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Abstract: Significant instrumental systematic errors are known to exist in data captured 

with range cameras using lock-in pixel technology. Because they are independent of the 

imaged object scene structure, these errors can be rigorously estimated in a self-calibrating 

bundle adjustment procedure. This paper presents a review and a quantitative comparison 

of three methods for range camera self-calibration in order to determine which, if any, is 

superior. Two different SwissRanger range cameras have been calibrated using each 

method. Though differences of up to 2 mm (in object space) in both the observation 

precision and accuracy measures exist between the methods, they are of little practical 

consequence when compared to the magnitude of these measures (12 mm to 18 mm). One 

of the methods was found to underestimate the principal distance but overestimate the 

rangefinder offset in comparison to the other two methods whose estimates agreed more 

closely. Strong correlations among the rangefinder offset, periodic error terms and the 

camera position co-ordinates are indentified and their cause explained in terms of network 

geometry and observation range. 
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1. Introduction 

Data captured with range cameras using lock-in pixel technology to measure the phase difference of 

a backscattered RF-modulated optical signal are contaminated by many random and systematic errors 

that can be divided into four categories. The first comprises shot noise and dark noise sources whose 

influence on captured range camera data can be reduced by temporal and spatial filtering strategies [1]. 

A detailed discussion of these errors can be found in [2]. The second category includes systematic 

artifacts that depend on the nature of the operating environment such as the ambient imaging 

conditions and the object scene structure. This includes biases due to external temperature, multi-path 

reflections, internal scattering and mixed pixels [3]. The third group comprises scene-independent 

systematic artifacts due to the camera operating conditions such as the warm-up time [4] and the 

integration time [3].  

The best practice for minimizing the impact of the errors belonging to the second and third groups is 

to control the imaging conditions by, for example, allowing a sufficient camera warm-up time, holding 

the integration time constant during data capture and controlling the room temperature. While such 

measures may be possible in a laboratory environment, they may not be for real scenes, particularly in 

harsh environments. Other artifacts such as mixed pixels can be identified and removed after image 

acquisition [1]. The complex phenomena of multi-path and internal scattering are more difficult to 

control due to their dependence on object scene structure. The modeling and correction of scattering 

has been the focus of much work recently [5,6]. 

The final category comprises the scene-independent instrumental systematic effects that are due to 

individual component and assembly errors. This group includes lens distortions (radial and 

decentering) and ranging errors: the rangefinder offset, the scale error, periodic errors and clock-skew 

or latency errors, all of whose physical cause can be easily explained. It may also include 

experimentally-identified effects such as amplitude-dependent range errors [7]. These errors are 

deterministic and independent of the scene so they can be readily modeled and determined in a  

pre-calibration procedure. The estimation of this group of parameters by different calibration methods 

is the subject of this paper. 

A multi-station self-calibrating bundle adjustment is ideal for camera calibration for a number of 

reasons summarized in [8] that can be easily extended to range cameras: 

1. No special facilities or equipment are required except for the camera itself and some form of 

primitive target features such as structured point targets (the focus here) or a planar surface; 

2. The targets’ object-space co-ordinates need not be known absolutely; only initial approximate 

values are required since they can be estimated in the adjustment; 

3. A two-dimensional (2D) target field can be used provided that certain first-order design features 

are incorporated in the calibration network; 

4. All observation types including image point measurements, ranges and independent object space 

information (e.g., spatial distances between targets) can be incorporated into the adjustment; 

5. All required systematic error models can be incorporated, usually as additive perturbations 

terms, into the collinearity and range observation equations; 

6. The stochastic model for each individual observation or observation group can be included in 

the solution; and 
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7. It yields optimal estimates of all model variables since it is based on the weighted least-squares 

criterion. 

Several researchers have investigated various forms of the self-calibration approach for range 

cameras that can be classified as either a two-step process or a one-step, integrated approach. The 

purposes of this paper are to review and compare three different self-calibration approaches to range 

camera self-calibration and to answer the question of whether one method is superior to the other. This 

commences with a review of the relevant geometric functional models for the observations augmented 

with scene-independent instrumental systematic error terms. A detailed review of the calibration 

approaches in question and a discussion of pertinent network design issues then follow. A performance 

comparison has been conducted using datasets captured with two different range cameras (an SR3000 

and an SR4000) calibrated by the three different methods. The reported bases for comparison are the 

estimated observation precision, co-ordinate determination accuracy, error parameter precision and 

correlation between model variables. 

