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Abstract: So far, only a few studies have been carried out in central European forests to 

estimate individual tree stem volume of pine trees from high resolution remote sensing 

data. In this article information derived from airborne laser scanner and multispectral line 

scanner data were tested to predict the stem volume of 178 pines (Pinus sylvestris) in a 

study site in the south-west of Germany. First, tree crowns were automatically delineated 

using both multispectral and laser scanner data. Next, tree height, crown diameter and 

crown volume were derived for each crown segment. All combinations of the derived tree 

features were used as explanatory variables in allometric models to predict the stem 

volume. A model with tree height and crown diameter had the best performance with 

respect to the prediction accuracy determined by a leave-one-out cross-validation: Root 

Mean Square Error (RMSE) = 24.02% and Bias = 1.36%. 

Keywords: stem volume; single trees; airborne laser scanning; multispectral line scanner 

data; Pinus sylvestris 

 

1. Introduction 

In general two main approaches are distinguished to estimate forest inventory attributes from 

airborne laser scanner (ALS) data [1]: (1) Area based methods, also described as canopy height 
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distribution (CHD) approaches; and (2) Individual-tree-detection (ITD) methods. Often the CHD 

approaches are associated with low-resolution and the ITD methods with high-resolution data. 

In Central Europe, the majority of studies have concentrated on CHD approaches to estimate forest 

inventory attributes such as stand heights, basal area or timber volume per hectare. Usually 

geo-referenced plots from operational inventories were utilized as reference data. Metrics related to 

canopy height and densities have been used as predictors in regression models and nonparametric 

methods (e.g., [2-5]). 

In addition, a number of single tree delineation algorithms were developed. Possibilities to detect 

individual tree crowns in deciduous and mixed temperate forests in Germany are described in [6]. 

In [7] a 3D single tree modeling procedure was developed and tested in a mixed forest in southern 

Germany. A 3D segmentation technique using full-waveform ALS data was presented by [8]. The 

procedure was tested in the Bavarian Forest National Park in south-eastern Germany. The potential of 

full-waveform ALS for tree species classification in a mixed forest in Austria was presented by [9]. 

However, there are fewer ALS studies in central European forests that explored the estimation of 

individual-tree-based information relevant for forest inventories such as tree height, stem diameter and 

stem volume. Experiments have been carried out in the Bavarian Forest National Park in south-eastern 

Germany [10-12]. A first European-wide attempt to derive single tree information from ALS data was 

carried out within the HIGH-SCAN project [13]. 

The main reason why CHD approaches have been favored is due to the fact that these methods are 

considered to be more robust than ITD techniques [14,15]. Particularly in dense deciduous forests in 

the temperate climate zones it can be difficult to delineate individual trees with satisfying accuracy [6]. 

Another reason why the estimation of single tree attributes has not been studied in detail is that 

appropriate reference data is often missing. The positions of trees on the ground have to be measured 

with high precision. Otherwise it is very difficult and often impossible to link crown segments which 

were delineated based on remote sensing data with trees measured in the field. 

The objective of this study was to analyze the potential of high-resolution ALS and multispectral 

line scanner data for the extraction of individual-tree-based information for pine trees (Pinus sylvestris) 

in a study site in the south-west of Germany. The main objective was to assess the accuracy of several 

allometric models for stem volume estimation of automatically delineated trees. The results were 

analyzed and compared to other studies carried out in Germany and Scandinavia. 

2. Test Site and Data 

The study area is located in the south-west of Germany, north of the city of Karlsruhe within the 

federal state of Baden-Württemberg and has a size of 924 ha (Its coordinates in the Gauss–Krüger 

system are: top left: 3,456,300,00/5,436,100,00 and bottom right: 3,458,400,00/5,431,700,00). A 

vegetation height model from ALS and a color-infrared (CIR) orthophoto of the study area is shown in 

Figure 1. 

The study site is characterized by flat terrain (min. height: 101 m a.s.l., max. height: 123 m a.s.l.) 

and various forest stands (pure and mixed forest) with different species and age classes. However, 

Scots pine (Pinus sylvestris) dominates the study site with 51% (in total 56% coniferous trees). 
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Figure 1. (a) Vegetation height model from ALS and (b) Color-infrared orthophoto from 

multispectral line scanner data of the study area near Karlsruhe, Germany. 

