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Abstract: Downed logs on the forest floor provide habitat for species, fuel for forest 
fires, and function as a key component of forest nutrient cycling and carbon storage. 
Ground-based field surveying is a conventional method for mapping and characterizing 
downed logs but is limited. In addition, optical remote sensing methods have not been able 
to map these ground targets due to the lack of optical sensor penetrability into the forest 
canopy and limited sensor spectral and spatial resolutions. Lidar (light detection and 
ranging) sensors have become a more viable and common data source in forest science for 
detailed mapping of forest structure. This study evaluates the utility of discrete, multiple 
return airborne lidar-derived data for image object segmentation and classification of 
downed logs in a disturbed forested landscape and the efficiency of rule-based object-based 
image analysis (OBIA) and classification algorithms. Downed log objects were 
successfully delineated and classified from lidar derived metrics using an OBIA 
framework. 73% of digitized downed logs were completely or partially classified correctly. 
Over classification occurred in areas with large numbers of logs clustered in close 
proximity to one another and in areas with vegetation and tree canopy. The OBIA methods 
were found to be effective but inefficient in terms of automation and analyst’s time in the 
delineation and classification of downed logs in the lidar data. 
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1. Introduction  

Dead woody material on the forest floor is an essential structural component of forest ecosystems: 
downed dead wood provides habitat for species, is a fuel source for forest fires, and is a key 
component of forest nutrient cycling and carbon storage [1-3]. Information on the quantity and location 
of downed logs in forests is important for assessing fire risk [4,5], measuring dead biomass for carbon 
storage estimates [6], biodiversity and nutrient cycling [7,8], forest management and silviculture [9,10], 
and wildlife habitat monitoring and modeling [11]. 

Methods for mapping and characterizing downed logs in forests have traditionally relied on  
ground-based field surveys with and without Global Positioning Systems (GPS) technology [8,12]. 
Field surveys remain relevant data collection methods, but they are increasingly being supplemented 
by satellite-based and aerial-based remotely sensed data [13]. Ground-based field methods are limited 
in their spatial extent due to practical constraints on time, cost, resources, and site accessibility. 
Downed logs are usually distributed in a non-uniform pattern and are not spatially contiguous on the 
forest floor; extensive and complex field campaigns are sometimes necessary to locate and characterize 
logs. In addition the unit of analysis in ground-based surveys is usually limited to the size of individual 
survey plots which can lead to under- and over-generalization of the landscape [13].  

The objective of this study is to examine the efficacy of object-based image analysis methods for 
identifying and quantifying downed logs in disturbed forested landscapes using airborne lidar data. 
This study evaluates the utility of airborne lidar derived data products for image object segmentation 
and classification of downed logs and the efficiency of rule-based OBIA and classification algorithms. 
This research was motivated by the desire to investigate how well these important forest structural 
features could be automatically extracted from the lidar data. If successful, this would be a benefit to 
researchers who are studying forest fuels for fire modeling, and for wildlife experts studying how 
species utilize the forest. 

1.1. Remote Sensing and Lidar in Forest Science 

The fields of forest ecology and forest management have embraced remote sensing approaches for 
many routine and innovative applications. Moderate spatial resolution (5–30 m) imagery from Landsat, 
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Système Pour 
l’Observation de la Terre (SPOT) sensors have been used to map forest pattern and large-scale 
disturbance [14,15]. Fine spatial resolution imagery (<5 m) from digital aerial orthophotographs, 
IKONOS, QuickBird, and Worldview-2 sensors are commonly used to map vegetation abundance and 
productivity [16,17], monitor disturbances and change [18-21], and assist in forest management [22]. 
These passive image sources offer advantages over traditional field based approaches in 
their repeatability, lower acquisition cost, and greater spatial extent, but they are limited by their  
top-of-canopy perspective which reduces the ability to observe objects below the canopy [17,23-25]. 
These data are also constrained in the size of objects that can be observed with their spatial and 
spectral resolutions.  

