 

TM5
(1)

 1.55–1.75 m /  

mid infra 

  67.1 0.108 –0.37 

TM6
(1)

 10.4–12.5 m/ 

thermal IR
(4)

 

  n.a.
(3)

 - - 

TM7
(1)

 2.08–2.35 m /  

mid infra 

  24.5 0.057 –0.15 

HRV2/S1
(2)

 500–590 nm / PAR
(3)

 13.5.1990 n.a.
(5)

 587.0 1.22181 0 

HRV2/S2
(2)

 610–680 nm / infrared
(3)

 29.7.1990 48.1 502.0 1.22545 0 

HRV2/S3
(2)

 790–890 nm/near 

infrared 

  331.0 1.29753 0 

(1) Landsat5 / TM: Landsat (1987). Sensor: Thematic Mapper ( = 450 nm–2.35 m, resolution 30  30 m2 (2) SPOT / HRV2/XS: SPOT 

(1986). High Resolution Visible 2 (=500 nm–890 nm, resolution 20  20 m2). (3) PAR – Photosynthetically Active Radiation  

( = 400–700 nm) (4) Thermal infrared channel with ground resolution of 120 m. (5) n.a.—parameter not available  

(6) S—Equivalent solar radiance (7) —Calibration gain coefficient (8) —Calibration offset coefficient.  
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Appendix B. Equations 

Statistical Analysis Equations 

Equation (1) y(i) = 0+i*x( i )+...( i+1 )*x( i+1 )+ (linear REG/Stepwise [51]) 

Equation (2) y(i) = 0+1*x( 1 )+ 2*x( 2 )+ 3*x( 1 ) 
2

 +4*x( 2) 
2

 +5* x( 1)*x( 2) + (non-linear RSREG [52]) 

y(i) = dependent grain yield for spring cereals (wheat, barley, oats, kg/ha, 15% moisture content) 

x(i)= independent ground truth and satellite variables in Vegetation Indices regression models  

0= model intercept, i= coefficient for independent variable x(i),  

 = error residual variation, 

1*x( 1 )+ 2*x( 2) - the linear term,  

3*x( 1 ) 
2
 +4*x( 2) 

2
 - the squared effect term,  

5* x( 1)*x( 2) - the cross product effect. 

Optical Satellite Data Calibration Equations  

Equation (3)   dc*R  [57] 

 R = Spectral radiance (W*m
-2

*sr
-1

*µm
-1

) 

 dc = digital count value from the satellite sensor (0-255) 

  = calibration gain coefficient (W*m
-2

*sr
-1

*µm
-1

*count
-1

) 

  = calibration offset coefficient (W*m
-2

*sr
-1

*µm
-1

), sr = angle expressed as steradians 

Equation (4)  cos(*R/(Srf  

rf = surface reflectance value (%-ratio between the radiation reflected from the soil cover and the incoming 

solar radiation) 

R = spectral radiance (W
*
m

-2
*sr

-1
*µm

-1
)  

S = equivalent solar radiance (W*m
-2

*sr
-1

*µm
-1

) 

cos () = Solar zenith-angle correction, calculated from the measuring time and the corresponding  elevation 

or incidence angle (el) :  =(90-el),  expressed in radians,  

sr = angle expressed as steradians 

Equation (5)      **).(*{*[1/w]S ncesolarradiaeqvd  

 = satellite channel wavelength (µm) 

w = satellite channel spectral bandwidth (µm) 

() = normalized wavelength response function of specific satellite channel  

Cereal LAI estimation using LAI-bridge [29,31], GEMI-index [55] and Kalman Filter [21] 

Equation (6) LAI(Satellite,Cereal) = αc + c * GEMIn  

LAI(Satellite,Cereal) = Leaf area index for specific cereal estimated from satellite data on pixel level 

GEMI(Cereal) = Global Environment Monitoring Index (GEMI) [55]. 

αc, c= crop specific linear regression coefficients (Table 12) 



Remote Sensing 2010, 2             

 

2238 

Equation (7) LAIOptimal = (σCropModel*LAISatellite,Cereal + σSatellite,Cereal*LAICropModel )/((σSatellite,Cereal)
2
 + 

(σCropModel )
2
) [21,29,84] 

LAI(Optimal) = Optimal, corrected Leaf Area Index estimated by the Kalman filter for cereals 

LAI(Satellite,Cereal) = Leaf Area Index estimated by the GEMI VGI model (Equation 6) 

LAI(CropModel) = Initial Leaf Area Index estimated by the CropWatN dynamic crop model  

σSatellite,Cereal = Standard deviation of Leaf Area Index estimated by the GEMI VGI model  

σCropModel = Standard deviation of Leaf Area Index estimated by the CropWatN model  

Equation (8) 1/(σOptimal )
2 

= 1/(σ Satellite,Cereal )
2
 + 1/(σCropModel )

2 
[21] 

σ Optimal = Standard deviation of Corrected Leaf Area Index estimated by the Kalman Filter 

Baseline VGI (I-IV) linear
 
(REG/Stepwise) and non-linear (RSREG) yield models for spring crops  

Table 12. Optical VGI (I-IV) linear (REG/Stepwise) and non-linear (RSREG) yield models 

for spring cereals. Composite model VI (SAR/ASAR) used only in validation [37]
(1),(2)

. 