 

Four spectral channels were acquired during leaf-on conditions in July 2008 by TopoSys GmbH 

using a multispectral line scanner. One advantage of this sensor is that shadowing effects only occur 

orthogonal to the flight line [16]. The single flight strips were rectified and geo-referenced using a 

surface model, which was filtered from laser scanner data (6–7 points/m
2
) and acquired at the same 

time as the optical data. Important flight and technical parameters of the line scanner are listed in 

Table 1. 

Table 1. Flight and technical parameters of the flight campaign in summer 2008 using 

a multispectral line scanner integrated in the ―Falcon II system‖ (AGL = above ground 

level). 

Parameter Value 

Flying height 700 [m] AGL 

Spectral channels 

Blue: 450–490 [nm] 

Green: 500–580 [nm] 

Red: 580–660 [nm] 

Near infrared: 770–890 [nm] 

Viewing angle 21.6 [°] 

Pixels per line 682 

Ground sampling distance 0.4 [m] 

Full-waveform laser scanner data were measured in November 2009 by Milan Geoservice GmbH 

using the IGI Litemapper 5600 system with a Riegl LMS-Q560 (240 KHz) scanner. 
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To obtain a high point density (> 20 rays/m
2
), the study area was flown twice, first in north-south 

and then in east-west direction. Flight and system parameters are shown in Table 2. 

Table 2. Flight and system parameters of the flight campaign in summer 2009 with the 

―Harrier 56‖ LiDAR system (AGL = above ground level). 

Parameter Value 

Measurement rate 240 [kHz] 

Field of view 60 [°] 

Flying height 600 [m] AGL 

Flying speed 46 [m/s] 

Density 22 [rays/m
2
] 

Vertical/horizontal accuracy (excluding GPS errors)* ~0.1/~0.03 [m] 

*according to manufacturer information. 

The full-waveform data was processed using the software ―RiANALYZE 560‖ and was delivered in 

ASCII format with 3D coordinates of the reflections and additional information such as target number, 

number of targets in beam, echo signal amplitude and the echo pulse width.  

An ―Active Surface Algorithm‖, implemented in the software ―TreesVis‖ [17] was used to compute 

a terrain and a surface model (DTM and DSM) with 1-m resolution from the reflections. The algorithm 

employs the general technique of matching a deformable surface to the laser points by means of energy 

minimization. To estimate a model of the bare earth (DTM), the surface will be fitted to the points that 

are considered to be terrain points, which are frequently the lowest points within a defined 

neighborhood [18]. For the computation of a model including vegetation and buildings, the surface will 

be fitted to the highest reflections. A normalized DSM (nDSM), in forests often referred to as canopy 

height model (CHM), was derived as the difference model of DSM and DTM:  

nDSM(x,y) = DSM(x,y) − DTM(x,y) 

Field measurements were carried out in winter 2009 and spring 2010. Nine square field plots with a 

size of 30 × 30 m were established within forest stands dominated by Scots pine. Some selected stands 

have a low proportion of further tree species such as red oak (Quercus rubra), sessile oak (Quercus 

petraea), beech (Fagus sylvatica) and birch (Betula pendula). Figure 2 shows a 3D view (DSM with 

CIR texture) of a typical pine stand in the test site with one of the square field plots.  

Figure 2. 3D view (DSM with CIR texture) of a typical pine stand in the study area with 

one of the square field plots (visualized by the white lines). 
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Starting from the center of the plots the positions of 288 pines were determined with the help of a 

TruePulse 360 laser rangefinder. Table 3 shows the mean age of the dominant tree layer and the 

number of trees measured per plot. 

Table 3. Overview of the field plots with the mean age of the dominant tree layer and the 

number of pines measured in the field. 

Plot Age [years] Age class* Number of pines measured in the field 

1 28 II 78 

2 30 II 87 

3 55 III 14 

4 55 III 21 

5 55 III 27 

6 80 IV 14 

7 80 IV 19 

8 85 V 20 

9 123 VII 8 

*age classes are defined as: II = 2140 years, III = 4160 years, IV = 6180 years 

The following features were measured for all trees: (1) height—using a Vertex and (2) diameter at 

breast height (DBH)—using a caliper. Finally, the stem volume of single trees was computed using the 

software BDATpro developed by the Forest Research Institute of Baden-Württemberg [19] with the 

tree height and DBH as the input variables. 

3. Methodology 

3.1. Automatic Single Tree Segmentation 

The processing workflow is a slightly modified version of the algorithm described in [6] and [17]. 

