Remote Seng011 3, 203-246; doi:10.3390/rs3020203

Remote Sensing

ISSN 2072-4292
www.mdpi.com/journal/remotesensing
Article

Environmental Drivers of NDVI-Based Vegetation Phenlogy in
Central Asia

Jahan Kariyeva** and Willem J.D. van Leeuwen'?

1 School of Geography and Development, The UniversHitArizona, Tucson, AZ 85721, USA

Office of Arid Lands Studies, Arizona Remote Sagstenter, School of Natural Resources and
the Environment, 1955 E. Sixth Street, The Uniwgrsi Arizona, Tucson, AZ 85721, USA;
E-Mail: leeuw@ag.arizona.edu

2

* Author to whom correspondence should be addredsédail: jahank@email.arizona.edu;
Tel.: +1-780-531-4282.

Received: 16 November 2010; in revised form: 7 bdyax 2010 / Accepted: 19 January 2011 /
Published: 1 February 2011

Abstract: Through the application and use of geospatial data,study aimed to detect
and characterize some of the key environmentaledsicontributing to landscape-scale
vegetation response patterns in Central Asia. Thectves of the study were to identify
the variables driving the year-to-year vegetatigmainics in three regional landscapes
(desert, steppe, and mountainous); and to deteninihe identified environmental drivers
can be used to explain the spatial-temporal vditlmf these spatio-temporal dynamics
over time. It was posed that patterns of changeerirestrial phenology, derived from the
8 km bi-weekly time series of Normalized Differendegetation Index (NDVI) data
acquired by the Advanced Very High Resolution Raditer (AVHRR) satellites
(1981-2008), can be explained through a multi-saakdysis of a suite of environmental
drivers. Multiple linear stepwise regression anesysiere used to test the hypotheses and
address the objectives of the study. The annuatisnpuited phenological response
variables or pheno-metrigs (Season start, season length, and an NDVI-basetliptivity
metric) were modeled as a function of ten enviromtale factors relating to soil,
topography, and climate. Each of the three studégibnal landscapes was shown to be
governed by a distinctive suite of environmentalehs. The phenological responses of the
steppe landscapes were affected by the year-towggtion in temperature regimes. The
phenology of the mountainous landscapes was infkenprimarily by the elevation
gradient. The phenological responses of deserstapmes were demonstrated to have the
greatest variability over time and seemed to becaffd by soil carbon content and
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year-to-year variation of both temperature reginaesl winter precipitation patterns.
Amounts and scales of observed phenological vdtiamver time (measured through
coefficient of variation for each pheno-mejgjg in each of the regional landscapes were
interpreted in terms of their resistance and msteé capacities under existing and
projected environmental settings.
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1. Introduction

Environmental drivers like climate, topography asuall properties affect vegetation dynamics at
different spatial and temporal scales, ranging fiostant to long-term and from local to regional
scales. This makes the assessment of their respowsecological processes complex because due to
the spatial and temporal scale dependence of dritlee landscape-scale responses that are the most
substantial for a specific place and time mightldss important in other space or time scales. The
development and advancement of the field of laruisezology plays an important role in the attempts
to unravel complex and interrelated landscape-seatestrial response dynamics, their drivers, and
consequences. Various digital biophysical data®ets, vegetation indices) represent an esseraral p
of environmental assessments and have become ypargcimportant when studying the pace and
extent of landscape change dynamics across spddevan[1-5].

While much attention has been given to predictivadeting of climate scenarios at regional to
global scales, the scales at which the interplagrofironmental factors will impact landscape-scale
vegetation response across time and space hasveegcér less emphasis. A more nuanced
understanding of this matter will be an importaontcibution to the field of global change research.
Notably, such research can provide insight andpnéation of climate and environmental change in
Central Asia, a region that has had limited ateenfrom the international scientific community [6].
Therefore, through the application of geospatiahdthis study proposed to detect, document, and
explain the environmental drivers contributing tndscape-scale vegetation response patterns in
Central Asia, an arid region that occupies about faillion kn? in the heart of Eurasia. Specifically,
the objectives of this research were to developpatialy explicit model for various regional
landscapes of Central Asia, to (1) identify the kaywironmental variables driving annual (the
year-to-year) vegetation dynamics in each regidaatiscape and (2) determine if the identified
environmental drivers can be used to explain theab#ity—the tendency for deviation in the
response—detected in vegetation dynamics across fierrestrial vegetation is often viewed as the
most overt evidence of biological response to diemand other environmental factors [7,8], and
because of this notion, land surface phenologieaiables were used in this study as a measure of
landscape-scale response to environmental driteds1p].

The main hypothesis of this study is that the pastef change in land surface phenology can be
identified through a multi-scale analysis of enaimeental drivers and can be expanded into two mlate
hypotheses. First, there is a set of particulairenmental drivers that consistently drive vegetati
dynamics from year to year in a given region. Sdc¢orgional-scale landscapes will demonstrate
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unique yet predictable combinations of spatiallplext (e.g., in accordance with latitudinal and/or
altitudinal gradients) phenological responses &s¢henvironmental drivers, enabling such drivers to
be used as landscape-scale predictors of varialilitegetation response over time.

Variability in response patterns is often assodiabgth the concepts of stability in a given
ecosystem [11,12], and measures of variabilityugeel to describe characteristic features of seitgiti
to change of that ecosystem. Ecosystem sensitvithhange, as a response to short-term perturlsation
and long-term stressors, is a function of enviromiale factors at various temporal and spatial
scales [13,14], and depends on two componentsnthke up the concept of ecosystem stability: the
capacity to withstand perturbation while maintaghnegular functioning (resistance), and the abttity
recover structural and functional attributes froertprbation (resilience) [12,15,16]. Some systems
may exhibit a higher degree of resistance thahiease; moreover, the systems that demonstrate high
resistance and high resilience are expected thdenbst stable systems (Table 1). Hence, it can be
argued that ecosystems which have low resistandehayh resilience capabilities are more able to
adapt to long-term environmental change than etesys with high resistance and low resilience
capabilities, as the latter may lose their recovargl functioning abilities with long-term stres&rF
instance, healthy woodland systems of the mountigimegional landscape of Central Asia might be
comparatively resistant to fire due to the protectark structure and relatively high moisture eant
of the soil [17,18]. But if these systems catcle fand burn due to prolonged regional droughtsy thei
recovery rate (resilience capability) might be tigkely low and the systems may never return torthei
initial states. On the other hand, the grasslamtation of the dry deserts and steppe areas df&en
Asia might not be ostensibly resistant to fire [1But it might recover quickly, exhibiting high
resilience qualities [20].

Table 1. Conceptual framework: resistance and resilienpaates of some ecological systems.

Resilience
Low High
8 % Difficult to restore the system Easy to restore the system
é — Easy to degrade the system Easy to degrade the system
8 5 Difficult to restore the system Easy to restore the system
= Difficult to degrade the system  Difficult to degrade the system

2. Methods and Analysis
2.1. Study Area

This study was conducted in Central Asia and inetlifive countries: Kazakhstan, Kyrgyzstan,
Tajikistan, Turkmenistan, and Uzbekistan (Figure The study area was stratified based on three
distinct biome types based on Kdppen'’s climatesdiaation [7] as used in Smith and Smith [21],
resulting in three regional landscapes that inclgde semi-steppe and steppe area; (2) a mountaino
area; and (3) a semi-desert and desert area.

The semi-steppe and steppe area [22], referred tihea steppe regional landscape in this study
henceforward, comprises the territory of Kazakhgggure 1) of about 2.7 million kmKey features
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of this regional landscape are a general absentreex, and a continental climate [22] with maximum

precipitation in summer and minimal precipitationspring and fall seasons [23]. The steppe regional
landscape’s vegetation response patterns are adsionie® governed mostly by the climate regimes
that follow a very clear latitudinal gradient [24].

Figure 1. Map of study area extent with areas of the thrgeoral landscapes vegetation
responses that were assessed through modelingef gheno-metrics: steppe regional
landscape outlined by the green color; mountaimeggonal landscape outlined by the
purple color; and desert regional landscape outlibg orange color. The map also
demonstrates locations of the rainfed and irrigatgdcultural areas excluded from the
analysis.
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The area of the mountainous regional landscaperpocates the territories of Tajikistan and
Kyrgyzstan (Figure 1), covering about 135 thous&ma’. The mountainous regional landscape
represents a key focal point in the Central Asaardscape that experiences adverse effects of ek ra
rates of climate change [25-27]. The snow packgadiers in the high mountains of the Tien Shan
and Pamir, located in this area, are the origimsntamerous rivers meandering through the Central
Asian terrain and constitute about 70% and 21%eftotal fresh water resources of the Central Asian
region, respectively [28]. Intensified melting betglaciers and snow pack occurs under conditibns o
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warming climate [25] is expected to lead to a daseeof glacier areas by about 20% in the next two
decades [27], causing temporary increases in ruaodf river flow, overflowing and flooding of
existing mountain lakes, and the increasing losmelt water due to evaporation caused by warmer
temperatures. This regional landscape is charaetkéby the highest amount of rainfall distributian
Central Asia, which peaks in late winter and eapying and totals 800 to 2,000 mm per year [29].
The vegetation dynamics of the mountainous regitaralscape are expected to be driven mostly by
temperature thresholds along the altitudinal gratdi¢30] and exhibit patterns of clinal variation—a
gradual phenotypic and/or genetic variation ovgeagraphical area—similar to those observed across
the latitudinal gradient of the steppe regionaldirape [31]. Similarity, altitudinal and latitudina
patterns can elicit responses to the same envinotainéactors,i.e., spatial clines in climate and
energy [32].

The semi-desert and desert regional landscape csapthe territories of Turkmenistan and
Uzbekistan (Figure 1) and will be referred to as tlesert regional landscape in the study hereatfter.
This regional landscape covers approximately oromikm? and is predominantly represented by the
sandy Karakum and Kyzylkum deserts [33]. Major tingater resources for this regional landscape
come from the perennial rivers that are fed by seasmelt water from the snow packs and glaciers of
the mountainous regional landscape. The vegetaljoramics of the desert regional landscape are
assumed to be mostly precipitation-driven [30],tlsis regional landscape is characterized by the
lowest amount of precipitation in Central Asia [2K]receives about 75-100 mm precipitation per
year peaking in the spring [23].