Within the past 10 years other remotely sensed data sources such as airborne light detection and 
ranging (lidar) have become a more viable and common data source in forest science for detailed 
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mapping of forest structure [23,24]. The lidar instrument emits and captures laser pulses, allowing for 
calculation of the 3-dimensional position of a reflecting target [23,24,26-28]. Lidar data can be captured 
from aircraft-mounted instruments (airborne lidar) or from ground-based systems (ground-based 
lidar). Airborne lidar systems are classified based on whether they record the range to the first or last 
return (single return), multiple returns, or fully digitize the return signal (full waveform lidar), and 
whether they have a small (typically about a meter) or large (tens of meters) laser illumination area or 
footprint [26]. In most cases, lidar data is delivered as a point cloud—a collection of points with x, y, z 
positions and their recorded light intensities. In a forest, these returns can be reflected from the ground, 
leaves, branches, and trunks of trees. The point cloud can be classified into ground returns, which are 
commonly interpolated to a fine spatial resolution digital terrain model (DTM), and above-ground 
returns, which are used to map forest structure. Often the above-ground points are interpolated to a 
canopy height model: a raster surface of forest heights. 

While the use of lidar is limited by its relatively high acquisition cost, small spatial extent, and data 
processing complexity [29], lidar offers several advantages over passive sensors. Lidar data are flexible, 
in scale and format: lidar data can be analyzed as a collection of points, as a derived raster layer, or as a 
series of raster layers. The ability of the lidar pulse to penetrate the forest canopy to the forest floor 
allows for fine spatial resolution mapping of canopy and understory vegetation across vertical and 
horizontal domains, and allows for the mapping of ground topography and structure [23,24,30]. 

Lidar data has been used for a variety of applications in forest science at a variety of scales. At the 
stand scale, lidar can be used to map general forest characteristics [31], as well as more detailed 
measurements such as stem volume [32], biomass [33,34], and leaf area index (LAI) [35]. At finer 
scales, a number of studies have focused on extracting individual trees from the lidar cloud or from the 
canopy height model [36-41], or from the intensity data associated with the lidar returns [42]. In 
addition to the topographic information required in fire behavioral models [30], the structural 
components of forests, such as canopy height, canopy cover, crown base height (CBH), crown bulk 
density (CBD), total basal area, shrub height, and shrub cover have been mapped successfully with 
lidar data [43-46]. Individual components of forest fuels—surface litter and downed wood—have not 
yet been successfully mapped using lidar.  

Additionally, lidar data have been used to map the structural elements in a forest that are important 
for wildlife habitat [24,47-50]. Goetz et al. [51] used airborne lidar data to calculate an index of 
vertical structure to use in habitat models predicting avian species richness. Seavy et al. [25] used 
small footprint lidar to describe habitat associations of riparian passerine birds. Müller et al. [52] found 
that structural factors in lidar data (mean canopy height, the standard deviation of mean canopy height, 
and the maximum height of canopy calculated from the digital crown model) better predicted bird 
assemblages than field data alone in Germany.  

Despite these many approaches to mapping forests with lidar, there are few examples of studies 
utilizing lidar to map downed logs on the forest floor. The majority of studies assessing and mapping 
dead wood with lidar have done so by characterizing and mapping dead standing trees (also called 
snags) (e.g., [53]). Lidar has also been used to estimate coarse woody debris volumes in non-disturbed 
forested landscapes (e.g., [7]) but lidar has not widely been used to map individual discrete downed log 
objects in a disturbed forested landscape.  
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1.2. Object-Based Image Analysis and Forest Science 

In both optical remote sensing and in lidar data there is a trend towards increasing detail in 
mapping. The importance in forest science of the ability to extract individual objects in the forest is 
increasingly noted. Precise mapping of individual trees or shrubs in a forest aids in understanding 
forest biometeorology [37], tree demography [20], community structure [54], carbon storage [23,55], 
pathogen spread [56,57], and habitat use [47,53]. The need for object-based precision in mapping can 
in some cases be facilitated by a field of image segmentation and classification procedures commonly 
called object-based image analysis (OBIA).  