The main modification is that multispectral line scanner data was integrated in the procedure as an 

additional dataset with the objective to improve the separation of coniferous and deciduous trees: 

1. In the first step the study area is classified into the classes: (a) coniferous trees and (b) deciduous 

trees. For this purpose an unsupervised classification procedure as described in [20] is employed: 

First, a forest mask is generated using intermediate reflections of the ALS data. Due to the 

characteristic structure of trees in addition to gaps in the forest canopy, intermediate reflections 

from branches, stems and leaves between the DSM and DTM can be utilized to delineate the 

forest area. Inside of the forest mask, gray value combinations of the NIR and green channel of 

the multispectral line scanner data are used to define a two-dimensional feature space. NIR and 

green channel were selected, since both channels revealed the main difference in the spectral 

reflectance of coniferous and deciduous trees in the study site. The assumption is that two 

distinct clusters can be isolated in the feature space; one represents coniferous trees and the other 

one deciduous trees. For this purpose the feature space is segmented iteratively until exactly two 

distinct clusters are generated. After that, pixels of the entire image are classified according to 
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their affiliation to one of the clusters. Next, the definition domain of the study site is reduced to 

the first class (all regions with coniferous trees). 

2. In the second processing step individual coniferous tree crowns are segmented based on the DSM 

from ALS data. DSM based segmentation techniques for crown delineation were suggested by 

several authors e.g., [21-23]. Hypothetically each convex shape in the DSM represents an 

individual tree crown. The segmentation is achieved with a ―pouring algorithm‖. The algorithm 

works similar to ―watershed segmentation‖. However, for the application of watershed 

segmentation it is necessary to invert the surface model which is not needed for the pouring 

segmentation because local maxima are used as the initial points. Local maxima are defined as 

pixels in the surface model which either alone or as a plateau have higher values than their direct 

neighbors. Thus, the maxima represent potential tree tops. The boundaries between tree crowns 

appear as valleys in the surface model. Starting from the maxima regions are expanded down to 

the deepest points of the valleys as long as there are chains of pixels in which the height values 

become smaller, similar to water drops flowing downwards in all possible directions [24]. 

3. Due to the fact that the crown segments are often too large, the tree crowns are corrected in the 

third processing step with the help of a ―ray-algorithm‖. The assumption is that height changes 

within an individual crown must be continuous. Thus, virtual rays between the tree tops (local 

maxima) and border points are generated. New border points are created if there is an 

interruption in the continuous height changes.  

A result of the automatic segmentation is shown in Figure 3. The figure shows a pine stand with age 

class III (the trees are approximately 55 years old). For better visual interpretation the irregularly 

shaped crown regions were transformed into circles. Each circle has the same center and the same size 

as the original crown segment. In Figure 3(a) the automatically delineated pines are superimposed on 

the nDSM and in Figure 3(b) on a CIR orthophoto. Additionally, in Figure 3(c) the crowns that were 

measured on the ground, at one of the field plots, are shown as red polygons (eight edges of each 

crown were projected to the ground using a densitometer). 

Figure 3. Automatically delineated pines (yellow circles) with (a) nDSM, (b) CIR 

orthophoto and (c) crowns measured in the field (red polygons). 
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Finally, visual interpretation was used to link automatically delineated crown segments with trees 

measured on the ground at one of the nine square field plots as listed in Table 3. A tree on the ground 

was only assigned to an automatically delineated crown if its position was found inside of the crown 

segment. If more than one tree position was found within a crown segment the tree height was used as 

an additional criterion. In such a case the tree with the height closest to the ALS measured tree height 

was assigned. Altogether it was possible to link 178 (61.81%) crown segments with a tree position on 

the ground. Figure 4 illustrates the number of detected and linked pines in dependence of the age class 

and Table 4 shows characteristics of the identified trees. The verification result shows only trees that 

were successfully linked to a corresponding tree position on the ground and which can be used to 

develop models for volume estimation. Cases where no field tree was found inside an automatically 

delineated crown are not considered. 

Figure 4. Number of detected pines per age class for the field plots listed in Table 3. 

 

Table 4. Characteristics of the 178 identified pine trees. 

Variable Mean Standard Deviation Min. Max. 

Height [m] 22.62 5.17 9.80 32.30 

Stem diameter [cm] 31.31 9.49 8.00 53.00 

Stem volume [m³] 0.9217 0.620 0.0124 2.8637 

3.2. Estimation of Individual Tree Features 

For each delineated tree segment the features listed in Table 5 were derived from the remote sensing 

data and were used as predictors to estimate single tree stem volume. The same or similar features are 

suggested in textbooks [25,26] and were also used by [10,11] or [22] for stem volume estimation. 