2.2. Datasets
Response Variables: Deriving Metrics of NDVI-Bad&hetation Dynamics

Annual phenological metrics (pheno-metrics) for shedy sites were derived from the 1981-2008
time-series of biweekly (15 days) composited 8-kormalized Difference Vegetation Index (NDVI)
values of the Global Inventory Modeling and Mappi@tudies (GIMMS) project acquired by the
Advanced Very High Resolution Radiometer (AVHRRhs®&s 7, 9, 11, 14, 16 and 17 on board the
National Oceanic and Atmospheric Administration (NY satellite platforms; the NDVI data were
calibrated and corrected for view geometry, volcamerosols, and other miscellaneous issues that
were not related to vegetation response [34,35. sSdurce for this data set was the Global Land Cove
Facility (www.landcover.org). These NDVI data argl@ly used for time series trend analysis [36,37],
because of the efforts by the producers to mininmoensistencies [34,35]. The NDVI time-series
dataset spans 28 years, 24 images per year, ngsulti672 gridded images with observations of
vegetation dynamics. TIMESAT time-series analystdtvgare was used to extract metrics of
vegetation dynamics (phenological metrics) for egear (1981-2008). An adaptive Savitsky—Golay
smoothing filter [38] was used because it maintadiinctive vegetation time-series curves and
minimizes various atmospheric effects [39,40]. Hue purpose of this study, two timing and one
greenness metrics were used: (1) the start of gigpweason, the time when base NDVI value has
increased by 20% [40] of the distance between teeggason minimum and the seasonal maximum;
(2) the length of growing season, the differendsvben the start and end dates of the growing season
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and (3) the integrated NDVI (large integral), ftvetseason. We used a consistent start of growing
season NDVI threshold (20%; other thresholds weseduwith less success) to optimize our
interannual phenological retrieval rate for pixeith a seasonal response, while maintaining a efart
season that relates to the beginning of the inergaphotosynthetic activity. The use of this tinad
could introduce a bias (an earlier SOS would besetgul with lower threshold and a later season start
with a higher threshold), but is not likely impaithe relationship between response and explgnator
variables. The timing based pheno-metrics are itapbrindices that can characterize seasonal
photosynthetic thresholds and patterns among diftevegetation types and along latitudinal and/or
altitudinal gradients. These metrics are also quifermative when considering the capacity of
vegetation types to assimilate carbon during tgewing season [41,42]. Metrics integrating NDVI
values over the growing season are often used poxy measurement for seasonal vegetation
productivity [43], and in this study the large igtal is used as an NDVI-based productivity metric.
Each of the selected metrics was accordingly expgetd reveal unique spatio-temporal response
patterns to environmental drivers in each of theistd regional landscapes.

Explanatory Variables: Obtaining Key Environmeriaivers

The suite of potential explanatory environmentalaldes hypothesized as drivers of the vegetation
dynamics measured in this study included climatd, and topography characteristics. To address
potential multicollinearity, a common issue wheterpreting outputs of multiple regression models,
interdependency among all the explanatory variableas assessed to ensure that their
interrelationships had lower coefficients of detration than R = 0.64 (or correlation coefficient
R = +0.8) [44,45]. Consequently, ten environmemailiables were used, among which were eight
seasonal precipitation and temperature-based Vesigbut of 10 climate variables considered), one
topography-based factor (of 3 considered), andsoilebased variable (of 7 considered) (Table 2).

Climate-based data included the mean monthly pitatign (mm) and temperature (°C) data
available from the Global Land Data Assimilatiorst&yn GLDAS) modeled dataset with one degree
of spatial resolution [46]. The climate dataset][#€presents synthetic data from the land surface
models (uncoupled from the atmospheric models)efbravith precipitation gauge observations,
satellite data, radar precipitation measurememtd, autput from numerical prediction models [47].
From the GLDAS data, seasonal temperature andpi@oon data were calculated from 1980 to
2008, to coincide with the available temporal ekiginthe NDVI-based metrics. Four seasons were
created for (cumulative) precipitation and (avejagenperature variables: the winter season included
December, January, and February (DJF); the speagan included March, April, and May (MAM);
the summer season consisted of June, July, andsA@#iA), and the fall season included September,
October, and November (SON). Because fall seasoables demonstrated high multicollinearity to
other seasonal variables, fall temperature andiptaiton were not included in the phenological
modeling phase. However, antecedent fall tempezatund precipitation did not demonstrate clear
collinear behavior and therefore were incorporatethe modeling effort to account for possible lags
in phenological responses.
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Table 2. Response and both stable (s) and dynamic (d) exfolignvariables to be used in
the regression and correlation models. The unusgldmatory variables are listed as well.

Pheno-metrics as

response variables Used

Explanatory factors

Unused

Start of growing season Antecedent fall T° (d)

Length of growing season Winter T° (d)

Integrated NDVI value Spring T° (d)
Summer T° (d)

Antecedent fall precipitation (d)
Winter precipitation (d)
Spring precipitation (d)

*BV(e)
*Total capopater storage (d)
*Surface réin@)
*Subsurface runoff (d)

*Sensible hdakf(d)
*Latent heat flux (d)
*Near surface specifintidity (d)

Summer precipitation (d)
Topography: Elevation (s)
Soil carbon content (s)

*Surface pressure (d)
Topography: Slope (s)
Topography: Aspect (s)

Soil nitrogen content (s)

Soil field capacity (s)

Soil wilting point (s)

Soil available water capacity (s)

Soil thermal capacity (s)

Soil bulk capacity (s)

*Climate variables for five seasons: antecedent (8DON), winter (DJF), spring (MAM), summer
(JJA), fall (SON).

The dynamics of vegetation in a given ecosysteninditeenced not only by the weather but also by
topography and soil properties of the system. Hiemavalues (m) were derived from the World
Digital Elevation Model (DEMfile, included in the samplgatasets of ENVI software. The DEM data
were 0.1 degree of spatial resolution. The globaldgd surfaces of selected soil characteristiosfr
the Global Soil Data Task Group International Géesp—Biosphere Programme (IGBP-DIS) dataset
were used to represent soil variables within thiel\stsites [48]. The carbon content variable showed
the highest spatial variability after being tested multicollinearity among seven soil-based metric
(soil carbon content, total nitrogen content, fi@dpacity, wilting point, profile available water
capacity, thermal capacity, and bulk density) ara® welected to represent a soil-based explanatory
metric. Calculated quantities of the carbon contna depth of 0—100 cm were extrapolated and
interpolated from point locations to values repnéisgy areas by linkage to soil maps to represent
gridded carbon content values (kg)rat five arc-minutes (0.083333 degree) spatialtei®n [48].

All explanatory variables were resampled to 8 km nbatch the spatial resolution of the
phenological response metrics. Climate-based Viasaliere temporally dynamic explanatory metrics
that were used to account for changes in vegetagsponses over space and time. Soil- and
topography-based drivers, stable over time, weegl iis characterize spatial variation of the respons
patterns. All the pixels identified as either iaigd or rainfed cropland (Figure 1) were removeir
the analysis to avoid the effect of these land coyges on the evaluation of vegetation dynamics in
non-cropland areas, the primary focus of this neteaCropland was identified using the Global
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Irrigated Agriculture Map (GIAM) dataset [49] antet Global Map of Rainfed Cropland Areas
(GMRCA) dataset [50] respectively, available frame international Water Management Institute web
portal [51].

2.3. Phenological Modeling Methods: Analyses anstiig Hypothesis
What Environmental Factors Drive Spatial and Terap@ariation in Vegetation Dynamics?

To address the study’'s first hypothesis, the yearetar response of the three selected
pheno-metrics to all ten environmental explanataayiables was assessed. For each phenol-metric,
stepwise multivariate regression models were rure&zh of the 28 years (1981-2008) in each of the
three studied regional landscapes separatelyirtgtab2 models run for this stage of the analyBie
annual variation in each of the pheno-metrics wasleted as a function of environmental factors at
yearly time steps:

Pheno-metrig=f (Xs X4.4) (2)

wherex identifies the suite of both stablg® @nd dynamicd) environmental factors arel= 28 years
(Table 2). Each response metric was analyzed @singque suite of environmental variables that was
most relevant to the metric’s spatio—temporal \tasta Model results were examined to determine the
most frequently appearing yearly drivers of vegetatlynamics in each of the regional landscapes,
and to assess the causes of variation in thesendgmaacross time. Additionally, measures of
explanatory power (adjusted®Rwere obtained for individual explanatory variablimple linear
regression model) that contributed significantlyx&0.05) to each of the models:

Pheno-metrig=f (Xs) (2

This statistic was then used for a separate lewgltribution assessment of each of the ten
environmental variables.

What Environmental Drivers Explain Phenological ihbility (COV) across Time (28 yrs)?

To address the second hypothesis determining whetaedentified environmental factors explain
detected variability in vegetation dynamics acriase, the COV, the ratio of the standard deviation
and the mean, for each phenol-metric was usednasasure of variability in the vegetation dynamics
over time [52,53]. Higher COV values are associatgéith higher susceptibility to the changes in
environmental drivers of a given system, and oféea used to represent the vulnerability and
resilience properties of that system [52,54-56]tld&et al. [54] simulated the effects of climate
change on land use and net returns to grain prmusiystems by using the COV as a measure of
vulnerability to climate change with and withoutagthtion in agricultural production systems, and
argues that adaptive capacity is associated witled@COV values. Huret al. [55] studied the impact
of climate change projections on key aspects ofewaupply and used COV as a measure of
vulnerability, and states that high variability ghi COV) values are indicative of the areas that are
closer to system thresholds and are vulnerableutistantial adverse effects of climate change.
Luers [57] used COV values as a linked measureeosisvity and exposure of the system to
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characterize relative vulnerability of a variablé amncern (agricultural yield) to a set of forces
of disturbance.

In this study, COV values are viewed as measurdsroporal variability of annual phenological
responses, to represent the given systems’ syabilit

COV (Pheno-metrig = f (x.,%, ) (3)

where xs are the stable (soil and elevation) environmerigaitors andx,, are the seasonal

climate-based explanatory variables, which were reged across the 28 years to avoid

pseudoreplication. To assess the relative vartgbih the pheno-metrics’ responses among the
regional landscapes, the COV values were calculagedy the inputs from the entire extent of Central

Asia, not for each regional landscape separatdig. @xplanatory drivers included in these series of
models were the variables that contributed exptagapower to the multilinear regression models

during at least 14 out of 28 years. In total, megression models were run for this step of thdyaisa

i.e., a model for each of three pheno-metrics for tmeggonal landscapes. The residuals for the three
regional landscapes—the difference between actO8l Galues of the NDVI-based pheno-metrics and

their modeled outputs from the nine regression nsede/ere mapped to identify and compare spatial
patterns in the variation that was not explainedngymodels.