OBIA is an image processing and analysis framework in which image classification and subsequent 
analysis focuses on discrete groups of similar pixels, rather than on individual pixels [58,59]. OBIA 
segmentation can create image objects that closely resemble the size and shape of features in the real 
world scene as represented in the data [60]. An OBIA approach allows for the use of multiple 
dimensions and scales of data and spatial metrics such as neighborhood, topology, and feature statistics 
in image classification, as opposed to pixel-based methods, which rely on the single dimension of a 
pixel’s digital value. Image objects can operate at the spatial scale of the real world features 
represented in the data and image objects can allow for the incorporation of expert knowledge into the 
creation and classification of objects [60,61].  

There are several benefits of OBIA over pixel-based classification methods. Most commonly cited are 
the higher classification accuracies and computational efficiencies of OBIA compared with pixel-based 
classification algorithms, especially with fine-scale imagery [62,63]. Image objects also capture useful 
features (e.g., shape, texture, and context relations with other objects) that single pixels lack, and can 
be organized hierarchically, capturing multi-scalar relationships between objects [59,64-66]. The 
segmentation and classification process can be cumbersome and complicated, however, with multiple 
results possible [66]. 

In forest science, OBIA approaches have been used with fine-scale imagery for forest type mapping 
and stand delineation [60,67-71], and to track disturbances and forest change [19,21,72]. Many of 
these examples use optical imagery alone, without lidar. Some exceptions exist. For example, 
Antonarakis et al. [31] used elevation and lidar intensity data to broadly classify forest and 
ground types using a supervised object orientated approach. The OBIA approach was used primarily 
as a broad discriminator so that multispectral classification could be used in the resulting areas.  
Arroyo et al. [73] integrated discrete return (4 returns) lidar data with QuickBird imagery in an OBIA 
framework to estimate riparian forest parameters in Queensland, Australia. This work was also 
discussed in Johansen et al. [74]. Sullivan et al. [70] created stand maps for forests near Olympia, 
Washington using discrete return (4 returns) lidar data in an OBIA framework. Pascual et al. [75] 
used an object-based approach with the canopy height model from small footprint, discrete 
(2 returns) lidar data to characterize the structure of Pinus sylvestris L. stands in forests of central 
Spain. Johansen et al. [76] used an OBIA approach with discrete (2 returns) lidar data to map riparian 
zones. These applications are summarized in Table 1. None used an OBIA approach to isolate small 
forest features such as downed logs.  
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Table 1. Summary of select literature in forest science utilizing object-based image analysis*. 

Remotely Sensed Input 
Data 

Location Application Reference

Landsat ETM+ British Columbia, Canada Land cover & logging scar 
classification 

[61] 

DAIS Point Reyes, California. 
USA 

Vegetation species 
classification 

[71] 

IKONOS Flanders, Belgium Forest land cover 
classification 

[67] 

IKONOS Marin County, California, 
USA 

Forest edge mapping [72] 

IKONOS Western Alberta, Canada Forest inventory mapping [60] 
IKONOS British Columbia, Canada Forest inventory mapping [68] 
IKONOS North Carolina, USA Forest type mapping [42] 
ADAR China Camp State Park, 

California, USA 
Tree mortality classification [19,21] 

QuickBird  Madrid, Spain Fire fuel type mapping [77] 
QuickBird + Lidar 
(discrete, 4 return) 

Central Queensland, 
Australia 

Riparian biodiversity and 
wildlife habitats 

[73,74] 

CIR digital aerial 
photography (0.5m) 

Great Smoky 
Mountains National Park, 
USA 

Forest type mapping [78] 

Lidar (discrete, 4 returns) Olympia, Washington, USA Forest stand mapping [70] 
Lidar (discrete, 2 returns) Central Spain Forest inventory mapping [75] 
Lidar (discrete, 2 returns) Victoria, Australia Riparian forest mapping [76] 
SPOT + Lidar (discrete, 2 
returns) 

Garonne & Allier rivers, 
France 

Land cover & forest age 
classification 

[31] 

*Note: Lidar: light detection and ranging; ETM: Enhanced Thematic Mapper; DAIS: Digital Airborne Imaging 
System; ADAR: Airborne Data Acquisition and Registration; CIR: Color Infrared; SPOT: Système Pour 
l’Observation de la Terre. 