Table 5. Individual tree features derived from ALS data. 

No. Variable Unit Description Data source 

1 h [m] Tree height ALS point cloud 

2 cd [m] Crown diameter Automatically delineated crown segments 

3 cv [m
3
] Crown volume ALS point cloud and nDSM 
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3.2.1. Estimation of the Tree Height 

For each crown segment several descriptive height values were derived from the ALS point cloud 

(after subtracting the ground surface height) and were compared with the field measurements in order 

to determine the best estimate for the tree height h which is defined as the height from ground level to 

the tip of the tree. Similar to area based approaches (e.g., [27] or [28]) several height metrics were 

calculated separately for each crown segment. Quantiles corresponding to the 50, 60…, 90 height 

percentiles (hp) in addition to the maximum height were derived from the point cloud. First based on 

all echoes ahp50, ahp60, ahp70, ahp80, ahp90, ahpmax and then using only the first echoes (first reflections 

detected in the waveforms) fhp50, fhp60, fhp70, fhp80, fhp90, fhpmax. Correlations are shown in Table 6. 

The maximum height ahpmax (or fhpmax) yielded the highest correlation and was finally used as an 

estimate for the individual tree height and as predictor for stem volume estimation. 

Table 6. Correlations of different height percentiles derived from the ALS point cloud with 

tree heights measured in the field. 

Height percentiles– 

all laser points 

Correlation  

coefficient (r) 

Height percentiles– 

only first echo points 

Correlation  

coefficient (r) 

ahpmax 0,957** fhpmax 0,957** 

ahp90 0,952** fhp90 0,953** 

ahp80 0,949** fhp80 0,949** 

ahp70 0,944** fhp70 0,947** 

ahp60 0,944** fhp60 0,943** 

ahp50 0,880** fhp50 0,942** 

** Correlation is significant at the 0.01 level (2-tailed). 

3.2.2. Estimation of the Crown Diameter and Crown Volume 

As described under section 2.1 the irregularly shaped crown regions were transformed into circles. 

Each circle has the same center and the same size as the original crown segment. The diameter of each 

circle was used as an estimate for cd. 

For the estimation of the crown volume cv it was necessary to estimate the crown base height cbh of 

each tree. For this purpose a procedure for canopy layer detection as suggested by [7] was employed. 

First, all ALS reflections within a crown segment were selected and ―normalized‖ by subtracting the 

ground surface height. From the normalized points a height distribution function was derived. An 

example is shown in Figure 5 where the blue curve shows the height distribution of all laser 

reflections. Many reflections can be found near to the ground and also within the interval from 

approximately 19 to 27 m. The assumption is that this interval represents the potential crown height. 

To estimate the crown base height the one-dimensional function was smoothed with a Gaussian 

function as visualized by the red curve in Figure 5. To determine the height interval that describes the 

tree crown best, the second derivative of the smoothed function was computed. The result is shown by 

the green curve. The zero-crossings of the second derivative were analyzed and used to determine the 

potential crown base height. 
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Figure 5. Estimation of the crown base height cbh using the height distribution of laser 

reflections according to [7], Blue: height distribution function, Red: smoothed height 

distribution function, Green: second derivative of the smoothed height distribution 

function. 

 

Finally, the crown volume cv was estimated for each tree using the normalized DSM and the 

estimated crown base height cbh: 

)()(
),(

yxcbhnDSMcv
cryx

xy  


           (1) 

where cv = crown volume [m
3
]; 

cr = crown region; 

nDSMxy = Height values [m] of the nDSM for each xy position of the crown segment; 

cbh =crown base height for an individual tree [m]; 

x = raster width in x direction [m]; 

y = raster width in y direction [m]. 

3.2.3. Stem Volume Estimation 

Single tree stem volume v [m
3
] is generally estimated based on easily measured field variables such 

as tree height and stem diameter. Often allometric equations are developed [29-31] e.g., using the 

diameter at breast height d1.3 [cm] as the only predictor: 

1
31031 ddfv


 .. )(  or )log()log()log( 3.110 dv             (2) 

or a two parameter model with the tree height h [m] as an additional predictor: 

21 hdhdfv 31031


 .. ),(  or )log()log()log()log( 23.110 hdv            (3) 

210  ,,  = regression coefficients. 

Figure 6 demonstrates the very close relation between field-measured d1.3 and v for the 178 pine 

trees used in this study. In addition, a close relation can be observed for the field-measured tree height 

hfield and v as shown in Figure 7. 
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Figure 6. Allometric relationship between field measured d1.3 and v. 