In this study area, although it is expected thatrtftountainous regional landscape will demonstrate
the least variability over time (lowest COV), thasdues will not necessarily be indicative of highe
resilience capabilities of this regional landscéypoe rather of high resistance capabilities (Table 1
which might be due to the species richness aniditial heterogeneity of the system, e.g., theispec
longevity capacities that tend to follow the elématgradient of plant growth forms ranging from
herbs to trees [58—-60]. The temperature-driverabdiy patterns of the steppe regional landscape a
also expected to be indicative of the sensitividychange in this regional landscape: higher COV
values mean that the systems are susceptible t@gehdue to low resistance capabilities, while lower
COV values mean higher resistance capabilities mumderent and projected climate variability
impacts. The healthy systems of this regional leags are expected to have higher resistance and
higher resilience capabilities (Table 1) to natuparturbation events, as the undisturbed steppe
vegetation communities culminate with high biodsigr, productivity and ecosystem stability
concurrently [61]. Finally, because phenologicaspenses of the desert regional landscape are
precipitation-driven, they are expected to havééigariability (higher COV) values than those fué t
steppe regional landscape. Higher variability valaee assumed to be indicative of lower resistance,
and also might be indicative of either high (if $yestem maintains its heterogeneity) or low (degdad
biodiversity) resilience capabilities of the desegional landscape (Table 1). It should be noted t
COV data might be very sensitive to areas with l@getation cover, such as desert landscapes, and
the interannual land surface phenological variaidetected in these regions could partially betdue
changes in soil surface reflectance, as well as tduthe affects of calibration and atmospheric
correction [56]. In areas with high vegetation apv&ich as in the northeastern region of Brazil,
variation in the COV values helped to detect sealsoscillations in vegetation dynamics when high
COV values were detected during the dry seasor]s [52
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3. Results and Discussion

3.1. Yearly Models of Yearly Spatial Variation iagétation Dynamics as a Function of Climate, Soil,
and Elevation Factors

In examining the functional relationship betweem tthree NDVI-based metrics and the ten
environmental drivers to explain the year-to-yeariation in vegetation dynamics across the three
regional landscapes of Central Asia (Appendices A®);-each environmental driver explained a
comparable amount of variation in the pheno-mefaocgach of the regional landscapes (Figures 2—4).
Generally, the number of explanatory variables buting to the spatial variation of the NDVI-based
phenological metrics for all three regional langssa across years was higher for the productivity
metric than for the start and length of seasonniymmnetrics (Figure 5). Among the ten explanatory
variables, summer temperature consistently corttbuhe least explanatory power to the spatial
variation in NDVI-based phenological responses linttaee regional landscapes and all 28 years
(Figure 5). All the outputs displayed and discusisethis study contributed significantly §0.05) to
the regression models. The following sections descthe modeling results for each of the three
regional landscapes.

Steppe Regional Landscape

The temperature regimes were expected to be thé¢ abesous and important factors affecting
vegetation dynamics in the steppe regional landsc&penerally, climate variables were most
frequently used and contributed the highest expiampapower in this region’s models of the
NDVI-based vegetation dynamics (Appendices A1-AQ Bigure 2).

The spatial variations in start of season werearptl more consistently across years by climate
drivers than by topography and soil drivers (Appendl). Generally, temperature regimes had
consistently the most variation explained in stdrtseason from 1981 to 2008 (Appendix Al and
Figure 2(A)). After holding the effect of all otheariables constant, higher spring temperature and
lower antecedent fall and winter temperature regimere most highly related to earlier growing
season start dates (Appendix Al). Among all envirental drivers, summer temperature regime
showed the lowest number of years impacting the staeason: the summer temperature variable was
present only during 10 years among 28 years ofreasens (Appendix Al). In all 28 years, at least
six of the ten environmental variables contributedhe explanation of variation in start of season
(Appendix Al). Explained variation in start of seasby the selected environmental drivers varied
from year to year and was highest in 1986, reachit¥g or an adjusted?Rf 0.44 (will be referred as
a percentage of variation explained hereafter), a@$ the lowest at 8% in 1985 and 2000
(Appendix Al). Separately, spring temperature @rpld the most spatial variation in start of season
dates, having on average about 8% explained vami@figure 2(A)).

Spatial variations in the length of season for steppe regional landscape (Appendix A2) were
explained well by elevation and spring precipitatjpatterns, with both metrics contributing to the
best-fit models during 27 of the 28 years of obagons (Appendix A2), and relating to shorter s@aso
length with increased rainfall and higher altituadter the effect of all other explanatory variabless
held constant. Summer temperature had the fewestrr@enices in the models, being present during
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only 13 of the 28 years (Appendix A2), but wheneased separately, it contributed on average the
highest (9%) amount of explained spatial variafiothe season length (Figure 2(B)). At least five o
the ten environmental drivers related to the vemmtn length of season each year (Appendix A2).
Across years the explained spatial variation irglerof season did not exceed 42% (1986) and was
lowest at 5% (1993) (Appendix A2).

Figure 2. Yearly adjusted Rvalues obtained for each of the response variabiestheir
corresponding ten explanatory variables for thepseregional landscap@d) Start of the
growing seasor{B) Length of the growing seasd&) The NDVI-based productivity metric.
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The spatial variations in the NDVI-based produtyivnetric for the steppe regional landscape were
most consistently explained across years by sobaracontent, which was present in all 28 years
(Appendix A3) and individually explained about 1Q@%6variation on average (Figure 2(C)). Higher
carbon content of soil led to higher values of MigVI-based productivity metric (Appendix A3)
when the effect of all other explanatory variabhes held constant. Antecedent fall temperature was
also consistently present in the models, occulinrgy’ years (Appendix A3). Elevation had the lowest
explanatory power (on average less than 1%) for Ni®VI-based productivity metric, while
antecedent fall, current winter, and spring temijpeeavariables individually explained about 15% of
spatial variation on average and up to 35% in sgess (Figure 2(C)). NDVI-based productivity
models incorporated at least seven of ten enviromamherariables across the years (Appendix A3).
Spatial variations in the NDVI-based productivitetmc for the steppe regional landscape explained
by the model and selected environmental factorgadtetween years, from 8% (2008) to 48% (1983)
(Appendix A3).

Mountainous Regional Landscape

Across years, the total number of environmentaiabdes that explained spatial variation in
NDVI-based vegetation dynamics in the mountainaganal landscape (Appendices A4—-A6) was
less than that for the steppe regional landscappdAdices A1-A3). Elevation explained the highest
amount of spatial variation (Figure 3) and was ohthe most frequent drivers explaining the vaoati
in vegetation dynamics of the mountainous regidaralscape across years (Appendices A4—A6). The
explanatory power of the climate variables was lotlian that of elevation, which is often viewedaas
proxy for climate when assessing vegetation dynaralong elevation gradients [45] as temperature
decreases and precipitation often increases atehightudes [62]. However, in this region, whereas
temperature variables seemed to be overshadowethebglevation variable in explaining spatial
variation, precipitation variables contributed guitonsistently to the best-fit models during the
28 years.

The spatial variation in start of season in the mawous regional landscape was most consistently
explained by elevation and precipitation (Append®). Higher elevation related to later season start
dates when all the other explanatory variables wiaken into consideration. Furthermore, when
individual contribution of each environmental vét@awas examined, elevation contributed the most
explanatory power, which on average was about 108craached up to 26% (1993) (Figure 3(A)).
Although elevation values were not considered dsophysical parameter, they served as a good
proxy for temperature and precipitation constraihat vary with altitude, especially given the
limitation of coarser spatial resolution of climatariables. The number of environmental variables
explaining spatial variation in season start watoasas one (elevation, in 1984) and did not exceed
nine variables in any given year (Appendix A4). Bay of the 28 years the explained spatial vamatio
in start of season by the set of selected explapabdivers did not exceed 29% (1992) and was the
lowest at 7% (1986; Appendix A4).
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Figure 3. Yearly adjusted R values obtained for each response variable anii the
corresponding ten explanatory variables for the mminous regional landscapg@) Start

of the growing season(B) Length of the growing seasorfC) The NDVI-based
productivity metric.
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The spatial variation in the length of season fog mountainous regional landscape was best
explained by the soil carbon content and precipiapatterns across years (Appendix A5). Higher
carbon content values related to shorter seasogthlether variables were held constant
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(Appendix A5), which can be explained by the fdwttsoil carbon content varied with altitude and
represented a proxy for soil moisture content irs tregional landscape. Winter temperature
contributed the least number of times to all modaedplaining spatial variation in length of season,
being present during only six of 28 years (Appemd®). Soil carbon content and elevation had the
highest explanatory power at the individual levedch having on average about 15% of explained
variation (Figure 3(B)). The number of environmémariables explaining spatial variation in season
length ranged from three to nine variables acresssy(Appendix A5). The whole-model explanatory
power of environmental drivers among all yearlyseealength models ranged from 5% (1990 and
1995) to 38% in 1994 (Appendix A5).

The spatial variations in the NDVI-based produtyivimetric for the mountainous regional
landscape were most consistently explained by B@vawhich was present in all 28 years
(Appendix A6) and individually explained on averagmut 25% of variation across years (Figure 3(C)).
Values of the NDVI-based productivity metric deaead with higher elevation when all other
explanatory variables were held constant (Appedix which is probably due to cooler temperature
with higher altitude. Winter precipitation had tlogvest separate explanatory power (on average about
2%) for the NDVI-based productivity metric (FiguBéC)). Summer temperature occurred the fewest
times in the multilinear regression models for Hi2VI-based productivity metric, present in 12 oéth
28 yearly models (Appendix A6). The number of erplary factors of spatial variation in
NDVI-based productivity values ranged from fourtéo variables per year (Appendix A6). The power
of studied environmental drivers to explain spatatiation in the NDVI-based productivity metric
ranged from 22% in 1991 to 44% in 1986 (Appendiy.A6

Desert Regional Landscape

Because deserts are generally pulse-driven systdmsselected precipitation variables were
expected to be the most noticeable factors affgctiagetation dynamics in the desert regional
landscape. However, temperature regimes were th& fmequently used variables in the models
(Appendices A7—-A9), and explained the greatest anolspatial variation in vegetation dynamics in
the desert regional landscape (Figure 4). The pnegaition of the desert results is not intuitivéeT
start of the season is driven primarily by the ligtemperatures in the fall, winter and spring, and
secondarily by winter and spring precipitation. Tineing of both temperature trends and precipitatio
events are likely impacting desert plant responseugh multiple interactions. Higher fall
temperatures might cause more evapotranspiratidncansequently a later growing season unless
spring precipitation in combination with higher sy temperatures causes an early start of the
growing season. Higher spring temperatures profadearlier starts of the growing season if enough
precipitation accumulated during winter and spring.