2. Study Area 

The study area (centered at 120°30′30″W, 39°8′20″N) is located near Last Chance in Placer County, 
California, USA (Figure 1). The study area is an 11 ha subset of a larger study area located within the 
Tahoe National Forest. This study is part of a larger project, the Sierra Nevada Adaptive Management 
Project (SNAMP), a multidisciplinary study on the ecological and social effects of forest fuels 
treatments [79]. Elevation in the subset study area ranges from 1,918 to 2,085 m with a mean height of 
1,977 m. The subset study area has a mean slope of 20 and a standard deviation of 7°. Land cover in 
the subset study area is dominated by bare ground and low lying shrubs with a maximum height of 
approximately 30 cm, and has an isolated pocket of conifer trees that range from 10 to 60 m in height.  
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Through extensive fieldwork, the subset study area was identified as an optimal candidate to 
evaluate the detection and classification of downed logs using object based image analysis methods 
because of the site’s low canopy cover and lack of dense vegetation. The site was burned by the Star 
Forest Fire in 2001, eight years prior to the acquisition of the lidar data. The fire disturbance and lack 
of dense canopy cover facilitates a concentrated and large sample of downed logs, enables visual 
verification of downed logs from remotely sensed data, and allows for greater lidar ground point 
vertical accuracies with the absence of canopy cover. 

Figure 1. Study area in Northern California, USA: (a) the Last Chance study area in the 
Tahoe National Forest; (b) NAIP image of the subset study area used in this work; and 
(c) a ground photograph of the study area looking southeast. 

 
3. Data 

3.1. Lidar Data 

Lidar data was acquired from five survey flights from 18 to 22 September 2008. Lidar data was 
flown and processed by the National Center for Airborne Laser Mapping (NCALM), a collaboration 
between the University of Houston and the University of California, Berkeley [80]. An Optech 
GEMINI Airborne Laser Terrain Mapper (ALTM) with a horizontal accuracy of 5–10 cm and vertical 
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accuracy of 5 cm, was flown at an approximate altitude of 1,000 m above ground level [30]. The 
sensor captured four returns per pulse. Data was collected for a total area of 107 km2 at an average 
density of at least 9 pulses per m2. The point density often exceeded 20 returns per square meter in 
dense forest canopy. An 11 ha subset of the lidar data was selected for the study area which has a 
density of 10.5 points per square meter. The survey had an average swath width of 581 m for a single 
pass and used a 70 KHz pulse rate frequency. Steep terrain throughout the survey area and the desire to 
utilize the more reliable single-pulse mode limited the pulse rate frequency to 70 KHz [30]. 

The survey’s absolute calibration used 1,274 check points from three GPS reference stations with 
horizontal and vertical accuracies of 1.2 cm. The final lidar data product had a swath height 
disagreement of 7.5 cm and an overall horizontal accuracy of 5–10 cm and vertical accuracy of 5 cm. 
Intensities have been normalized using the standard square of the range algorithm [30]. Lidar data 
processing and classification was completed in Terrasolid’s TerraScan software [81]. The last return 
lidar points were classified into four categories: above ground, ground, building, and low points. The 
bare-earth model was created from ground points only. The ground points were classified using an 
iteratively building Triangulated Irregular Network (TIN) surface algorithm and outlier points below 
the resulting surface were filtered and removed. More information on the technical specifications for 
the ALTM sensor, survey, and lidar data can be found in Guo et al. [30]. 

Figure 2. Digitized downed logs validation data. 
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3.2. Downed Log Validation Data 

A total of 103 individual downed log segments were identified to validate the OBIA results 
(Figure 2). The downed logs were visually identified using the lidar ground point data in combination 
with the National Agriculture Imagery Program (NAIP) color orthophotographs acquired over the 
study area in July 2009. The NAIP orthophotographs have a 1 m spatial resolution and a 6 m 
horizontal accuracy [82]. The target logs are clearly visible and identifiable in the lidar data; these 
data, along with ground photographs were used to manually digitize downed logs (Figure 2). 

