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Abstract: Eelgrass (Zostera marina) is a keystone component of inter- and sub-tidal 

ecosystems. However, anthropogenic pressures have caused its populations to decline 

worldwide. Delineation and continuous monitoring of eelgrass distribution is an integral part 

of understanding these pressures and providing effective coastal ecosystem management. A 

proposed tool for such spatial monitoring is remote imagery, which can cost- and  

time-effectively cover large and inaccessible areas frequently. However, to effectively apply 

this technology, an understanding is required of the spectral behavior of eelgrass and its 

associated substrates. In this study, in situ hyperspectral measurements were used to define 

key spectral variables that provide the greatest spectral separation between Z. marina and 

associated submerged substrates. For eelgrass classification of an in situ above water 

reflectance dataset, the selected variables were: slope 500–530 nm, first derivatives (R‘) at 

566 nm, 580 nm, and 602 nm, yielding 98% overall accuracy. When the in situ reflectance 

dataset was water-corrected, the selected variables were: 566:600 and 566:710, yielding 

97% overall accuracy. The depth constraint for eelgrass identification with the field 

spectrometer was 5.0 to 6.0 m on average, with a range of 3.0 to 15.0 m depending on the 

characteristics of the water column. A case study involving benthic classification of 

hyperspectral airborne imagery showed the major advantage of the variable selection was 

meeting the sample size requirements of the more statistically complex Maximum 
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Likelihood classifier. Results of this classifier yielded eelgrass classification accuracy of 

over 85%. The depth limit of eelgrass spectral detection for the AISA sensor was 5.5 m. 

Keywords: eelgrass; seagrass; remote sensing; hyperspectral; feature selection 

 

1. Introduction 

Eelgrass (Zostera marina) is an important component of inter- and sub-tidal ecosystems and is 

widely recognized for its ecological and conservation value [1,2]. Among its many ecological functions 

are those of providing physical shoreline stability [3] and of mediating biochemical balance within the 

immediate and broader ecosystem [1,4]. For instance, eelgrass may be responsible for up to 15% of the 

total organic carbon stored in marine ecosystems by way of burial and exportation of detritus to 

neighboring ecosystems [5]. Eelgrass also provides a fundamental nursery ground and food source for 

a variety of marine organisms, from complex macroinvertebrate assemblages to several species of 

commercially important fish, notably out migrating juvenile salmon (Onchorhynchus spp.) and Pacific 

herring (Clupea harengus) [6-8]. Accordingly, eelgrass has been identified as an exceptionally 

important resource to sustainable commercial fisheries [9]. Its keystone importance and high sensitivity 

to changes in water quality have established it worldwide as an indicator of coastal ecosystem health 

and an early harbinger of environmental change [6].  

Eelgrass populations have experienced worldwide decline. An estimated 2–5% of seagrass 

ecosystems are lost annually due to anthropogenic pressures [10]. The loss has been attributed to two 

major forces: (1) the direct pressures of a growing coastal human population, such as shoreline 

development [10,11] and vessel anchoring [12]; and (2) the indirect pressure of activities that diminish 

the available photosynthetically active radiation through sedimentation, nutrient loading, and 

eutrophication [11]. These activities include intense aquaculture [4,13,14], upland development and 

agriculture [15], and increased pollution levels [16,17]. Eelgrass loss is predicted to accelerate in 

response to climate change [10,18] and growing human pressure on the coastal zone [10].  

Baseline knowledge and continued monitoring of temporal-spatial eelgrass distribution is exceedingly 

important in mitigating additional loss, as it allows separation of anthropogenic disturbances from natural 

trends and identification of suitable areas for protection and rehabilitation [10,19,20]. Mapping of 

eelgrass and other benthic substrates has traditionally been accomplished by boat- and land-based 

surveys, which are limited by accessibility, time, and cost [19,21]. A proposed alternative method is 

remote imagery, which can cost- and time-effectively cover large and inaccessible areas nearly 

instantly and frequently [19]. The effective application of this technology, however, requires a firm 

understanding of the spectral behavior of eelgrass and associated substrates on the west coast of British 

Columbia. Submerged eelgrass can only be detected by a remote sensor if: (1) eelgrass spectral 

properties are distinct from those of surrounding cover types (sand, macroalgae, epiphytes, 

detritus, etc.); (2) the unique spectral characteristics can be separated from the spectral influence of the 

atmosphere and water column; (3) the spectral resolution of the sensor is adequate to resolve the 
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unique spectral characteristics; and (4) the spatial resolution of the sensor is adequate to capture the 

spatial patterns (i.e., patchiness) of the eelgrass meadow [22].  