The spatial variation in start of season was veargsistently explained by antecedent fall and
current winter temperatures (Appendix A7). Highailues of these variables related to later season
start dates if other environmental variables weedl ttonstant. Summer temperature showed the
fewest occurrences among all environmental drieérstart of season, being present during only 13
out of 28 years of models (Appendix A7). For alé thears examined, best-fit models explaining
spatial variation in start of season included aasiefive of the ten environmental factors
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(Appendix A7). The explained variation in the staftseason by the suite of selected explanatory
was highest in 1983 reeri44% and was the lowest at 7% in 1984
(Appendix A7). Winter temperature had the highestividual explanatory power for the start of
season metric and on average, about 12% of spatietion was explained by this climate metric,

drivers from year to year

reaching 30% in some years (2001-2002) (Figure)4(A)

Figure 4. Yearly adjusted Rvalues for each of the response variables andabeesponding
ten explanatory variables for the desert regiomatiscape(A) Start of the growing season.

(B) Length of the growing seasdi€) The NDVI-based productivity metric.
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The spatial variations in the length of seasorhendesert regional landscape were well explained;
the length of season tended to be longer with hmigimecedent fall temperatures and lower winter
rainfall when all other variables were held cons{@ppendix A8). Notably, taking into account that
higher antecedent fall temperatures related to s#@son start and longer season length, it can be
surmised that the end of the growing season istantially later with higher antecedent fall
temperatures. The summer temperature again wasthesédehst in the length of season models, taking
place only during nine of the 28 years (Appendiy.Ahe number of environmental drivers relating to
spatial variation in length of season ranged framo to nine of the ten explanatory variables
considered (Appendix A8). The explained spatialiataim in the length of season by the suite of
selected drivers in any given year did not exce&® 32005) and was the lowest at 2% (1993)
(Appendix A8). Winter temperature regimes had tighést explanatory power at a separate level
contribution assessment, having on average aboutf®*plained variation (Figure 4(B)).

The spatial variation in the NDVI-based productivibetric for the desert regional landscape was
most consistently explained by soil carbon contehich was present in 27 out of 28 years (Appendix
A9) and separately explained on average about ¥3%ewariation (Figure 4(C)). When holding other
explanatory variables constant, higher carbon cntealues related to higher NDVI-based
productivity values (Appendix A9). Winter tempenauvas also consistently present in the models,
occurring in 26 years (Appendix A9). Summer tempersoccurred the least frequently in the models
across years (Appendix A9) and had the lowest esqptaty power (on average less than 2%) for the
NDVI-based productivity metric (Figure 4(C)). Thamber of environmental variables that related to
variation in NDVI-based productivity metric waslaast six out of ten per year (Appendix A9). Across
all years, the spatial variation in the NDVI-bagedductivity metric in the desert regional landseap
explained by the suite of selected explanatoryofactanged from 73% (2003) to 22% (1990 and
1997) (Appendix A9).

An assessment of the environmental variables ngldt spatial variation across years and across
regional landscapes reveals that the steppe aredtdegional landscapes had similar relationships
among NDVI-based metrics and assessed environmetrtaers (Figure 5(A,C)). Generally,
temperature regimes, with the exception of sumraeperature, were the most consistent variables
relating to the spatial variation in the vegetatitymamics of both regional landscapes (Figure 5(A,C
Appendices A1-A3 and A7-A9)). As expected, the iotpE precipitation variables on the spatial
variation in pheno-metrics differed between these tegional landscapes [23], with spring and
summer precipitation being the most important teppe regional landscape and winter precipitation
for the desert regional landscape (Figure 5).
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Figure 5. Frequency of appearances (in percentage) of eadheoten environmental
variables during the 28 years of modeli(Q) Steppe regional landscagB) Mountainous

regional landscap€C) Desert regional landscape.
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3.2. Drivers of Variability in Vegetation Dynamicger Time
Patterns of Variability in Vegetation Dynamics asd.andscapes

Overall, the spatial distribution of the temporariability in the three NDVI-based metrics
(represented by COV) demonstrated distinct latitabdland altitudinal patterns for all three regional
landscapes (Figure 6). The pheno-metrics of thppsteand the mountainous regional landscapes
showed similar magnitude in temporal variabilityQZ) patterns (Figure 6). This expected similarity
is in contrast to the assessment of drivers obpatial variation in the NDVI-based metrics, whdre
steppe and desert regional landscapes had analpgtiems (Appendices A1-A9 and Figures 2-5).

The pheno-metrics for the desert regional landssapeved to be more variable (higher COV) over
time than those for the steppe and the mountaimeg®nal landscapes (Figure 6). This high
variability in vegetation dynamics (Figure 6) wagpected and characteristic of the “pulse
stability” [19] of this regional landscape. Its sgetems are adapted to the particular intensity and
frequency of the natural perturbation through lovesistance and higher resilience properties [19].

The variability (COV) of pheno-metrics in the steppegional landscape was relatively low,
revealing that systems of this regional landscapghithave higher resistance. The variability in the
mountainous regional landscape showed as expeotedCIOV values, revealing that its systems
demonstrate higher resistance. Below, all the icagibns of the short-term perturbations and long
term stressors are discussed with regards to itmatel and other natural variabilifye., processes that
are not primarily governed by humans.

Figure 6. Distribution of the coefficient of variation (COWalues for: (A) Start of the
growing seasor{B) Length of the growing seasq) The NDVI-based productivity metric.
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Figure 6. Cont.
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Drivers of Variability in Vegetation Dynamics foaEh Regional Landscape

Each of the nine models developed to assess therslrof variability in pheno-metrics had a
different set of associated explanatory environi@evariables (Table 3). Winter, spring, and summer
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precipitation and elevation were included in alhenimodels, with spring precipitation and elevation
being the most consistent variables that contribtitethese models (Table 3). Summer temperature
was almost consistently absent from the models|éT@p The mountainous regional landscape had
less explanatory variables included into the modeds the steppe and desert regional landscapes,
which both had the same representative set of @mviental variables in the models for each of the
response variables (Table 3). The explanatory bkesafor the steppe regional landscape had the
largest explanatory power for each of the phenainse(Table 3). Among the NDVI metrics, the
variability in the length of season was explaineel best for all three regional landscapes (Tahl&3)
contrast to the NDVI-based productivity metric thats explained best among the year-to-year models
(Appendices A3, A6 and A9). The spatial patternghie residuals, obtained for each of the three
regional landscapes, demonstrated that the moolethd desert regional landscape produced the least
amount of residuals in the COV values of the phegiokl response variables (mapped residuals in
Figure 7) compared to the steppe and mountain@isna landscapes.

Table 3. Summary results for the coefficient estimates fgeaes of stepwise multilinear
regressions. The regression models were run teassav the temporal variability (COV)
in three NDVI-based metrics (season start, seamugth and productivity) is related to the
suite of explanatory environmental variables fa@ tihree regional landscapes. Explanatory
variables for each of the metric of each regiormidscape were identified as most
frequently occurring (at least 50% of time) varegbturing the 28 years of the year-to-year
models. The bottom row includes the explained Wilitg values (Adj.R*100). Gray
colored cells identify variables that were not freqgtly present in the year-to-year models
and were intentionally excluded from these modBsshed cells identify variables that
were not contributing statistical significance e verall explanatory power of the model.
Note: T°—temperature; PPT—precipitation; C contest#-carbon content.

Steppe Regional Mountainous Regional Desert Regional
Landscape Landscape Landscape
Season Season NDVI Season Season NDVI Season Season NDVI
Start Length Prod. Start Length Prod. Start Length Prod.

Winter T° 6.35 | 220| 5.36 -2.34 | -2.04
Spring T° 475 | -0.67| 557 058 | 9.30| 1.72| 2.74

Summer T° -0.97
Fall T° -8.60 -8.87

——— 8.04| 111 %

Winter PPT | —0.41 | -0.11| 007| -006E&——— 040 | -0.38| -0.26
Spring PPT | 0.06 | 0.04 | -0.21 ~0.38| 026 0.23
Summer PPT 0.09 | 0.26 ~0.16| -0.29
Fall PPT ~0.14| 0.16 0.14 | -0.40=
Carbon conten -0.34 | -4.16

Elevation | -0.01 | -0.002] -0.005| —-0.002| 0.003 | —-0.003 -0.004 B
Adj.R#*100 63 70 25 12 17 6 25
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Figure 7. Distribution of the residual values for the modele®V assessment for:
(A) Start of the growing seasofB) Length of the growing seasofC) The NDVI-based
productivity metric.
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Figure 7. Cont.
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Modeling Interannual Variability of Vegetation Dym&s as a Function of Environmental Drivers for
the Steppe Regional Landscape

Interannual variability in the season start mefoc the steppe regional landscape was mostly
related to temperature regimes, when all the othx@fanatory variables were held constant. Higher
winter and spring temperatures related to increasedbility (high COV) in season start while highe
fall temperatures related to lower variability (Io08OV) in season start (Table 3). Although the
explanatory power of all the variables contributiogthe model reached 63% (Table 3), the spatial
patterns in the residuals revealed that the molightly overestimated (negative residuals) the
variability in start of the growing season (Figu(@.)).

Winter temperature had the largest effect on thegtle of season’s variability, with higher
temperature relating to higher variability of theason length (Table 3). Overall the explanatorygrow
of the environmental drivers contributing to the \C&son lengrinodel was the highest among all nine
COV-based models, reaching 70% (Table 3). Furtheemthe modeled explanatory variables
performed relatively better for this model (lowdrsalute values of the residuals) than those for the
COVseason statmodel, slightly overestimating COV values in tloeithern part and underestimating it in
the northern part of the steppe landscape (Fig{B®.7

Variability (COV) in the NDVI based productivity rtree was also predominantly affected by the
temperature regimes. Lower fall temperatures agtheri winter and spring temperatures related to
higher variability in productivity responses acrdsse (Table 3). The explanatory power of the
COVproductivity model did not exceed 25% (Table 3). As it canrderred from the mapped residuals
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(Figure 7(C)), the model enabled a prediction efspatial variability in the productivity metric tifis
regional landscape.

The variability (COV) values for the three phenotneos for the steppe regional landscape were
generally low, suggesting that the regional landsceaxhibits good resistance but might not be as
resilient to change (Table 2). Given that the terafpee regimes have the largest affect among other
assessed environmental variables, the currenirghiftimate regimes might have direct implications
for agricultural and natural land cover types o gteppe regional landscape. Although the cereal
production in the northern and eastern part of rdéggonal landscape can benefit from the longer
growing season and warmer winters [26], naturad laover types might experience reduction of
overall vegetation productivity and irregularity tile growing season, which altogether could lead to
phenological asynchrony across trophic levels doeteamporal mismatches between resource
availability and consumer demand [63].