4. Methods 

4.1. Object-Based Image Analysis Input Layers 

The processed last return lidar points classified as ground were rasterized at a spatial resolution of 
0.5 m. This spatial resolution allows for optimal object size and data retention from point to grid cell. 
The downed logs in this study area are well represented at 0.5 m spatial resolution because their width 
ranges from 25 cm to 1.5 m and length ranges from 5 to 30 m. Further, the typical horizontal distance 
among lidar returns was small, such that at 0.5 m pixel size, each pixel contained an average of 2.2 
points. Rasterizing the point cloud at a pixel size smaller than 0.5 m resulted in undesirable artifacts. 
Specifically, the collection pattern of the lidar sensor became apparent, which hinders further 
processing of the data. The point to raster conversion process assigns raster cell values based on a 
specified metric or statistic, such as the mean or standard deviation, for all vector points that fall within 
a cell’s boundaries. For example, to derive a raster image of mean elevation, the mean value of all 
points within a cell will be calculated and entered as the cell’s value. 

The metrics listed in Table 2 were extracted and rasterized directly from the vector lidar point data. 
Metrics characterizing elevation and scene information were rasterized and include: elevation 
(standard deviation and minimum), total number of points, absolute roughness, intensity, point density, 
and slope. The metrics were selected based on the level of homogeneity in the pixel values and 
whether or not discrete and linear outlines of downed logs were readily discernible. The rasterized data 
was visually assessed for appropriate thresholds to highlight and enhance the separation between pixels 
and groups of pixels and also to enhance homogenous pixel clustering. A combination of filters and 
Boolean reclassifications were used to achieve the aforementioned characteristics. This was done to 
isolate the linear shapes of downed logs and to create data layers that optimize the distinction between 
log objects and non-log objects during image segmentation and object classification. A 3 × 3 high pass 
filter was applied to the elevation standard deviation layer and a 3 × 3 low pass, median, and Sobel 
filter were applied to the total number of points layer. Values in the filtered elevation standard 
deviation and the elevation minimum were reclassified. The input data is ranked in Table 2 from 1 to 
11 in descending order from data that have the most homogenous pixel clusters and sharpest cluster 
boundary separation to those that have more heterogeneous pixel clusters and ambiguous cluster 
boundaries. 
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Table 2. Data used for object-based image classification. 

Rank Data Post-Processing OBIA Application 
1 Lidar data TIN* surface  Vector thematic layer
2 Elevation standard deviation 3 × 3 high pass filter & 

boolean reclassification 
Raster data layer 

3 Elevation minimum Boolean reclassification Raster data layer 
4 Total number of points  Raster data layer 
5 Total number of points 3 × 3 low pass filter Raster data layer 
6 Total number of points 3 × 3 median filter Raster data layer 
7 Total number of points 3 × 3 Sobel filter Raster data layer 
8 Absolute roughness  Raster data layer 
9 Intensity  Raster data layer 
10 Point density  Raster data layer 
11 Slope  Raster data layer 

*TIN: Triangulated Irregular Network 

Vector thematic data was created to guide object segmentation and to further refine and isolate 
downed log object boundaries. A TIN surface was created from the ground lidar points. The 
triangulated polygons were iteratively masked to isolate polygons based on surface area and 
resemblance to the linear characteristics of downed logs. Polygons with the largest surface area 
represent canopy cover while the smallest area polygons represent the ground surface. In between the 
two extremes are polygons that form the objects of downed logs. Greater polygonal areas are areas 
with an absence of ground lidar data points and indicate features that are above ground such as logs 
and crowns in the tree canopy. Further refinement of the TIN surface was achieved through polygonal 
simplification and aggregation through a polygon point removal algorithm based on polygon area and 
distance to neighbor thresholds determined through visual interpretation. 