2. Range Camera Geometric Functional Models 

The pinhole camera model is adopted as the basis for range camera geometric modeling. The first 

two functional models stem from the collinearity condition in which an object point (X, Y, Z)i, its 

homologous image point (x, y)ijk and the perspective centre of the image (X
c
, Y

c
, Z

c
)j captured with 

sensor k lie on a straight line: 
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where (xp, yp, c)k are the interior orientation parameters of sensor k, namely the principal point offset 

and principal distance; and 
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(3)  

in which (, , )j are the camera orientation angles and R1, R2 and R3 are rotation matrices. 

The second geometric condition is that the length of this line is equal to the observed range 
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(4)  

Deviations from these idealized conditions are modeled as additive random (x, y, )ijk and systematic 

(x, y, )ijk error terms. 

The systematic error models reported here are confined to those found to be statistically significant 

in the range cameras under investigation, namely radial lens distortion (k1, k2, k3)k and decentering lens 

distortion (p1, p2)k 
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and the constant rangefinder offset d0k, periodic errors (d2 to d7)k and clock-skew errors (e1, e2)k 

    ijk2ijk1

3

1m

ijk

m

1m2ijk

m

m20ijk yexe
U

2
cosd

U

2
sindd

kkkkk

































 



  (10)  

The series in Equation (10) comprises periodic errors at wavelengths that have been identified in the 

SR3000 data, namely the unit length, U (half the modulation wavelength), and fractions thereof, U/2 

and U/4. A mathematical explanation for the existence of the U/4-wavelength terms is given in [9]. He 

shows they are caused by odd-harmonic multiples of the fundamental frequency contaminating the 

modulating envelope, which results in a slightly square waveform. The physical cause of this is 

attributed to the non-ideal response of the illuminating LEDs in [10,11]. Pattinson also provides a 

mathematical derivation for the existence of the U/2-wavelength terms but admits that their physical 

cause is not clear. The longer-wavelength terms could be due to internal signal interference [12] that 

can occur at the unit length and at fractions thereof. 

3. Range Camera Self-Calibration Approaches 

Three self-calibration approaches are described. Two of these are two-step methods in which 

separate calibrations are performed for the camera-lens parameters (principal point offset, principal 

distance and lens distortions) and for the range-error parameters (rangefinder offset, periodic errors 

and clock skews). In the first method, the two-step independent (TSI) method, the camera-lens and 

range-error calibrations are performed as separate processes using separate facilities as depicted in 

Figure 1. First, an established procedure [8] is used for the camera-lens calibration from x and y 

observations of targets in a network of convergent images. Then, a planar target is imaged at normal 

incidence (the normal images) to determine the range-error parameters. The authors of [3] perform 

their range-error calibration using a small, planar target moved along an interferometric calibration 

track that allows very accurate camera-target positioning. An extended, featureless planar surface is 

used in [4] and the camera-plane orientation is established with two parallel tape measures. The 

orientation can also be performed by space resection of the camera from independently-surveyed 

targets on the plane, which is the procedure adopted for the testing described herein. Regardless of the 

orientation method used, reference ranges between each camera’s perspective centre and the target 

surface are computed using the point observations in the already-oriented normal images and the 

estimated camera-lens parameters. These are compared with the observed ranges to derive the range 

differences, , from which the range-error parameters are estimated by least-squares. 
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Figure 1. Two-step independent range camera calibration. (a) Camera-lens parameter 

calibration from x and y observations in the convergent images (red). (b) Range-error 

calibration from range  observations in the normal images (blue). 

   

(a)        (b) 

In the second method, the two-step dependent (TSD) procedure, a common facility is used for both 

calibration processes (see Figure 2). The camera-lens calibration is first performed with an established 

procedure using the x and y observations of targets on a planar surface observed in a network of both 

convergent and orthogonal images. The camera-plane orientation is thus determined since the position 

and orientation of each image are estimated in the calibration. The reference ranges can then be 

computed from the orthogonal camera stations to points on the plane [7,13] or to the target centers [14] 

and used for the range-error calibration as described previously. Though this is a more integrated 

approach than the TSI procedure, it is fundamentally a two-step method. 