Modeling Interannual Variability of Vegetation Dym&s as a Function of Environmental Drivers for
the Mountainous Regional Landscape

In the mountainous regional landscape more raimfating the winter and spring seasons led to
lower COVseason starvalues and the overall model explained 12% ofvin@ation (Table 3). Higher fall
temperatures related to more variability in sedsogth dates, and contributed to the overall 17% of
explanatory power of the CQMson stamodel (Table 3). Warmer spring temperatures, losat
carbon content, and higher precipitation amouniated to higher variability in COMoductiviy The
explanatory variables of this model explained d@#y of total variation (Table 3). In spite of thetfa
that all three models of the mountainous regionatdscape (for COMason stait COVseason lengih @nd
COVproductiviymetrics) had the lowest explanatory power acrosdtiree regional landscapes (bottom
row in Table 3), these models enables predictioth@fvariability of all three response variablebisT
can be inferred from the mapped residuals of thentanous regional landscape (Figure 7(A-C)),
which were close to zero.

The COV values of the mountainous phenological aesps were low, suggesting low
susceptibility to change due to its higher resistanapabilities. Since precipitation has the larges
effect on the three pheno-metrics representing rdggonal landscape, lower rainfall coupled with
higher temperatures may have a negative feedbackcosystems of the mountainous regional
landscape. The changing climate regimes negataifct mountain-restricted species causing shifts
in treeline and migration of species towards thersits [64]. Furthermore, because these climate
regime shifts have caused changes in the extegtasfers and much faster rates of snowmelt and
glacier retreat [27,65-69], they could lead to demin the vertical zonation of mountainous fland a
fauna and, thus to alteration of their phenologozabmeters.

Modeling Interannual Variability of Vegetation Dym&s as a Function of Environmental Drivers for
the Desert Regional Landscape

In the desert regional landscape more variabilitythie season start dates was related to higher
spring temperatures, lower fall temperatures, amget carbon content in the soil (Table 3). While th
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overall model explained only 25% of total variatiam the COV, the mapped residuals of the
explanatory variables were very close to zero (lgi{A)).

COVseason lengttas higher with lower fall and winter temperatuaesl higher spring temperatures.
The goodness of fit of the model was 48% (TablevBgre, as it can be inferred from the mapped
residuals (Figure 7B), modeled variables had sefficprediction power.

COVproductivity Values were higher with lower winter and summengeratures and higher spring
temperatures. The explanatory variables of the inexjg@ained about one third of the total variation
(Table 3) and with the residuals being close to ZErgure 7(B)), they seemed to predict quite el
variability of all three of the response variables.

The observed high COV values for the desert pheewits suggested that this regional landscape
is very susceptible to change, particularly witiwéo resistance (Table 2). It is expected that deser
landscapes have higher resilience, components athwhnclude ecosystem elasticity (rate of
restoration to a stable state after perturbatior amplitude of stability (deformation extent from
which an ecosystem will return to its initial sjaf@0]. Although the systems of the desert regional
landscape are assumed to be able to recover hfigrterm perturbation and long-term stress events,
the long-term impacts of projected climate changeld likely degrade these systems that are
susceptible to change [26,71,72].

4. Conclusions

Through the application and analyses of digitaphigsical time series data, this research provides
new and valuable understanding of the impact ofirenmental drivers on the spatial, annual and
interannual variation of vegetation dynamics inetrregional landscapes of Central Asia.
Additionally, this study links measures and scalé®bserved interannual variability in vegetation
dynamics in steppe, mountain and desert landsdagbeir sensitivity to change patterns, specifjcal
to their resistance and resilience capacities uedesting and projected environmental regimes of
change and variability in these regional landscapes

Although this study has provided important insigim$o regional landscape-scale vegetation
dynamics, the results can likely be further enhdnog using more consistent and finer resolution
spatial and temporal datasets. This matter is esdpecelevant to the climate datasets. The climate
datasets are often compilations of records of ¢kntkata gathered from a variety of sources [73] and
uncertainty might be introduced in climate datagedsn the interpolation between weather station
locations, elevation bias in the weather statieftesyation variation within grid cells, and througata
partitioning and cross—validation [73]. The uncertha in climate data is generally the highest in
mountainous and in poorly sampled areas [73]. Aaltkily, the estimations of precipitation patterns
might have higher uncertainty as they might beiajhatess accurate than the temperature dataalue t
nature of precipitation patterns and resolutiorthef rainfall data. Therefore, potential future egsh
might include replicating the applied approach dinar spatial scale with finer-resolution datasets
The use of minimum and maximum temperature regisye®rth considering as well [74,75].

Specifically, the research identifies potentialvdrs of spatio-temporal patterns in landscape-scale
vegetation dynamics (phenology and productivity)thnee regional landscapes (desert, steppe, and
mountainous), which then were used to map the temhpariability of these dynamics. The results of
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this study suggest that a unique suite of speeiiidronmental drivers governs the vegetation respon

of steppe, mountainous, and desert regional lapéscaCentral Asia’s landscape-scale vegetation
dynamics showed strong relationships to environalefatctors in across latitudinal and elevation

gradients. The spatial and year-to-year variationvegetation dynamics of the steppe regional
landscape were demonstrated to be mostly affecgebroperature. The temporal variability (COV

values) of the response metrics in this region aig® mostly affected by temperature, although
temperature variables did not explain the obsersgatial patterns of the COV values (mapped
residuals) completely. Finally, relatively low tearpl variability of vegetation dynamics suggested
higher resistance to change in this regional lazyoisc

In the mountainous regional landscape the spatightion in vegetation responses over 28 years
were related primarily to climate variables, espldgiprecipitation observed along the elevation
gradients. The models that assessed temporal idyiadf the vegetation dynamics also suggested
altitudinal clines of climate patterns as driveAdthough drivers of the temporal variability in
vegetation dynamics had lower explanatory power.Radvalues) than the steppe and desert
environmental drivers, they still explained the tegapatterns of variability relatively well. Lower
values of the COV of vegetation dynamics can berassl to relate to higher resistance and lower
susceptibility to short-term perturbations in tregional landscape.

Vegetation dynamics in the desert regional landscapre demonstrated to have the greatest
variability (high COV) over time that seemed to affected by the combination of temperature
regimes, winter precipitation patterns, and sorboa content. The high COV values of the desert
regional landscape suggest its higher suscepjilbdithange and low resistance capabilities.

Given that climate precipitation and temperatureaides showed the largest impact among other
assessed environmental variables on vegetation ndgeaacross all three regional landscapes,
projected climate changes could severely impacemwase and agricultural production. Land use
policy and decision makers in each of the region# need to develop economically and
environmentally effective climate change adaptatod mitigation plans to sustain natural resources
and agriculture in Central Asia. Healthy ecosystanttions need to be maintained through processes
that could confer adaptive capacities such as regmdvery, high growth rates, rapid succession of
ecosystem development stages, and/or flexible amgortunistic timing of vegetation growth
responses. Because components of landscape sbditgpto change include resistance and
resilience [70], the systems of the three regiteradiscape might be able to adapt to projected tima
changes [25] if the future rates of change turntouie less rapid and more gradual than is prajecte
As this is likely not the case, climate change iggilons in all three regional landscapes coulaive
both mitigation (e.qg., increased water use efficienvater storage) and adaptation (e.g., reducéerwa
use and crop changes) efforts across the exteéhesé landscapes.
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Appendix Al. Steppe start of season summartable for series of stepwise multilinear regressiwodels, run for each year from 1981 to
2008, where the start of season metric is a regpeasable to a suite of ten explanatory environtalevariables (described in Table 1) and
listed here (top row) in a descending order ofl totember of the year-to-year occurrences (bottow) iia the 1981 to 2008 models. The table
presents coefficient estimatg® for each of the environmental variables that kbated significantly (p< 0.05) to the explanatory power

(last column) of the regression models and werkided in the total number of environmental X-valésb(second column) present per year

(first column). Note: T°—temperature; PPT—precipdn; Ant. Fall—antecedent fall.

Ant. | Winter | Spring | Winter | Spring | Summer | Ant.Fall : Carbon | Summer | AdjR %
Year X-var./year Elevation

Fall T° T° T° PPT PPT PPT PPT content T° 100(%)
1981 9 1471 | 0.081| -1.332-0.002| -0.009 0.009 -0.004 ——= 0.015 -0.287 17
1982 8 0.591 | 0.348| -0.867 -0.003| -0.014 0.008 0.003 0.085 -——= -——= 15
1983 7 -—— | -0.069| -0.089 0.005 | -0.005 0.001 —-0.002 0.044 ——= ——= 17
1984 10 -0.086| 0.102| -0.285-0.006| -0.003 0.007 0.013 0.111 0.015 0.243 30
1985 6 ——= 0.267 -—— | -0.014 -0.018 0.026 ——= 0.065 ——= 0.087 8
1986 10 1.308 | 0.228| -0.955-0.001| -0.006 0.011 —-0.003 -0.025 0.017 -0.649 44
1987 7 -0.064| 0.294| -0.397 0.004 | -0.009 ——- 0.010 0.053 11
1988 7 0.165 | 0.297| -0.449-0.022| -0.01§ ——- 0.023 ——= 0.028 ——= 19
1989 10 0.254 | 0.475| -0.604 0.003 | -0.013 -0.016 0.017 -0.048 0.014 -0.403 26
1990 8 0.908 | -0.162] -0.410 0.007 | 0.007| -0.003 -0.015 ——= —— -0.588 14
1991 8 0.145 | 0.825| -1.176-0.007| -0.004 -0.019 0.017 ——= -0.01% ——= 33
1992 8 0.279 -—— | —-0.275 -0.003| 0.004| -0.003 0.016 0.086 0.016 -—r 19
1993 8 0.427 | -0.219 -0.245-0.004| --—- 0.006 -0.004 0.077 0.023 -— 13
1994 8 -——= 0.018 | -0.156 -0.006| -0.002 0.006 0.003 0.035 0.032 -— 17
1995 6 0.752 | 0.321| -1.145 0.008 ——= —-0.008 ——= -0.019 ——= -—| 14
1996 7 1.960 | 0.853| -2.426-0.006| 0.007 ——= ——= 0.110 -0.024 -— 28
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1997 8 0.246 | 0.452| -1.006 0.016 | —0.022 0.006 —-0.007 ——= 0.026 ——= 29
1998 6 0.195 | 0.092| -0.25Y —-—- | -0.010] ——-— 0.015 0.078 9
1999 8 0.272 | 0.266| -0.677-0.013| --— —-0.002 0.013 0.038 0.0171 -—t 20
2000 9 0.216 | 0.575| -0.749-0.027| 0.014| -0.014{ -0.008 0.138 0.044 -—+ 8
2001 7 0.852 | -0.110 -0.405 0.010 | -0.023 0.005 ——= ——= ——= -0.384| 19
2002 8 -0.076| -0.081 ---| -0.01y 0.004 0.008 —-0.003 0.066 .019 ——= 35
2003 9 -0.146| 0.266| -0.639-0.015| -——-— 0.005 0.008 0.064 0.02p 0.378 38
2004 7 0.742 -—— | —0.886 —-0.009| -0.004 -0.003 ——— 0.055 0.010 ——= 28
2005 8 0.102 -—— | -0.272 -—— | —-0.005| 0.004 —0.005 0.075 0.043 0.093 15
2006 9 0.203 | -0.155 -0.1683-0.008| 0.018| -0.002] -0.00Y 0.055 0.025 —+ 30
2007 8 -0.204| 0.253 ——= —-——| —0.007 0.008 0.003 0.054 0.034 -0.063 21
2008 9 0.466 | -0.112] -0.419-0.008| 0.001 0.007 0.003 0.038 0.006 -—+ 27
Total # from 1981 to 2008 25 25 25 25 24 24 23 22 02 10
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Appendix A2. Steppe length of season summargable for series of stepwise multilinear regressimdels, run for each year from 1981 to
2008, where the length of season metric is a respoariable to a suite of ten explanatory enviramadevariables (described in Table 1) and
listed here (top row) in a descending order ofl totember of the year-to-year occurrences (bottow) iia the 1981 to 2008 models. The table
presents coefficient estimatgy for each of the environmental variables that gbated significantly (p< 0.05) to the explanatory power

(last column) of the regression models and werkided in the total number of environmental X-valésh(second column) present per year
(first column). Note: T°—temperature; PPT—precipda; Ant. Fall—antecedent fall.