4.2. Object-Based Image Analysis 

Object-based image analysis was conducted using Trimble’s eCognition software formally known 
as Definiens [83]. eCognition is rule-based OBIA software that supports ancillary vector data and 
image segmentation and classification. A multiresolution segmentation algorithm was selected to 
segment the pixel and thematic data layers into objects. After testing multiple segmentation algorithms 
with an array of specifications and data layer weights the multiresolution segmentation algorithm 
produced the most optimal object size and shape that most closely encapsulated homogenous and 
downed log features. The multiresolution segmentation algorithm is a bottom-up method that utilizes a 
pairwise region merging technique that locally minimizes average object heterogeneity and maximizes 
homogeneity and consecutively merges pixels and image objects [84]. The reclassified boolean 
elevation minimum layer and TIN surface thematic layer were used as inputs for segmentation. The 
elevation minimum layer was assigned a weight of 1 and the following parameters were specified: 
scale of 1,000, shape of 0.1, and compactness of 0.5. Only one segmentation layer was created after 
assessing the utility of multiple segmentation layers at a variety of scales. 

Three classification categories were used in combination with temporary classes and included: 
downed logs, canopy cover, and ground. Objects were targeted for classification beginning with the 
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largest to smallest area objects. Workflow for object classification began with classifying large area 
ground objects and canopy cover using a combination of object features such as geometry (e.g., area, 
direction, and rectangular fit) and layer values (e.g., mean, standard deviation, and difference to 
neighbors). Objects were continuously merged as they were classified. Spurious and smaller objects 
that were in areas of ground and canopy were merged with the larger classified objects using class 
related features and algorithms to grow and resize objects based on their position to previously 
classified canopy and ground objects.  

After the larger area objects were classified, the smallest area objects were then classified as ground 
using class related and layer features such as object area, geometry, and relation to neighboring objects 
(e.g., borders and distance). The remaining objects to classify consisted of unclassified downed logs 
and ground objects. Objects resembling downed log features were classified based on their length, 
width, area, and linearity. The remaining and more dispersed downed logs and ground objects were 
classified using algorithms and object features related to their position within the scene as opposed to 
classification based on layer values and object characteristics. Classification based on scene position 
was required because of the lack of value heterogeneity in objects dispersed throughout the scene. 
Objects were too similar to each other in terms of object value and characteristics to classify correctly 
and independent of each other. 

4.3. Object-Based Image Analysis Classification Accuracy Assessment 

The results of the object-based image analysis classification are assessed for accuracy by comparing 
areas classified as downed logs to manually digitized interpretations of downed logs. The spatial 
overlap between the classified log objects and the digitized objects is expressed as percent classified 
correct. Spatial overlap is defined as the intersection and centroid of the digitized downed log line 
segments in relation to a classified downed log object. 

5. Results 

Segmentation and classification was completed using 113 individual object refinement and 
classification rules with a total processing time of 6 seconds. A total of 13,588 objects were segmented 
from the input data with areas ranging from 0.25 to 18,842 m2 with an average area of 8 m2. As 
expected, object shapes followed the outlines of features in the thematic TIN surface and resembled 
unambiguous objects present in the data and landscape (Figure 3). The initial number of objects was 
reduced to 3,547 through further processing during object refinement and classification. 

Table 3 shows statistics for each input data layer for the classified log and ground and canopy 
objects. Statistics for each input data layer for the log objects are for the most part distinct but are not 
considerably different from the statistics for the ground and canopy objects. The three data layers that 
aided the most in classification were the elevation standard deviation, minimum elevation, and the total 
number of points layers. The total number of points layer filtered by the low-pass, Sobel, and median 
filters had the most difference between the two class object values, particularly in their minimum and 
maximum (Table 3). Object geometry statistics show the classified log objects have a mean main 
direction of 71. This indicates classified logs lay on average in a linear northeast to southwest 
direction. Classified log object length ranged from 6 to 130 m with a mean of 23 m; the object width 
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ranged from 4 to 99 m with a mean of 15 m. The mean lengths of classified log objects correspond 
well to those observed in the field. 

Figure 3. Initial objects segmented from input raster and vector thematic data. 

 

Table 3. Classified object layer statistics*. 