Figure 2. Two-step dependent range camera calibration. (a) Camera-lens parameter 

calibration from x and y observations in both the convergent and the normal images (red). 

(b) Range-error calibration from range  observations in the normal images (blue). 

 

(a)        (b) 

The third approach, described in [15] and depicted in Figure 3, is called the one-step integrated 

(OSI) procedure in which both sets of calibration parameters (camera-lens and range-error) are 
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estimated in a single step: a self-calibrating bundle adjustment with ranges. A 2D field of targets is 

imaged from both convergent and orthogonal camera locations. To prevent scattering errors from 

biasing the solution, the range observations from the convergent stations are excluded from the bundle 

adjustment. In this approach the camera orientation is performed concurrently and there is no explicit 

computation of reference ranges. 

Figure 3. One-step integrated range camera calibration. Simultaneous calibration from x 

and y observations in the convergent image (red) and x, y and  observations in the normal 

images (green). 

 

The two-step calibration described in [1] exploits a high-resolution digital camera rigidly mounted 

with the range camera in a rig assembly to improve the quality of the camera-lens parameters. The 

estimation of the range errors is done in parallel with the camera self-calibration by comparing 

reference and observed ranges to a planar checkerboard pattern. The authors use B-splines to model 

the periodic errors, called wiggling error, rather than trigonometric functions. This method is not 

investigated here since only methods that do not rely on an ancillary device have been implemented. 

4. Network Design Measures 

It is important to discuss some pertinent aspects of self-calibration network design that can have an 

impact on the parameter estimates. In terms of zero-order design, a minimally-constrained datum 

definition is critical to prevent (potential) biases in the targets’ object-space co-ordinates from 

propagating into the calibration parameters. The inner constraints approach has been adopted for this 

purpose in this study. A minimally constrained solution can be used for the traditional camera 

calibration of both two-step approaches, but the datum definition for normal-image orientation by 

resection in the TSI method is over-constrained. It is relevant to note that that omission of the range 

scale error from Equation (10) will not introduce any biases in a minimally-constrained bundle 

adjustment. 

Several first-order design measures of network configuration are required to reduce parameter 

correlations and improve the calibration parameter precision. First, it is well known in photogrammetry 

that observations of multiple targets in multiple images are needed for self-calibration. The use of a 2D 

target field is permissible, as mentioned, but convergent geometry is needed to reduce the principal 
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distance (c)-camera depth position (Y
c
) correlation [8] since their relationship is constant when a 

planar target field is imaged at normal incidence: 

cc YY

c

Y

c
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

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 (11)  

The inclusion of range observations very effectively mitigates this source of correlation in the 

orthogonal images provided that convergent images are present in the OSI network [15] but gives rise 

to another dependency described below. Inclusion of images with orthogonal exposures (i.e., roll-angle 

diversity) is also needed for the de-correlation of the principal point and the orientation angles [16]. 

The estimation of the range errors requires several images captured at multiple stand-off distances 

over the full ambiguity interval having a sufficiently-small spacing to prevent aliasing of the periodic 

errors. A planar target field should be imaged at normal incidence to minimize the effects of 

scattering [7] as previously mentioned. However, this gives rise to high correlation between the 

rangefinder offset (d0) and the camera position in the depth dimension (Y
c
) whose differential 

relationship is given by 
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Under the described imaging conditions this differential relationship can also be written independent of 

the object space parameters as 
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which is unity at the principal point and decays monotonically outward, reaching minimum values at 

the corners of the image format. This correlation is realized explicitly in the integrated approach but 

not in the two-step methods [17] where the camera position and orientation and the rangefinder offset 

are estimated separately. 

5. Experiment Description 

An experiment has been conducted to compare the performance of the three range camera 

self-calibration methods: 

 The one-step integrated (OSI); 

 The two-step independent (TSI); and 

 The two-step dependent (TSD). 

Two cameras were tested: a SwissRanger SR3000 and a SwissRanger SR4000. Both feature a 

sensor area of 176 × 144 pixels
2
 and a 40 m pixel pitch. The respective nominal principal distances 

are 8 mm and 10 mm and the nominal unit lengths are 7.5 m and 5 m.  