 

Figure 7. Allometric relationship between field measured hfield and v. 

 

The figures justify the use of general allometric equations for the estimation of single tree volume. 

Models based on allometric relations were also developed with ALS features for CHD approaches by 

others (e.g., [27,28]) and furthermore by [32] to estimate basal area and stem volume for individual 

trees in a deciduous forest in California. 

All combinations of the tree features listed in Table 5 were explored for volume estimation. First, 

each feature was tested as the only predictor for volume estimation. Then the features were combined 

with each other in multiple regressions. The allometric models are given in Table 7. 

Table 7. Allometric models for stem volume estimation. 

No. Model 

1. )log()log()log( 10 hv    

2. )log()log()log( 10 cdv    

3. )log()log()log( 10 cvv    

4. )log()log()log()log( 210 cdhv    

5. )log()log()log()log( 210 cvhv    

6. )log()log()log()log( 210 cvcdv    

7. )log()log()log()log()log( 3210 cvcdhv    
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4. Results 

Table 8 shows the different regression models for stem volume estimation. The models were 

derived using all 178 identified pine trees. In addition to unstandardized regression coefficients also 

standardized coefficients are listed to analyze the relative importance of the predictors. Moreover the  

t-statistic is shown to determine if a variable is making a significant contribution to the model for stem 

volume estimation (if the value for significance is less than 0.05). The goodness-of-fit of the 

regressions is given in Table 9 by the coefficient of determination (R
2
) in addition to the adjusted R². 

Table 8. Regression models for stem volume estimation. 

Model 
Regression 

coefficients 

Unstandardized 

coefficients 

Standardized 

coefficients 
t Significance 

1 
)log( 0  −4.969  −42.141 0.000 

)log(h  3.575 0.951 40.799 0.000 

2 
)log( 0  −2.027  −14.409 0.000 

)log(cd  2.686 0.709 13.327 0.000 

3 
)log( 0  −2.441  −13.911 0.000 

)log(cv  1.206 0.700 13.020 0.000 

4 

)log( 0  −4.876  −48.487 0.000 

)log(h  3.101 0.825 33.162 0.000 

)log(cd  0.788 0.208 8.360 0.000 

5 

)log( 0  −5.011  −49.641 0.000 

)log(h  3.119 0.830 33.279 0.000 

)log(cv  0.348 0.202 8.109 0.000 

6 

)log( 0  −2.257  −12.247 0.000 

)log(cd  1.636 0.432 2.796 0.006 

)log(cv  0.507 0.295 1.910 0.058 

7 

)log( 0  −4.928  −46.315 0.000 

)log(h  3.086 0.821 32.900 0.000 

)log(cd  0.499 0.132 2.258 0.025 

)log(cv  0.144 0.084 1.443 0.151 

Table 9. Goodness-of-fit of the regressions. 

Model R
2
 Adj. R

2
 

1 0.904 0.904 

2 0.502 0.499 

3 0.491 0.488 

4 0.932 0.931 

5 0.930 0.930 

6 0.512 0.507 

7 0.932 0.931 
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Leave-One-Out Cross-Validation (LOOCV) was used to compare the prediction accuracy of the 

different regression models. Each single observation (here a tree crown segment) from the original 

sample was selected as ―validation data‖ and the remaining observations (n–1 out of n trees) as 

―training data‖. The prediction accuracy was computed as the absolute and relative root mean square 

error (RMSE) and Bias. The results are given in Table 10. 

   





n

i

iiCV yy
n

mRMSE
1

213 ˆ
1

 (4) 

   





n

i

iiCV yy
n

mBias
1

13 ˆ
1

 (5) 

y

RMSE
RMSE CV

CV [%]  (6) 

y

Bias
Bias CV

CV [%]  (7) 

ŷi
-1

 = predicted value of the LOOCV; 

yi = observed value; 

y  = mean of the observed values. 

Table 10. Prediction accuracy of the different regression models. 

Model RMSECV [m³] RMSECV [%] BiasCV [m³] BiasCV [%] 

1 0.2726 29.57 0.0203 2.20 

2 0.4834 52.44 0.1190 12.91 

3 0.5250 56.96 0.1191 12.92 

4 0.2214 24.02 0.0125 1.36 

5 0.2299 24.95 0.0146 1.58 

6 0.4967 53.88 0.1173 12.72 

7 0.2228 24.18 0.0129 1.40 

With respect to the RMSE and Bias model 4 with the tree height and crown diameter as the 

predictors has shown best performance. 