The success of requirement (1) can be influenced by the properties of water column. With 

increasing depth, eelgrass and surrounding substrate become less spectrally separable, as the optical 

properties of the water column constituents tend to dominate the signal [19,20]. The degree of this 

dominance is wavelength and constituent dependent. In coastal waters (Case 2 waters), three major 

optical constituents cause wavelength dependent attenuation of light: chromophoric dissolved organic 

material (CDOM), phytoplankton photosynthetic pigment chlorophyll-a (Chl-a), and total suspended 

matter (TSM), which can be separated in organic and inorganic fractions. Generally, CDOM and Chl-a 

reduce the reflectance signal by absorbing light in the blue and red (Chl-a only) spectral ranges, while 

TSM increases the reflectance signal in the red region and shifts the green peak to longer 

wavelengths [23,24]. The attenuation caused by each of these water constituents acts to diminish 

available light with increasing depth, particularly in blue and red ranges of the spectrum. Further, the 

success of requirement (1) can also be affected by epiphytic loading, which can remarkably change the 

reflectance of eelgrass. Studies have shown that heavy epiphyte loads can absorb up to 63% of incident 

light in the peak chlorophyll absorption bands, leading to greater reflectance slopes at 440 nm and 680 nm 

than at 550 nm [25]. Reflectance in the 575–630 nm region is markedly increased [26] while green light 

is physically blocked by non-photosynthetic material accumulation [25] and absorbed by  

non-chlorophyte epiphytes [27]. These effects lead to a flattening of the eelgrass spectral signature and 

increased variability in green reflectance values [26,28]. Additionally, two unique features are 

produced by epiphyte chlorophyll-a and -c a reflectance peak at 590 nm [26] and a small absorption 

feature at 632 nm [29,30]. 

The characteristics of the remote sensor have an additional impact on the detectability of eelgrass, as 

higher spatial and spectral resolution offer dicernability of greater spatial and spectral detail and a 

greater understanding of the key optical differences between substrates. Greater resolution however, 

comes with the expense of increased processing time and reduced accuracy by way of large data 

volumes and high data redundancy. Data reduction methods can be used to address these volume and 

redundancy issues by removing unnecessary information and retaining only spectral variables offering 

the greatest spectral distinction between cover classes [31].  

In this light, the goal of this study was two-fold: (1) to use in situ hyperspectral measurements to 

identify bands or bands indices (hereafter called spectral variables) suitable for spectral separation of 

eelgrass from other substrates; and (2) to test the identified spectral variables in benthic classification 

of an image. The questions asked of the dataset were: 

1. Can submerged eelgrass be spectrally distinguished from other submerged substrates? If so, 

what spectral variables (bands and/or band slopes/ratios) offer the most accurate separation 

among substrates with the least redundancy?  

2. How effective are these spectral variables for detecting eelgrass in a hyperspectral airborne 

image?  

3. What is the wavelength-dependent depth limit of eelgrass spectral detection in situ and in 

the image? 
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2. Methods 

2.1. Study Area 

This research took place at Sidney Spit, a 1.78 km
2 

protected marine area on the northwestern 

extreme of Sidney Island, British Columbia, Canada, which encompasses a 1.8 km long sand spit and 

shallow lagoon (Figure 1). The area is protected within the Gulf Islands National Park Reserve of 

Canada (GINPRC) [32]. The major submerged substrates present at the site were eelgrass (Zostera 

marina), green algae (Ulva fenestrata, Enteromorpha spp., and filamentous green algae), and sand. The 

halophyte Salicornia virginica (sea asparagus) was found in large homogeneous stands in the extreme 

south of the lagoon, while brown algae (Fucus spp., Sargassum muticum, and Laminaria saccharina) 

were present but were not found at high areal coverage (<1 m
2

 patches) at the time of sampling.  

Figure 1. Sidney Spit, Sidney Island, British Columbia is part of the Gulf Islands National 

Park Reserve of Canada (GINPRC). Pale red area represents Marine protected area within 

the park; dark red represents Marine Extension area (Modified from [32]). 

 

The waters immediately east and west of the sand spit were underlain by shallow sloping sandy 

substrate and fringing beds of intertidal Z. marina. Subtidal Z. marina inhabited sandbars 

approximately 500 m west of the spit. A shallow lagoon located southwest of Sidney Spit and bordered 

on its west side by Hook Spit contained a large and very well protected eelgrass bed that was entirely 

exposed during lowest tide events. Previous assessment by Parks Canada reports the following average 

metrics for eelgrass in the lagoon: density = 300 shoots/m
2
, biomass = 198.8 g/m

2
, and total eelgrass 

meadow extent estimated from orthophotos = 183,000 m
2
 [33]. Studies have revealed that boaters 

frequently anchor in the eelgrass beds [34]. 

The water was characterized by temperature, salinity, total suspended material (TSM), absorption by 

chromophoric dissolved organic material (aCDOM), chlorophyll-a (Chl-a), eleven accessory pigments, 

and downwelling diffuse attenuation coefficient, Kd, for the time of field acquisition; see [35] for the 

detailed methodology employed for water analysis. All parameters and constituents (summarized in 

Table 1) were comparable with Sidney Spit or nearby measurements taken at the same time of year, 
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although TSS had greater variability [36,37]. The measured concentrations clearly characterize a case 2 

water type. 

Table 1. Water optical constituents profile for Sidney Spit field sites. 