Spring . Ant.Fall | Summer | Winter | Winter | Ant.Fall | Spring | Carbon | Summer | AdjR *
Year X-var./lyear Elevation

PPT T® PPT T® PPT PPT T® content T® 100(%)
1981 9 -0.005| -0.139 0.130 -0.006/ 0.04% -0.005 ——- 0.1p1 -0.066 .30® 11
1982 7 ——= -0.173 0.341 ——= -——| -0.017 -0.020 0.295 -0.1110.409 16
1983 9 -0.001| -0.120 ——= -0.008) -0.050 0.002 -0.006 0.0p5 0.001 .19® 9
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1984 10 —0.020| -0.098 -0.331] -0.003 -0.254 0.015 -0.004 -0.200.112 0.147 19
1985 8 0.002 -0.135 -0.054 -0.015 -0.090 0.010 -0.006 3.p1 ——- ——= 16
1986 9 -0.016| -0.197 0.320 -0.028| 0.149 -0.006 -0.021 —1— -0.078.479 42
1987 8 -0.019| -0.180 0.063 -0.013] -0.040 ——- -0.026 0.116 -0.058——— 22
1988 8 -0.002| -0.159 0.264 -0.017] 0.138 0.003 -0.017 —— -0.081 —— - 8
1989 8 0.011 -0.108 ——= -0.013 -0.195 0.011 -0.085 —-t— 028.] 0.230 30
1990 9 -0.015| -0.132 0.209 -0.012¢ 0.10Y -0.012 -0.014 0.306 -40.10 —- 16
1991 9 0.022 -0.156 0.139 0.001 0.141  0.001 0.005 0.202 0120. ——= 15
1992 7 -0.022| -0.132 0.222 -0.018 0.077 -0.017 —— 0.167 ——- —-— 15
1993 7 -0.014| -0.085 0.006 0.001 ——— 0.001 ——— 0.049 -0.021 —— 5
1994 8 -0.013| -0.110 0.353 -0.028 0.148 -0.007 0.006 0.498 -— —-—-— 20
1995 10 -0.009| -0.056 -0.111 0.001| -0.079 -0.005 -0.001 -0.110.008 -0.019 20
1996 8 -0.001| -0.116 -0.051| -0.001] -0.074 0.001 -0.012 0.003 —t— ——= 18
1997 8 0.013 -0.211 0.392 -0.010 0.168 -0.011 -0.006 -+—0.169 ——— 35
1998 6 0.016 ——= 0.301 -0.021 0.099 —— -0.021  0.250 = —— = 22
1999 9 0.021 -0.022 -0.095 0.0077 -0.116 0.010 -0.004 -8|09——- -0.229 19
2000 9 -0.016| -0.134 -0.007| -0.004/ -0.099 0.005 -0.009 -0.026).082 ——= 19
2001 5 -0.004| -0.120 ——= —-0.018| 0.106 ——— - —— -0.086 —-—+ 15
2002 7 -0.016| -0.160 -0.159| -0.011 —-——| -0.004 —— ——T 0.093 -0.10 15
2003 9 -0.014| -0.142 0.168 ——= 0.143 0.020 -0.028 0.2p4 -0.077 259D. 23
2004 8 -0.004| -0.147 0.121 -0.014 ——= 0.008 -0.008 0.174 -0.042 —— - 25
2005 10 -0.013| -0.113 -0.036| -0.003 -0.179 -0.008 -0.042 -0.08a@.016 —0.095 15
2006 9 -0.030| -0.038 -0.044 ——= -0.05Y -0.012  0.001 0.114  0.016 .00D 23
2007 9 -0.025| -0.087 -0.350| -0.013 -0.622  —— -0.027 -0.358.016 -0.168 35
2008 8 0.001 -0.185 0.360 -0.020 0.221 0.020 -0.010 0.87F—- - 27
Total # from 1981 to 2008 27 27 25 25 24 24 23 22 21 13
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Appendix A3. Steppe NDVI based productivity summarytable for series of stepwise multilinear regressitdels, run for each year from
1981 to 2008, where the NDVI-based productivity ngeis a response variable to a suite of ten exitaly environmental variables
(described in Table 1) and listed here (top rowaidescending order of total number of the yearetar occurrences (bottom row) in the

1981 to 2008 models. The table presents coefficastimates f{) for each of the environmental variables that kbated significantly
(p<0.05) to the explanatory power (last column) o# tlegression models and were included in the totmhber of environmental

X-variables (second column) present per year (odimn). Note: T°—temperature; PPT—precipitatidni. Fall—antecedent fall.

Carbon | Ant.Fall | Spring | Winter | Summer | Ant.Fall | Spring | Winter . Summer | AdjR %
Year X-var./year Elevation
content T° T° PPT PPT PPT PPT T° T° 100(%)

1981 10 0.037 0.075 | -0.302 0.009 0.007 -0.005 0.008 -0.0%9 -0.010 0.146 46
1982 9 0.036 0.155 | -0.104 0.011 0.006 0.007| -0.004-0.118 0.014 ——= 44
1983 7 0.033 ——= -0.288 0.011 | -0.003 ——= 0.002 0.016 ——= 0.079 48
1984 10 0.054 | -0.276| 0.110 0.006 -0.010 0.010 -0.0xD.081| -0.013 0.075| 28
1985 8 0.038 | -0.404 ——= 0.007 -0.011 0.00 -0.005——- -0.020 0.111 29
1986 8 0.051 | -0.290| 0.214 0.016 -0.008 -0.004 —1— —1- ¥D.00 -0.066 32
1987 8 0.062 | -0.291| 0.174 0.012 ——= -0.015 -0.0030.083| -0.014 ——— 45
1988 7 0.041 0.287 | -0.215 0.006 | -0.009 0.004 -——| -0.209 ——= -— 29
1989 9 0.038 | -0.373| 0.322 ——— -0.00y -0.009 0.008 -0.0740.010 -0.087 28
1990 10 0.043 0.122 0.191 0.003 0.002 -0.003 0.005 -0,2780.032 -0.171 38
1991 8 0.028 | -0.312| -0.129-0.004| -0.016f -0.003 0.015 —— ——= 0.168 19
1992 8 0.038 | -0.217| -0.168 0.005 | -0.005| -0.007 ——= 0.060 -0.046 -—t 23
1993 9 0.038 0.246 | -0.185 0.007 0.004 -0.003 -0.003-0.216| -0.015 ——= 27
1994 9 0.034 0.160 | -0.31y 0.001 | -0.012| -0.014 0.013 -0.163 -0.032 -—r 28
1995 10 0.024 | -0.870] -1.248-0.007| -0.006 0.003| -0.0110.676 0.028 1.315 23
1996 8 0.058 0.094 | -0.078 0.005 0.002 ——= -0.008-0.115 0.013 ——= 24
1997 8 0.033 0.128 | -0.272 0.006 | -0.007 0.001 0.001 -0.086 ——= -— 32
1998 10 0.018 | -0.423| -0.788-0.005| 0.007 -0.013 0.012 0.37]7 0.060 0.961 20
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1999 10 0.033 -0.380| 0.0817 0.01% -0.003 -0.002 0.004 0.0450.014 0.074 32
2000 10 0.066 -0.166| -0.154 0.011 0.006 -0.015 -0.0120.087 -0.078 -0.093 42
2001 10 0.048 0.552 0.031] -0.003 0.00% -0.005 -0.06®.282| -0.025 -0.488 33
2002 8 0.087 -0.163| -0.04y 0.005 | -0.009 0.018| -0.013 ——— -0.026 ——= 36
2003 9 0.048 0.172 0.325 0.003 0.008 -0.029 -0.069.297 ——= -0.306 16
2004 9 0.075 0.471 | -0.250 0.024 0.004 0.002| -0.014-0.331| -0.042 ——— 19
2005 9 0.047 0.667 | -0.228 ——— —-0.006 0.004 0.003 -0.240 -0.01B8 -0.298 30
2006 8 0.080 -0.314| 0.281 0.012 -0.009 —— 0.002 -0.107 .02D ——— 13
2007 9 0.036 -0.173| -0.086 0.019 | -0.004| -0.006 -0.004-0.033| -0.024 ——= 44
2008 7 0.066 0.171 -——| -0.012 ——= 0.003 —-0.0030.199| -0.015 ——= 8
Total # from 1981-2008 28 27 26 26 26 25 25 24 23 15
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Appendix A4. Mountainous start of season summarytable for series of stepwise multilinear regressitodels, run for each year from
1981 to 2008, where the start of season metriaésponse variable to a suite of ten explanatowyr@mmental variables (described in Table
1) and listed here (top row) in a descending oaddotal number of the year-to-year occurrencest@oo row) in the 1981 to 2008 models.
The table presents coefficient estimaf@sfor each of the environmental variables that gbated significantly (g0.05) to the explanatory

power (last column) of the regression models ancewecluded in the total number of environmentalv&rables (second column) present
per year (first column). Note: T°—temperature; PRJreeipitation; Ant. Fall—antecedent fall.