5. Discussion and Conclusion 

The objective of this study was to explore several allometric models for stem volume estimation of 

automatically delineated pine trees using ALS and multispectral line scanner data in a study site in the 

south-west of Germany. Independent variables that are obviously related to the stem volume were used 

as predictors. An allometric model with tree height and crown diameter (model 4) performed best with 

a RMSE of 0.2214 m
3
 (24.02%) which is much smaller than the standard deviation of the observed 

variables as shown in Table 4. The results show clearly that tree height h is by far the most important 

predictor. Model 1 with h as the only predictor explains a high proportion of variability with  
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R
2
 = 0.904. The height itself was estimated very precisely from the ALS point cloud with r = 0.957 

(RMSE = 1.5 m and Bias = 0.08 m).  

Nevertheless, it was possible to increase the strength of the relationship and to improve the 

estimation of stem volume with the crown diameter as an additional predictor. Model 5 with tree 

height and crown volume performed slightly worse which might be due to the fact, that the estimation 

of the crown base height from the ALS point cloud is not accurate enough. However, a denser point 

cloud might improve the identification of the crown base which has to be analysed in future studies. 

Moreover, the usage of all predictors (model 7) did not reduce the RMSE. In addition model 7 (and 

also 6) show a non-significant coefficient for cv which indicates once more that this variable does not 

contribute much to the models. 

The RMSE of this study is in the range of the errors in most other studies carried out in Germany 

and Scandinavia. A selection of results is given in Table 11. However, a direct comparison is not 

possible due to different study sites with different forest stands and remote sensing data in addition to 

different validation techniques. A lower RMSE was reported by [10] for Norway spruce (Picea abies) 

and Fir (Abies alba) (RMSE = 16–17%). However, the prediction accuracy in this study is very close to 

the result of [22] who estimated the stem volume of Norway spruce (Picea abies L. Karst.), Scots pine 

(Pinus sylvestris L.) and birch (Betula spp.) with an RMSE of 22%. 

Table 11. Selection of earlier studies carried out in Germany and Scandinavia to estimate 

individual tree stem volume from remote sensing features. 

Study Country Species RMSE  

[33] Southern Finland 
Scots Pine (Pinus sylvestris), Norway spruce 

(Picea abies), Birch (Betula spp.) 
31% 

[10] 

South-eastern Germany 

(Bavarian Forest 

National Park) 

Norway spruce (Picea abies), Fir (Abies 

alba), European beech (Fagus sylvatica), 

Sycamore maple (Acer pseudoplatanus), 

Norway maple (acer platanoides), lime tree 

(Tilia europaea) 

 

16–17% 

(coniferous trees) 

29–32% 

(deciduous trees) 

[11] 

South-eastern Germany 

(Bavarian Forest 

National Park) 

 

27%  

(coniferous trees) 

35%  

(deciduous trees) 

[22] Southern Sweden 

Norway spruce (Picea abies L. Karst.), Scots 

pine (Pinus sylvestris L.) and birch (Betula 

spp.) 

22% 

It was possible to delineate pine trees with an overall identification rate of ~62%. Compared to other 

studies this result is quite satisfying: In [13], 4050% coniferous trees (mainly spruces) were 

delineated correctly in a study site in Austria. In [11], an identification rate of 38.745.4% was 

reported for both coniferous and deciduous trees in the Bavarian Forest National Park also using DSM 

based segmentation algorithms. As expected the detection of trees is much worse in young forest 

stands (age class II with a tree age ≤ 40 years) and very good for plots with an age class ≥ III with 86% 
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correctly segmented trees. A DSM based segmentation technique was used in this study even though it 

is not possible to identify trees in lower canopy layers. It was assumed that a DSM based segmentation 

would be more robust compared to a tree extraction based on the ALS point cloud as suggested by 

others (e.g., [7]). Nevertheless in future studies the results should be compared to other delineation 

techniques.  

In conclusion, it was possible to develop allometric models which can be used for stem volume 

estimation of pine trees based on features derived from airborne laser scanner and multispectral line 

scanner data. The automatic delineation of tree crowns was very successful in forest stands with an age 

class ≥ III. More research is definitely needed for dense deciduous forests in the temperate climate 

zones where the automatic segmentation of trees is frequently not accurate enough for the estimation of 

individual-tree-based information. Theoretically, a more sophisticated classification of different 

species might improve the discrimination of trees. Furthermore, models for the estimation of other 

quantitative tree attributes e.g., DBH and basal area have to be developed. 
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