A multi-resolution, planar target field, pictured in Figure 4, was established for the testing. It 

comprised 106 circular white targets having black backgrounds and variable diameters (45 mm, 

150 mm and 280 mm) mounted on a wall spanning an area of 4.3 m × 2.9 m. These dimensions were 

chosen to fill the SR3000 camera’s field of view at a standoff distance of 7.0 m. The root mean square 

flatness of the plane as defined by all of the target centers was determined by independent total station 
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survey (see Section 6.2) to be 4.6 mm. Each network comprised a set of convergent images and a set of 

orthogonal images captured every 0.5 m starting from about 1.0 m up to about (U-0.5 m). The 

integration time for each camera was chosen so as to strike a balance between detector saturation at 

close range and signal-to-noise ratio and at long range (i.e., near the ambiguity interval) and was held 

constant during data capture. Each camera was warmed up for at least one hour prior to data capture. 

Figure 4. Calibration target field. 

 

The SR3000 calibration parameter set comprised the first term of radial lens distortion and all nine 

range-error terms in Equation (10). The SR4000 model included two radial lens parameters, both 

decentering distortion terms and the rangefinder offset. The calibration model terms used are 

summarized in Table 1. Each camera’s parameter set includes only significant terms that were 

identified by the hybrid statistical testing procedure described in [15]. Reference ranges were 

computed at the target centers for the two-step calibration approaches. Although [10] shows that range 

precision is a function of the range, a range-independent variance was used here since no practical 

differences were found between this and range-dependent models [15]. 

Table 1. Calibration parameters for the two cameras tested. 

Camera Camera-lens parameters Range error parameters 

SR3000 xp, yp, c, k1 d0, d2, d3, d4, d5, d6, d7, e1, e2 

SR4000 xp, yp, c, k1, k2, p1, p2 d0 

The comparison is conducted in terms of four measures of self-calibration quality: 

 Observation precision; 

 Co-ordinate accuracy; 

 Parameter precision; and 

 Parameter correlation. 
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6. Experiment Results and Discussion 

6.1. Observation Precision 

Observation precision is measured with the root mean square error (RMSE) calculated from the 

self-calibration residuals and is summarized in Tables 2 and 3 along with the degrees-of-freedom for 

each adjustment. For the SR3000, the TSI procedure gives a slightly better, but not significantly 

different at the 95% confidence level, image point observation precision. This may be simply due to a 

combination of the observation set homogeneity and the lower redundancy (789) of the TSI  

camera-lens calibration adjustment. Differences also exist between the range precision estimates, with 

the OSI method being slightly better than the two-step approaches. The SR4000 results as a function of 

calibration method are consistent with those of the SR3000 and there are no statistically significant 

differences between precision measures. It is easy to confirm numerically that the contribution of 

target field un-flatness to the range uncertainty is only 0.6 mm for the SR3000 and 0.5 mm for the 

SR4000 since fewer targets were used for its calibration, so this is not a significant contributing factor. 

From a practical standpoint no method is superior in terms of observation precision since the largest 

difference in range RMSE is less than 2 mm and the image point co-ordinate RMSE differences are 

0.3 m or less. The former represents only a 10% difference in range precision and the latter is only 

0.3 mm when projected into object space at the 7.5 m ambiguity interval of the SR3000. 

Table 2. SR3000 self-calibration precision statistical summary. 

 One-step 

integrated (OSI) 

Two-step 

independent (TSI) 

Two-step dependent 

(TSD) 

Degrees-of-freedom          27 images/88 object points 

Integrated calibration 2,428 -  

Camera-lens calibration - 789 
1,875 

Camera orientation - 1,066 

Range calibration - 552 552 

Self-calibration residual RMSE 

x (m) 3.9 3.8 3.9 

y (m) 4.0 3.7 4.0 

 (mm) 16.4 17.9 18.2 

Table 3. SR4000 self-calibration precision statistical summary. 

 One-step 

integrated (OSI) 

Two-step 

independent (TSI) 

Two-step dependent 

(TSD) 

Degrees-of-freedom          20 images/69 object points 

Integrated calibration 969 -  

Camera-lens calibration - 303 
738 

Camera orientation - 430 

Range calibration - 235 235 
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Table 3. Cont. 