Class Statistic 

Data Layer 

Elevation 

standard 

deviation1 

Elevation 

minimum2 

Total 

number 

of 

points 

Total 

number 

of 

points3 

Total 

number 

of 

points4 

Total 

number 

of 

points5 

Absolute 

roughness 
Intensity 

Point 

density 
Slope 

Downed 

logs 

Min. 0.34 0.34 0.50 0.44 0.24 3.90 0.05 99.67 13.16 8.63 

Max. 1 0.86 2.61 2.55 2.35 13.69 0.19 153.42 24.32 25.06 

Mean 0.87 0.68 1.40 1.31 1.10 7.86 0.13 118.97 16.65 18.92 

Ground 

& 

canopy 

cover 

Min. 0 0 0 0 0 0 −1 −1 −1 −1 

Max. 1 1 13 11.51 12.80 68 0.54 968.42 60 55.45 

Mean 

0.79 0.68 1.54 1.39 1.16 8.28 0.14 115.79 18.22 20 

*Note: 13 × 3 high pass filter & boolean reclassification; 2Boolean reclassification; 33 × 3 low pass filter; 43 × 3 median 

filter; 53 × 3 Sobel filter. 
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Figure 4 shows the OBIA classification result in terms of downed logs and the background (ground 
and canopy cover). Classified downed log object areas ranged from 5 to 686 m2 with a mean of 55 m2. 
These include large merged objects that encompass more than one downed log. A total of 3,470 m2, or 
3 percent of the study area, was classified as downed logs (Figure 4). 76 of the 103 (73%) digitized 
downed logs were completely or partially classified correctly. Of the 76 logs classified correctly, 60 
logs (58 percent overall) have their centroids within a classified log object. Over classification 
occurred in areas with large numbers of logs clustered in close proximity and in areas with shrub and 
tree canopy. 

Figure 4. Object classification result. 

 

6. Discussion 

Downed log objects were successfully delineated and classified from lidar derived metrics using an 
OBIA framework. The three most useful input data layers in optimizing OBIA object delineation and 
classification were the TIN surface of lidar points, the elevation minimum, and the total number of 
points raster layers. These data layers maximized the delineation of discrete linear downed log objects 
and optimized the classification of log and non-log objects. The result of the classified downed logs 
yields useful information for characterizing downed logs such as the number and location of downed 
logs, their distribution and direction on the forest floor, and individual log areas and dimensions. 

The majority of classified downed log objects follow a consistent linear pattern and cardinal 
direction. The dimensions of the correctly classified downed log objects generally agreed well with the 
dimensions of downed logs in the validation data set and in ground observations. The spatial location, 
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general outline, and length dimensions of the classified log objects correspond well with the validation 
data; however, the width of the log objects did not correspond well with the validation data. This is 
most likely due to non-log objects that are adjacent to correctly classified log objects, are over 
classified as log objects because their lidar data metric values are similar and difficult to separate.  

While the OBIA downed logs classification accuracy was relatively high (73% of the digitized 
downed logs were classified correctly), misclassification occurred in predictable areas. Over 
classification of downed logs occurred primarily where clusters of downed logs were found, and where 
individual and discrete log boundaries were ambiguous in areas of vegetation and tree canopy. Under 
classification of downed logs occurred mainly for noncontiguous objects that were split into multiple 
objects by the collection pattern of the lidar sensor inherent in the lidar data point spacing and raster 
data spatial resolution. Object classification accuracy may be increased through further object 
boundary refinement, manual editing using positional and relational object features, and image 
filtering.  

Figure 5 provides a detailed example of downed log object misclassification. In Figure 5(a) the 
linear features of downed logs in a northeast to southwest orientation are visible throughout the scene 
along with vegetation and canopy cover which are depicted as bright white. In Figure 5(b) the downed 
log validation layer is overlaid with the input data showing the locations of known downed logs. In 
Figure 5(c) the final classified object boundaries can be seen encompassing homogenous values in the 
input data that form around the visible downed logs and ground and canopy pixels. Figure 5(d) shows 
some of the classification cases: arrow 1 shows over classification, arrow 2 shows under classification, 
and arrow 3 shows accurate classification. 