Model  

Category  

Factor : 

Crop /Species 1) 

Model 

Equation 

(I-V)  

R2 RMSE 

kg/ha 

Model equation 

I 

Optical 2) 

Swh 
1.1 (I)  

 

0.764 282.3 

 
yb(swh)=4941.9-5455.9*ρRED(ap)-1351.4*ρNIR(ap)+957.1*ρRED(bp) 

+656.2*ρNIR(bp)+4742.1* ρRED(cp)-4983.5* ρNIR(cp)  

Swh 
1.2 (I)  0.794 242.5 yb(swh)=985.93+13337.46*ρRED(ap)+8355.88*ρNIR(ap) 

-387.19* ρNIR(bp)+255.58* ρRED(cp) 

Swh 
1.3  

(II, NDVI)  

0.737 297.6 yb(swh,NDVI)=4659.2+175.4*nap-25.6*nbp-3215.5*ncp+93.7*nap
2-

19.1*nbp*nap-178.5*nbp
2 -560.4*ncp*nap+3250.4*ncp*nbp-864.7*ncp2 

Swh 
1.4  

(II, NDVI)  

0.732  300.1  yb (swh,NDVI) = 4692.90+109.84*nap-210.38*nbp-969.22*ncp 

Swh  
1.5 5) 

(III,GEMI) 

0.704 316.1 y(swh,GEMI)=5074.1-766.2*gap-143.1*gbp-3378.2*gcp +4254.1*gap
2+ 

1079.8*gbp*gap-1326.2*gbp
2 -7264.8*gcp*gap+7717.2*gcp*gbp-2622.1*gcp

2 

Swh  
1.6 5) 

(III,GEMI) 

0.570  536.8  yb (swh,GEMI)=5506.31+7780.47*gap-12478.3*gbp+761.96*gcp 

Swh  
1.7 5) 

(IV,PARND) 

0.712  311.6 yb (swh, PARND)=4397.9+2736.9*pap-379.4*pbp-493.8*pcp-4235.1*pap
2+ 

2701.1*pbp*pap+605.8*pbp
2 -2161.6*pcp*pap+883.1*pcp*pbp+493.9pcp

2 

Swh  
1.8 5) 

(IV,PARND) 

0.509  406.3  yb(swh, PARND)=4502.31+529.36*pap+2377.05*pbp-779.31*pcp 

Brl 
2.1 (I) 

 

0.615 

 

449.3 

 
yb(brl)=5348.8-600.8*ρRED(ap)-184.5*ρNIR(ap)-8562.4*ρRED(bp)-

2105.6*ρNIR(bp)-2766.9*ρRED(cp)-1556.2*ρNIR(cp)  

Brl 
2.2  

(II, NDVI) 

0.611 449.6 yb(brl,NDVI)=3481.5-205.5*nap-312.1*nbp+396.5*ncp-60.5*nap
2-

584.5*nbp*nap+864.6*nbp
2+1081.4*ncp*nap -710.5*ncp*nbp-232.4*ncp

2 

Brl  
2.3 5) 

(III, GEMI) 

0.614 448.6 yb(brl,GEMI)=5184.0-2802.9*gap-187.4*gbp-3457.9*gcp-374.8*gap
2 

+91.5*gbp*gap +1161.4*gbp
2 + 4817.1*gcp*gap-1932.1*gcp*gbp+2255.6*gcp

2 

Brl  
2.4 5) 

(IV,PARND) 

0.587 463.7 yb(brl,PARND)=4621.7+1852.8*pap-6418.5*pbp-5850.4*pcp+48.9*pap
2-

5952.3*pbp*pap+10853.0*pbp
2 -2040.4*pcp*pap+12879.0*pcp*pbp+6002.9*pcp

2 

Oats 
2.5 (I) 

 

0.760 

 

258.0 
 

yb(oats)=3457.4-3762.5* ρRED(ap)-2135.8*ρNIR(ap)+6643.1*ρRED(bp) +1566.5* 

ρNIR(bp)+571.4* ρRED(cp)-179.1* ρNIR(cp) 

II Optical 

Species*soil 

Covariance 2) 

Crop /Species 1) Model  R2 RMSE Model equation 

Swh * sandy clay 
2.6 (I) 0.764 282.3 yb(swheat,clay)=6765.5-38407.0*ρRED(ap)-14979.0*ρNIR(ap-23698.0*ρRED(bp) 

+9552.7*ρNIR(bp)+7261.4* ρRED(cp)-22022.0* ρNIR(cp) 

Brl * sandy clay 
2.7 (I) 0.166 1382 yb(barley,clay)=7141.4-3842.1*ρRED(ap)-2612.4*ρNIR(ap)-3032.1*ρRED(bp) 

-11708.0*ρNIR(bp)-28637.0*ρRED(cp)-1636.2* ρNIR(cp) 

III Optical 

Species* 

Cultivar Cov. 