X-var./ : Summer | Winter | Spring | Ant.Fall | Ant.Fall | Summer | Winter | Spring | Carbon | AdjR %
Year Elevation

year PPT PPT PPT T° PPT T® T® T® content | 100(%)
1981 5 0.069 ——= ——= 0.003 0.159 ——= ——= -0.169 —-— -0.020 11
1982 7 0.040 0.011 ——— ——= -0.244  -0.01 0.488 -— -0.268).031 9
1983 5 0.078 0.012 -— | -0.012 ——- ——= -0.212 | 0.213 ——= ——= 18
1984 1 0.082 -——= -——= -——= ——= -——= -—= -—= -——= ——= 9
1985 3 0.079 0.015 0.010 ——= ——= ——= ——= —— ——1 -—+ 14
1986 4 0.081 ——= -0.01§ 0.011 ——= ——= ——= —— 0.093 -—r 7
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1987 4 0.078 0.006 0.007 ——= ——= -0.01f7 ——= -t - —-—r 10
1988 6 0.102 0.005 | -0.004 ——= 0.178 0.010 —— -—+  -0.198-— 20
1989 5 0.080 ——= ——= 0.012 ——— 0.012 0.109¢ -0.179 —- ——— 18
1990 3 0.069 ——= —0.005 0.0071 ——= ——= ——= —— ——T -—t 8
1991 4 0.062 - ——= ——= -0.035 0.008 ——= —— ——T 0.023 16
1992 8 0.109 0.002 0.005 ——= 0.800 -0.011 1.041  -0.155 44 —- 29
1993 6 0.107 0.002 ——— 0.003 0.276 ——— ——= -0.117 -0.140—- 28
1994 5 0.104 0.017 -— | -0.006 -— ——= ——= 0.159| -0.126 -— 18
1995 2 0.079 ——= —— ——— ——— ——= ——— ——— -—| -0.022 22
1996 3 0.115 ——— -—— | -0.012 -—— 0.006 ——— ——— 23
1997 3 0.086 0.004 | -0.00%5 -—— ——= ——— ——= —— ——T -—t 10
1998 4 0.108 0.009 | -0.016 0.009 ——— —— ——r —r 13
1999 7 0.100 0.007 0.014 ——= 0.232 ——= 0.096 -0.346 —-+— 03D. 20
2000 9 0.100 0.001 0.006 ——= 0.240 0.013 -0.123 -0.Y48 3.6 0.026 16
2001 9 0.085 0.014 —-—— | -0.012 0.568 0.003 -0.334] -0.774 0.613 -0.082 17
2002 6 0.091 0.003 | -0.015 0.00y -0.25 ——- —— - 0.296 —— - 19
2003 6 0.094 ——= —0.013 0.006 0.169 0.015 —-0.145 —— -T— —— - 14
2004 9 0.079 0.005 | -0.005 0.018 1.07] -0.013 -0.434 -0[706— 0.026 17
2005 3 0.083 ——— ——= ——= —0.209 ——— 0.228 ——t 13
2006 2 0.080 0.003 ——= ——= ——= ——= —— — 11
2007 6 0.139 0.007 | -0.006 0.003 0.03y 0.08 25
2008 5 0.129 -0.009| -0.017 ——= ——= 0.022 -0.047 -—— 18
Total # from 1981-2008 28 18 15 14 13 12 11 10 10 9
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Appendix A5. Mountainous length of season summariable for series of stepwise multilinear regressimodels, run for each year from
1981 to 2008, where the length of season metra& igsponse variable to a suite of ten explanatowyw@mental variables (described in
Table 1) and listed here (top row) in a descenairter of total number of the year-to-year occuresn(oottom row) in the 1981 to 2008
models. The table presents coefficient estimgt¢dof each of the environmental variables that gbated significantly (g0.05) to the

explanatory power (last column) of the regressiaodefs and were included in the total number of remmental X-variables (second
column) present per year (first column). Note: Témperature; PPT—precipitation; Ant. Fall—antecedalht

X-var./ Carbon | Spring | Summer | Winter . Ant.Fall | Ant.Fall . Summer | . AdjR %
Year Elevation Spring T° Winter T°
year content| PPT PPT PPT T° PPT T° 100(%)

1981 7 -0.170| 0.008] -0.007] 0.00¢4 ——= -1.169 -0.019 —— 69.0 ——= 13
1982 6 -0.189| 0.012] -0.032 ——= -0.037 -0.905 —— —— 0.744 ——- 14
1983 5 -0.147| --—-— -0.022| 0.016 ——= 0.132 -®25 11
1984 4 -0.120 0.087 —-0.475 0.323] 21
1985 7 -0.119 | -0.020 -0.023 -0.062 -0.349 1.140 -1.005 33
1986 3 -0.172 0.365 -0.611 22
1987 3 —-0.136 -0.015 -0.098 15
1988 5 -0.088 | -0.010 -0.021 | 0.014 0.044 14
1989 5 -0.100 | -0.033 -0.035 1.409 -1.207 27
1990 4 -0.010| -0.010 0.257 -0.324 5
1991 5 -0.193| 0.032| -0.031] 0.03: -0.043 - -- 24
1992 5 -0.159 | -0.01§  --- 0.011 -0.027 0.021 11
1993 3 -0.158 -0.018 0.031 21
1994 7 -0.127 | -0.01§ -0.021 | 0.031 0.089 -0.0883 -0.033 38
1995 5 -0.050 | -0.010 0.011 0.038 -0.022 5
1996 9 -0.069 | 0.047 0.047 -0.057 0.972 —-0.058 1.479 .51 -1.083 19
1997 5 -0.006 | 0.038 -0.099 1.198 -1.271 - - 16
1998 4 -0.025| -0.033 | 0.036 —-0.060 25
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1999 9 -0.147 | 0.022| -0.022] 0.022 -0.031 -0.304 0.744 0.951 0.393 25
2000 5 —-0.140 -- -- 0.021 0.016 —0.835 1.023 24
2001 7 -0.106 | -0.006  --- 0.011 -0.051 0.349 —-0.009 -0.477 11
2002 7 -0.010| -0.013 | 0.019 —-0.156 0.955 —-0.256 -0.757 36
2003 6 -0.207 | -0.011]  --- 0.035 -0.829| -0.045 0.704 37
2004 6 -0.198 | -0.032 -0.016 | 0.014 —0.050 0.021 28
2005 6 -0.113 | -0.011 0.006 1.312 0.015 -1.403 19
2006 5 0.011 -- —0.095 -1.748 0.684 1.155 8
2007 7 -0.155 -- -0.008| 0.015 —0.050 0.73Y -0.013 -0.754 --- - 36
2008 3 -- 0.020 0.059 —0.029 13
Total # from 1981-2008 22 19 19 18 16 15 14 12 12 6

Appendix A6. Mountainous NDVI based productivity summary table for series of stepwise multilinesgression models, run for each
year from 1981 to 2008, where the NDVI based prodilg metric is a response variable to a suitetari explanatory environmental
variables (described in Table 1) and listed heyp (ow) in a descending order of total number ef yhar-to-year occurrences (bottom row)

in the 1981 to 2008 models. The table presentdicmeit estimatesfl) for each of the environmental variables that gbated significantly

(p<0.05) to the explanatory power (last column) ofragression models and were included in the tataiber of environmental X-variables
(second column) present per year (first columnteNd—temperature; PPT—precipitation; Ant. Fall—ergdent fall.

X-var./ . Summer | Winter | Spring | Carbon | Ant.Fall | Spring | Winter | Ant.Fall | Summer | AdjR %
Year Elevation
year PPT T° T° content T® PPT PPT PPT 100(%)
1981 5 -0.061 0.002 0.025 0.030 0.004 --| 23
1982 10 -0.059 -0.007| -0.058 0.118 0.028 0.165 0.011 -0/01@.017 -0.194| 27
1983 7 -0.062 -0.008| -0.165 0.319 -0.176 0.005 -0.008 --- 35
1984 4 —-0.060 -0.011 0.041 0.017 25
1985 7 —-0.035 0.003 | -0.271 0.035 0.003 0.004 -4 .278 40
1986 7 -0.052 0.003 | -0.11%5 0.478 0.048 -0.306 0.010 - -- 44
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1987 8 —-0.052 0.005 | -0.178 -0.200 --- 0.008 | -0.011 0.015 0.453 40
1988 7 —-0.061 0.004 | -0.216 0.376 -0.163 0.004 0.006 - - 36
1989 5 —-0.066 0.204 -0.442 0.01R 0.236 34
1990 9 —-0.062 0.006 | -0.475 0.283 0.619 0.003 0.012 03®.0 -0.394 41
1991 7 —-0.040 0.021 0.138 -0.119 0.040 -0.010 0.014 22
1992 6 -0.063 0.006 | -0.203 0.216 0.010 -0.003 -- 31
1993 7 —-0.046 0.006 | -0.288 0.151 0.01bp 0.164 0.008 -1- 29
1994 5 —-0.059 -0.250 0.119 0.153 0.01p --—-| 28
1995 8 -0.067 0.014 | -0.079 0.469 0.038 —-0.354 0.024 .01® 36
1996 9 —-0.055 -0.008| -0.591 0.73y 0.056 0.546 0.039 ---  018®.| -0.690 33
1997 9 -0.057 -0.726 0.805 0.027 0.519 0.013 -0.020 04®.| -0.530 41
1998 6 —-0.035 0.003 | -0.45¢ 0.011 -0.029 322 25
1999 9 —-0.043 -0.006| -0.336 -—0.804 0.045 0.214 -0.003 0.011 0.96%5 31
2000 3 -0.077 0.050| 0.034 27
2001 10 -0.078 -0.007| 0.236 -0.243 0.043 -0.235| 0.009 -0.005 0.002 0.298 33
2002 9 —0.064 0.588| -0.569 0.056 -0.399| 0.011 -0.012 -0.013 0.423 33
2003 5 —0.085 -0.003| -0.09( 0.055% 0.140 -- - - 25
2004 8 —0.086 -0.005| 0.259 -0.576 0.059 —-0.007,  0.009 0.303 39
2005 5 -0.093 -0.003| -0.23¢ 0.044 0.228 -- - - 37
2006 5 —-0.082 —-0.003 0.029 0.00y -0.011 - -- 32
2007 5 -0.094 —-0.006 0.194 0.052 -0.188 -- - - 34
2008 4 —-0.098 —-0.006 0.037 0.049 35
Total # from 1981-2008 28 23 21 20 20 19 17 15 14 12
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Appendix A7. Desert start of season summaryable for series of stepwise multilinear regressiwodels, run for each year from 1981 to
2008, where the start of season metric is a regpeasable to a suite of ten explanatory environtalevariables (described in Table 1) and
listed here (top row) in a descending order ofl totember of the year-to-year occurrences (bottow) iia the 1981 to 2008 models. The table
presents coefficient estimatgy {or each of the environmental variables that gbated significantly (g0.05) to the explanatory power (last
column) of the regression models and were includede total number of environmental X-variablesc@d column) present per year (first
column). Note: T°—temperature; PPT—precipitatiomt A-all—antecedent fall.