 One-step 

integrated (OSI) 

Two-step 

independent (TSI) 

Two-step dependent 

(TSD) 

Self-calibration residual RMSE 

x (m) 3.5 3.1 3.5 

y (m) 3.6 3.5 3.6 

 (mm) 12.1 13.0 12.5 

6.2. Accuracy 

Accuracy is measured with the RMSE computed from the differences between corrected range 

camera co-ordinates and independently-surveyed (by a Leica TCR 803 total station) co-ordinates and 

is summarized in Table 4. Each range camera dataset was rigidly transformed to the co-ordinate 

system of the surveyed co-ordinates. Overall the RMSE measures differ by 2 mm or less. For the 

SR3000 dataset the OSI results are slightly superior in the depth dimension, which corresponds closely 

to the range dimension. The differences between the two-step methods for the SR3000 are not 

statistically significant, but their differences with the OSI method are. For the SR4000 the accuracy of 

the TSI method is superior by about 1 mm in the “planimetric” dimensions (lateral and height) but 

there are no differences in the depth dimension. However, no statistically significant differences exist 

at 95% confidence. The reason for the close agreement of the RMSE measures from the three 

calibration methods, despite the large differences in the d0 estimates analyzed in the next section, is the 

compensation of any un-modeled rangefinder offset error by the translation parameters of the rigid 

body transformation (cf. Equation (12)). Again from a practical perspective, no method can be 

identified as being significantly better than the others. 

Table 4. Accuracy assessment statistical summary. 

 
One-step integrated 

(OSI) 

Two-step independent 

(TSI) 

Two-step dependent 

(TSD) 

SR3000          179 points/4 independent images 

RMSE X (mm)   (lateral) 8.1 8.7 8.3 

RMSE Y (mm)   (depth) 14.9 16.7 16.8 

RMSE Z (mm)   (height) 5.1 5.2 5.1 

SR4000          124 points/5 independent images 

RMSE X (mm)   (lateral) 4.1 3.1 4.3 

RMSE Y (mm)   (depth) 8.4 8.2 8.4 

RMSE Z (mm)   (height) 3.6 2.5 3.7 

6.3. Parameter Correlation and Precision 

Despite the slight apparent superiority of the OSI method, one of its drawbacks is the high 

correlation between the rangefinder offset d0 and the perspective centre position Y
c
. Figure 5 shows the 

strong functional dependence between these two variables in terms of the partial derivative given by 
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Equation (12). Although the point distribution in the image plane is quite favorable for both datasets, 

the partial derivative drops only to about 0.9 near the image corners due to the cameras’ narrow field 

of view. 

The rangefinder offset-perspective centre correlation is exacerbated by the longest-wavelength sine 

term (d2) of the periodic error model. The large-magnitude correlations (Corr) among these three 

variables (0.97 between d0 and d2 and 0.99 between Y
c
 and d0), which do not explicitly exist in the 

two-step calibration results, can be seen in Table 5. Removal of the d2 term from the OSI calibration 

model has a very positive impact on the rangefinder offset d0 in terms of its precision (d0), which 

drops from 12.0 mm to 2.8 mm, and its correlation with the camera position (CorrY
c
-d0), which drops to 

0.87). It has a profound impact (29 mm change) on the estimated value of d0 but does not affect the 

observation precision as measured by RMSE . The d0 estimates of the other methods are less affected 

by the removal of d2, but the observation precision of the TSI method is affected considerably as the 

RMSE  increases from 17.9 mm to 25.4 mm. It is also worth noting that the principal distance, c, 

estimates and its precision from the OSI and the TSD methods match very closely, whereas the TSI 

seems to underestimate c whilst overestimating d0. The principal distance precision (c) in this method 

is lower due to the absence of the orthogonal images in the camera-lens calibration. The 

aforementioned de-correlation of the principal distance and the camera position in the OSI method and 

lack thereof in the two-step approaches can be seen in the (CorrY
c
-c) coefficients of Tables 5 and 6. 

Selected results from the SR4000 calibrations are presented in Table 6. For this camera the OSI and 

TSD parameter estimates match very closely. Again the TSI method underestimates the principal 

distance and over-estimates the rangefinder offset d0. As in the SR3000 case, the two-step methods 

give a more precise rangefinder offset d0 since the uncertainty in the perspective centre position is not 

explicitly modeled. The principal distance precision from the TSI calibration is again comparatively 

lower for both cameras due to the lack of the orthogonal images. 