2) 

Swh* cv. Manu 
3.1 (I) 0.089 1292 yb (cv. Manu*clay) = 5696.5+2293.8* ρRED(bp)+5387.9*ρRED(cp)-736396.0*( 

ρRED(bp)
2 

Swh * cv. Satu 3.2 (I) 0.046 1031 yb (cv. Satu*clay) = -9798.2+736440.0* ρRED(bp)-9925014.0*( ρRED(bp)
2 

Brl * cv. Inari 3.3 (I) 0.144 1220 yb (cv. Inari*clay) = 8336.8-71506.0* ρRED(bp)-45627.0*( ρRED(bp)
2 
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Table 12. Cont. 

IV 

Microwave 

SAR/ASAR 
2,3) 

Sensor Cereal 

specie  

Model R2 RMSE Model equation 

 

ERS 

SAR 

 

Brl 4.1(VI) 0.448 482.7 yb (brl, ERS2) =4345.7+109.4*NDVIap -211.6*NDVIbp -983.3*NDVIcp  

-0.57*VV(5GHz,cp)+5.61*VV(5GHz,dp) 

Oats 4.2(VI) 0.417 584.2 yb (oats, ERS2) =3739.5+108.9*NDVIap-212.1*NDVIbp-938.8*NDVIcp 

-0.47*VV(5GHz,cp)+4.28*VV(5GHz,dp)  

 

Radarsat 

SAR 

 

 

Swh 5.1(VI) 0.731 300.8 yb (swh, Radarsat)=4690.7+111.8*NDVIap- 213.4*NDVIbp  

-982.6*NDVIcp- 2.69*HH(5GHz,cp) + 3.9*HH(5GHz,dp)  

Brl 5.2(VI) 0.702 322.8 yb(brl,Radarsat)=4430.1+109.4*NDVIap-211.6*NDVIbp-983.3*NDVIcp -

0.52*HH(5GHz,cp) +5.07*HH(5GHz,dp)  

Oats 5.3(VI) 0.624 483.6 yb (oats, Radarsat)=3843.3+108.9*NDVIap- 212.1*NDVIbp-983.8*NDVIcp 

-0.47*HH(5GHz,cp) +4.03*HH(5GHz,dp) 

 

Envisat 

ASAR 

 

Swh 6.1(VI) 0.723 302.1 yb(swh,Envisat)=4701.1+108.2*NDVIap-208.8*NDVIbp-983.1*NDVIcp -

3.9*VH(5GHz,cp)+17.4*VV(5GHz,cp) -3.1*VH(5GHz,dp)+5.2*VV(5GHz,dp)  

Brl 6.2(VI) 0.694 349.8 yb (brl, Envisat) =4261.4+109.4*NDVIap-211.6*NDVIbp-983.3*NDVIcp 

-4.59*VH(5GHz,cp)+18.24*VV(5GHz,cp) -4.04*VH(5GHz,dp)+6.15*VV(5GHz,dp)  

Oats 6.3(VI) 0.617 389.7 yb (oats, Envisat) =3635.7+108.9*NDVIap-212.8*NDVIbp-983.8*NDVIcp 

-2.59*VH(5GHz,cp)+16.46*VV(5GHz,cp)-2.03*VH(5GHz,dp)+4.05*VV(5GHz,dp) 
 

1) For abbreviations refer to Table 9 2) Independent variables classified with SatPhenClass-algorithm 3) SAR/ASAR used only in validation of the optical 

VGI models [37]. 

Table 13. Calibrated αc, c crop specific regression coefficients for cereal LAI estimation 

using GEMI-index in Equation 6 [29].  

Crop αc c R
2
 RMSE 

Spring wheat −2.878 6.241 0.962 0.21 

Barley −3.201 6.750 0.847 0.42 

Oats −3.578 7.189 0.841 0.44 

All crops mean −2.573 5.732 0.749 0.51 

Appendix C. SatPhenClass Classification Algorithm for Satellite Data  

Appendix figures and tables can be downloaded from the link: 

http://koti.armas.fi/~hlaurila/download/Pb4. 

The SatPhenClass classification algorithm can be downloaded from the link: 

http://koti.armas.fi/~hlaurila/download/Pb4 file: SatPhenClass-Appendix.pdf 

Alternative mirror-site is http://cid-c669a6f402aa3b2b.skydrive.live.com/self.aspx/.Public. 
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