OBIA classification methods combined with lidar data in this study were not entirely satisfactory in 
terms of an analyst’s time efficiency. While processing time in eCognition only took 6 seconds, the 
construction of the object segmentation and classification rule set and determination of classification 
thresholds based on visual interpretation took much longer over multiple days. The majority of 
classification algorithms were dedicated to classifying the smallest objects. True automation of the 
OBIA segmentation and classification of downed logs using lidar was not accomplished in this study 
because of nuances in the data that required visual interpretation and, in some cases, local- and 
positional-based rule sets that affect specific objects. Classification using fixed thresholds and  
scene-wide algorithms will allow for a basic classification of downed logs but they are limited. The 
result would need to be interpreted and edited with spatially explicit thresholds for classification. 
Object classification based on an object’s location within the scene is required. A priori and study area 
specific knowledge of downed log characteristics are also required for determination of the 
classification thresholds. One of the difficulties in object creation and classification using raw lidar 
data is dealing with the lidar data point spacing, which creates strips in the rasterized data where 
homogenous pixels are separated into data value and no data value. This makes homogenous object 
creation difficult and time consuming. 
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Figure 5. Detail of object-based image analysis downed log object delineation and 
classification: (a) Total number of points input layer; (b) Digitized downed logs reference 
layer; (c) Final object outlines for downed log objects and canopy and ground objects; 
(d) Final classified downed log objects; (e) Location of detail in study area. 

 

7. Conclusion 

The objective of this study was to examine the utility of OBIA methods for identifying and 
quantifying downed logs in a disturbed, forested landscape using airborne lidar data. Downed log 
objects and their characteristics were successfully classified and identified using an OBIA approach 
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with relatively high classification accuracies. While downed log objects were successfully extracted, 
the lidar data and OBIA methods proved to be inefficient due to the amount of time required and 
difficulty in delineating whole and homogenous downed log objects in the lidar data.  

The main conclusions drawn from this study are: (1) Downed log objects were successfully 
delineated using lidar derived metrics using an OBIA framework. (2) The downed log object 
classification accuracy was relatively high (73% of the digitized downed logs were classified correctly). 
(3) The classified downed log objects yield useful information that can be used to help characterize 
logs on the forest floor. (4) Lidar data coupled with an OBIA framework for classifying downed logs 
on the forest floor was effective but inefficient in terms of: (a) substantial analyst time was required for 
manual and positional-based rule sets and visual interpretation; (b) OBIA rule set automation was not 
achieved; (c) the methodological inefficiency is related most to the data structure of the lidar data than 
the OBIA framework where homogenous objects in the lidar data are difficult to extract. (5) Airborne 
lidar data coupled with OBIA techniques can be used to compliment but not replace field based 
methods for identifying and characterizing understory downed logs in forests. 

OBIA and lidar have been used independently and to great impact in forest science research; this 
paper demonstrates a novel combination of these new remote sensing technologies. Mapping downed 
logs on the forest floor is a particularly challenging problem: airborne lidar is very effective at 
mapping fine scale topography in forests [30], and at mapping above ground forest structure [24], but 
downed logs on the forest floor are a considerable challenge to map completely. The raw lidar data 
processed into raster layers such as number of points per area, elevation, and standard deviation of 
elevation did reveal the downed logs, but their classification still required considerable analyst 
interpretation. Thus the OBIA methods were effective but inefficient in the delineation and 
classification of downed logs based on lidar data. Consequently, field data collection will continue to 
be important for mapping these features; but possibly ground-based lidar data will provide new 
avenues for mapping ground features. Recently, new types of ground-based lidar sensors have shown 
promise for extracting forest stand structural parameters, such as diameter at breast height (DBH), 
stem count density, basal area, and above-ground woody biomass with high accuracy [85]. When 
coupled with new processing methods that include OBIA, these data will undoubtedly play an 
increased role in the detailed mapping of forests, and in particular in the mapping of forest understory. 
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