Figure 5. The partial derivative of Equation 12 as a function of radial distance, r, and 

histograms of image point distribution in the normal images for each dataset. (a) SR3000; 

(b) SR4000. 
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Table 5. Selected SR3000 adjustment results with and without the d2 term in the model. 

 One-step integrated 

(OSI) 

Two-step independent 

(TSI) 

Two-step dependent 

(TSD) 

with d2 without d2 with d2 without d2 with d2 without d2 

c (mm) 8.164 8.164 8.098 8.167 

c (m) 8.6 8.6 23.8 8.7 

d0 (mm) 127.9 98.8 141.2 149.4 108.5 110.9 

d0 (mm) 12.0 2.8 1.1 1.5 1.1 1.1 

max |CorrY
c
-c| 0.15 0.40 0.87 0.95 

Corrd0-d2 −0.97 - 0.31 - 0.37 - 

max |CorrY
c
-d0| 0.99 0.87 - - - - 

RMSE  (mm) 16.4 16.5 17.9 25.4 18.2 18.9 

Table 6. Selected SR4000 adjustment results. 

 One-step integrated 

(OSI)  

Two-step independent 

(TSI) 

Two-step dependent 

(TSD) 

c (mm) 10.020 9.968 10.026 

c (m) 12.4 62.3 12.6 

d0 (mm) −4.7 −8.7 −4.8 

d0 (mm) 2.7 0.8 0.8 

max |CorrY
c
-c| 0.19 0.57 0.86 

max |CorrY
c
-d0| 0.92 - - 

The role of the d2 term can be seen in the TSI results plotted in Figure 6. Clearly the periodic error 

model without the d2 term is inadequate as it does not accurately fit the range difference observations: 

it overshoots the data between 1 m and 2 m and undershoots between 5 m and 7 m. The required d2 

sine trend (offset by the constant d0 for clarity) and truncated by the observation limits (6.0 m or 80% 

of the 7.5 m unit length), exhibits not just sinusoidal behavior but also a linear trend. It has been 

proven in [18] that an un-modeled constant range bias propagates into the residuals as a linear function 

of range in a one-dimensional ranging sensor self-calibration network. This linear dependence helps to 

explain the source of the high d0–d2 correlation in the OSI method. The fact that the d2 term is not 

needed for the OSI and TSD calibrations suggests that these methods yield better perspective centre-d0 

parameter-set estimates, even though their numerical realizations differ, than the TSI method. 

Furthermore, it also suggests that the need to estimate d2 may be an artifact of the calibration method 

caused by the data truncation, at least for the SR3000 camera investigated here. The collection of range 

observations over the full unit length, U, would alleviate this problem, but in practice this may be 

difficult due to saturation errors that occur at close range and low signal-to-noise ratio at long range. 

The integration times chosen for the data capture in this experiment were set so as to achieve a 

reasonable trade-off between these two factors and, as a result, the collection of data at close range 

(less than 1.0 m) had to be sacrificed. 
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Figure 6. Two-step independent calibration range differences and error model trends. 

 

7. Conclusions 

A test comparing the performance of three different range camera self-calibration methods has been 

conducted with two different cameras. The OSI and TSD methods gave very similar principal distance 

estimates for both datasets and similar rangefinder offset estimates for one of the datasets. The TSI 

approach appears to underestimate the principal distance and overestimate the rangefinder offset 

relative to the other two methods. These parameters were tightly coupled to the perspective centre 

estimation method, but the different numerical values realized by different calibration methods had 

little impact on the metrics used to quantify calibration method efficacy. Though the OSI method was 

found to be slightly superior, the observation precision and accuracy differences are not of practical 

consequence. The differences in image point co-ordinate precision were 0.3 m or less and were 2 mm 

or less in range, while the largest difference in co-ordinate RMSE from the accuracy assessment 

was 2 mm. 

The modeling of periodic range errors was observed to depend on the calibration method used. The 

longest-wavelength sine term was found to be critical for the TSI method in terms of observation 

precision. This term was not critical for the other two methods, which is a useful outcome since it 

was found to weaken the OSI solution due to the truncated observation range over the camera’s 

ambiguity interval. 
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