Year X-var./ Ant.Fall | Winter | Spring | Winter | Carbon Elevat. Spring | Ant.Fall | Summer | Summer | AdjR %
year T° T° T° PPT | content PPT PPT PPT T° 100(%)
1981 8 5.882 4.493| 1.882 0.439 -0.196 0.023 0.060 5D.0 --- 21
1982 7 3.112 2.641 -0.011 0.450 -0.718 0.042 0.503 20
1983 7 1.134 2.484 0.143  0.6571 -0.147 0.031 298. 44
1984 5 0.738 | -0.387 --- -0.397 | -0.063 0.036 7
1985 7 1.004 0.280| -2.191-0.034 -0.279 0.026 0.098 25
1986 7 0.556 1.208| -1.792 --- 1.148 | -0.448 0.080 -0.126 30
1987 7 -1.540 | 2.458| -1.611 0.069 1.017 | -0.400 -0.123 31
1988 9 0.885 | -0.849 1.632 0.170 -0.292 -0.0260.106 -0.030| -1.952] 18
1989 6 1.432 | -0.364 -0.652-0.069| 0.306 0.060 13
1990 6 1.753 | -0.416 -0.028 0.032 0.084 -0.084 --- 17
1991 7 3.607 1.765| 2.660 -0.015 -0.141 -0.034 --- -4.165 15
1992 6 3.284 2.888| 8.185 -0.243 -0.023 5B 21
1993 8 0.886 0.380| -1.02%5 --- 0.599 | -0.359 0.05§ -0.094 0.053 15
1994 9 -2.006 | 1.774| 0.860 0.023 0.92F -0.211 0.085 -0.010.109 27
1995 8 0.882 1.138| -0.796 0.020 | 0.426 | -0.240 0.112 0.013 34
1996 9 -1.834 | 1.347| 0.952 0.183 -0.168 -0.110 -0.138.028 -0.079 29
1997 6 1.422 | -0.619] -0.962-0.061 -0.033 0.044 19
1998 7 3.110 0.329| -3.747-0.019| 0.199 -0.041 --- —-0.100 21




Remote Sen2011, 3 243
1999 6 2.957 -2.930 -0.126 -0.133 0.111 0.070 - 37
2000 5 2.037 2.063 0.047, 0.053 0.951 19
2001 9 3.960 2.445| -0.926 0.125 0.282 0.251] -0.061-0.175 0.201 -- 41
2002 7 1.759 -1.390 0.077 0.781 0.025 -0.08¢ 1.807 38
2003 6 0.488 | -1.541 0.023 0.886 | -0.167 -1.712 40
2004 9 0.725 -1.819 0.037 1.090| -0.269 -0.024 0.105 -0.155| -2.422) 23
2005 9 3.884 3.217 0.050 0.184 -0.258 -0.0450.046 -0.060 1.442 25
2006 8 -2.224 | 2.160| -1.448 0.050 0.359 —-0.063 0.025 2.768 35
2007 8 2.648 -2.672 0.058 0.296 | -0.197 —0.08¢ 0.157 0.686 29
2008 10 0.501 0.613| -2.466 0.025 0.527 | -0.091 -0.046 0.053 -0.174 1.829 18

Total # from 1981-2008 26 24 23 22 21 21 19 17 13

Appendix A8. Desert length of season summartable for series of stepwise multilinear regressitodels, run for each year from 1981 to
2008, where the length of season metric is a respoariable to a suite of ten explanatory enviramadevariables (described in Table 1) and
listed here (top row) in a descending order ofl totember of the year-to-year occurrences (bottow) iia the 1981 to 2008 models. The table
presents coefficient estimatgy {or each of the environmental variables that gbated significantly (g0.05) to the explanatory power (last
column) of the regression models and were includede total number of environmental X-variablesc@d column) present per year (first
column). Note: T—temperature; PPT—precipitationi.Arall—antecedent fall.

Year X—var Jyear Ant.Fall | Winter | Spring | Summer | Winter | Carbon | Spring | Ant.Fall Elevation Summer AdiR > 100(%)
T® PPT T® PPT T° content| PPT PPT T®
1981 6 0.690 0.198 0.022| -0.718 -0.150 0.020 - - 7
1982 5 -0.014| 0.195 -0.379 -0.044 0.076 12
1983 6 1.957 0.011| -0.701 --- -1.069| -0.109, 0.017 8
1984 2 -0.558| 0.022 4
1985 6 2.141 1.548) -0.143 -2.038 0.072 (CF 1 15
1986 7 1.687 | -0.030, -1.936 -0.081 | —-0.384 -0.110 -0.118 34
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1987 7 1.479 | -0.034] -2.082 0.060 0.315 0.134 -0.041 17
1988 7 0.880 | -0.0200 -1.999 -0.056 0.384| -0.054 --- -0.204 22
1989 5 -1.096 | -0.019 0.415 -0.042 0.057 27
1990 6 0.637 | -0.042) -0.568 -0.020 | —-0.708 0.040 22
1991 8 1.677 | -0.007 0.012| -0.95 —0.1( -0.027 --- 0.058 -0.476 8
1992 4 -0.046| -1.072 -0.017 -0.037  --- 21
1993 2 0.017 —-0.265 2
1994 8 0.655 0.020 0.047| -0.56 —-0.16 —-0.0610.021 -0.799 15
1995 6 0.619 | -0.043 -0.552 0.082 | -0.260[ 0.077 7
1996 8 -2.473 | -0.054 -3.230 --- 2.667 | -0.357 0.048 0.201 3.856 23
1997 8 3.126 | -0.087] -0.681 -0.034 | -2.306/ -0.444 0.059 0.029 28
1998 8 3.371 | -0.035] -2.964 --- -0.388| -0.242| -0.02{1 -0.078 0.122 13
1999 6 -0.401 | -0.076 -0.073 -0.14 0.063 0.053 11
2000 5 0.569 -0.676 0.039 0.074 0.727 12
2001 7 2514 | -0.022] -0.305 --- -1.774 0.037 -0.159 —0.55¢ 14
2002 9 3.318 0.035| -1.117Y 0.063 | -2.485 0.078| -0.019-0.017 -0.210 16
2003 9 -0.716 | -0.049 -0.311 -0.036 | 0.502 0.203] 0.021 0.080 -0.104 12
2004 8 0.258 | -0.033 -0.461 -0.030 0.315| -0.019 0.075 —-0.094 12
2005 7 -3.206 | —0.080 -0.098  2.32§ 0.075 —-0.107 0.651 26
2006 8 -3.336 | 0.064| -1.131 --- 2.050 0.208| -0.09y --- 0.120 3.065 31
2007 9 0.621 | -0.017] -1.929 0.062 0.134| 0.012 -0.03% 0.053 1.41 20
2008 8 1.899 0.034| -2.096 -0.257 | -1.087, 0.527| -0.192 --- —-0.284 20

Total # from 1981-2008 24 23 22 20 19 19 18 16 15 9
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Appendix A9. Desert NDVI based productivity summarytable for series of stepwise multilinear regressimdels, run for each year from
1981 to 2008, where the NDVI-based productivity ngeis a response variable to a suite of ten exitaly environmental variables
(described in Table 1) and listed here (top rowaidescending order of total number of the yearetar occurrences (bottom row) in the
1981 to 2008 models. The table presents coefficastimates f{) for each of the environmental variables that kbated significantly

(p<0.05) to the explanatory power (last column) ofbgression models and were included in the tataiber of environmental X-variables
(second column) present per year (first columnteNd—temperature; PPT—precipitation; Ant. Fall—ergdent fall.

Year X-var./year Carbon | Winter | Winter | Ant.Fall | Spring | Spring | Ant.Fall Elevation Summer | Summer AR % 100(%)
content| T° PPT L Te PPT | PPT PPT L
1981 10 0.093 | 0.208| 0.009f -0.452 0.469 -0.0050.010 0.024 0.004 -0.14¢ 48
1982 9 0.087 | -0.299] 0.014 0.428 0.678 0.004 0.007 00.0 -0.821 39
1983 8 0.115 | 0.363| 0.026] -0.297 0.004 -0.003 0.015 -+ 0.095 63
1984 7 -0.025| 0.117| 0.0127 -0.228 0.112 -0.004 --- 0.041 31
1985 9 0.031 | 0.117| 0.008f -0.262 0.154 -0.0030.002 0.029 -0.012 24
1986 7 0.066 | 0.051| 0.018 -0.092 -0.0280.004 -0.028 52
1987 7 0.130 | 0.380| 0.015 -0.220 -0.3y7 --- -0.014 0.155 33
1988 10 0.078 | -0.311] 0.012 0.255 0.507 0.003 -0.006 -0.0300.002 -0.680 32
1989 10 0.029 | 0.109| 0.0104 -0.309 0.400 0.002 0.006 0.023 0100.| -0.192 38
1990 7 0.070 | -0.280 0.007 0.376 0.298 0.001 .496 22
1991 6 0.030 | 0.136| 0.011] -0.123 0.027 @G04 38
1992 8 0.073 | 0.177| 0.002f -0.170 -0.0820.005 | -0.002 -0.007, 27
1993 9 0.065 | 0.131| 0.0100 -0.062 -0.0550.008 | -0.008 -0.017 —0.007 57
1994 8 0.106 | -0.042] -0.003 0.200 0.016 -0.002 0.042 020. 34
1995 8 0.105 | 0.058| 0.005 0.167 -0.0990.016 | -0.005 0.022 39
1996 6 0.015 | 0.079| 0.030 -0.011 --- 0.040 -0.012 54
1997 9 0.031 | -0.174] 0.007 0.312 -0.1200.007 | -0.007 0.013 —0.004 22
1998 7 0.073 | -0.025/ 0.003 0.401 -0.2860.005 0.015 14
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1999 8 0.082 -0.095| 0.38§ 0.007 0.003 0.016 —0.009-0.346 44
2000 6 0.195 | 0.004 -0.118 --- 0.008 0.036 -0.004 39
2001 7 0.109 0.187 0.21§ 0.014 -0.005 0.042 340 73
2002 6 0.076 | -0.159 0.018 0.295 0.097 gh1 56
2003 8 0.140 0.058| -0.003 -0.069 0.332 0.019 -8.00 -0.418 52
2004 7 0.120 0.326| 0.014] -0.246 —0.0070.004 —-0.066 47
2005 9 0.066 0.162| 0.011 —-0.167-0.006| —-0.006 0.011 —-0.006 0.064 52
2006 6 0.038 0.127| 0.005 0.046 -0.080 --- 0.037 42
2007 9 0.067 | -0.109] 0.016 0.249 —-0.003-0.004 0.017 0.015 -0.100 46
2008 10 0.084 | -0.189] 0.013 0.357 0.072 -0.0140.007 -0.018 -0.016 -0.328 23

Total # from 1981-2008 27 26 26 25 22 21 20 20 18 16
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