 Average Range 

Temperature 11.5 °C 11.3–12.2 °C 

Salinity 29 ppt 28.9–29.4 ppt 

aCDOM(440) 0.24 m
−1

 0.18–0.33 m
−1

 

TSM 4.03 g m
−3 

2.25–6.08 g m
−3

 

TOC 47.60% 32.7–65.3% 

Chl-a 2.44 mg m
−3

 1.28–7.23 mg m
−3

 

The euphotic water column was not stratified. The organic fraction comprised nearly half (average 

47.6%) of the total suspended matter at the site due to organic detritus produced and entrained by the 

eelgrass beds. Higher TSM values (5.00–6.00 g m
−3

) were typically found closer to shore, while aCDOM 

(average = 0.24 m
−1

) and Chl-a (average = 2.44 mg m
−3

) did not appear to follow a clear spatial 

pattern. The most prevalent pigment was chlorophyll-a, followed by fucoxanthin, and then  

chlorophyll-c, a pigment composition characteristic of diatom species [38], which are described as 

typical of this region [39]. Peridinin and diadino, marker pigments of dinoflagellates, were present in 

varying amounts, with typically higher concentrations in more open, deep waters and little to none in 

the shallow lagoon. Some areas of the lagoon however had noteworthy levels of alloxanthin, a marker 

for Cryptophyceae [40].  

The relative magnitude of the diffuse downwelling attenuation coefficients, Kd (Figure 2), was 

related to the distribution of the water constituents. Water‘s exponential attenuation toward the NIR 

spectral region resulted in rapid Kd increase beyond 710 nm, while the characteristic blue absorption by 

CDOM, blue and red absorption by Chl-a and red scattering by TSM [41] caused higher Kd values in 

those ranges. The lowest Kd values occurred between 500 and 600 nm where attenuation by pigments 

and other water constituents was lowest.  

Figure 2. Downwelling diffuse attenuation coefficients, Kd (m
−1

), for Sidney Spit at the 

time of in situ spectra and image acquisition. 
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2.2. Data Acquisition 

Field work was conducted in July/August 2008 and July 2010 to gather information about substrate 

characteristics and in situ spectral data. Initially, substrate ground-truthing was conducted by 

photograph, description of substrate type, percent cover (plus shoot density in the case of eelgrass), and 

GPS marking for a total of 387 sites from June through August 2008, and an additional 120 sites in 

July 2010. On 14–18 and 31 August 2008, in situ above-water spectra were collected by stratified 

random sampling within the ground-truthed area from onboard a small motor vessel. The following 

data were collected at each of these field sites: (1) GPS location; (2) above water photos and 

underwater videography for substrate identification and density estimation; (3) depth; (4) wind speed to 

correct radiometric measurements for stray light added by the water surface; and (5) above-water 

hyperspectral measurements for deriving the spectral variables for characterization and separation of 

substrates. In situ hyperspectral measurements were acquired and processed as follows. 

Above-water in situ radiance spectra (N = 49) were measured (Table 2) over the four major 

substrates, eelgrass (Z. marina) (25 samples), green algae (U. Fenestrata and Enteromorpha spp.)  

(8 samples), sand (9 samples), and deep water (>30 m) (7 samples). Spectra were collected over a 

range of: (a) depth: from 1 to greater than 30 m; (b) eelgrass stand density: from 0 to 624 shoots/m
2
; 

and (c) epiphytic algae density and type: filamentous diatoms and red algae Smithora spp.  

Above-water spectra were not collected for brown algae, which was found to have minimal presence at 

the time of acquisition (few small patches, all smaller than 1 m
2
). 

Table 2. Benthic substrates present at the Sidney Spit study site and number of spectral 

samples acquired for each. E = eelgrass, Ag = green algae, S = sand, dW = water > 30 m 

deep, d = deep, s = shallow. 

Field  

photo 

Common  

name 

Latin  

name 
Abbr. 

Above-water  

spectra (n) 

 

Eelgrass 
Zostera 

marina 

sE 

dE 

21 shallow 

4 deep 

 

Green algae: 

Sea Lettuce 

Ulva 

fenestrata 
sAg 

6 shallow  

0 deep 

 

Green algae: 

Filamentous 

Enteromorpha 

spp. 
sAg 

2 shallow 

0 deep 

 

Sand - 
sS 

dS 

6 shallow 

3 deep 

 

Deep water (>30 m) - dW 7 

Total water leaving radiance (LT(λ), 40° from nadir) and sky radiance (Lsky(λ), 40° from zenith) 

were measured one metre above the water surface using a Satlantic HyperSAS mounted on a tripod in 
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the boat (Figure 3(a)). The radiance sensors had a half-angle field of view (FOV) of 3°, two-nanometre 

spectral resolution and a spectral range of 350–800 nm. Total irradiance (ES(λ), cosine collector at 

zenith) was measured with a Satlantic OCR-3000 sensor [42,43] mounted on a dowel on the highest 

position of the boat (Figure 3(b)). These spectral measurements were acquired continuously (one 

spectra every two seconds) for a period of 40 seconds, for a sample number of n = 20 spectra per site, 

while effort was made to maintain a LT sensor viewing geometry of 90° from the sun to avoid specular 

reflection [44,45]. All measurements were made in clear weather with less than 20 percent cloud cover, 

low wind speeds (<10 m s
−1

), and solar zenith angle between 30° and 60° [45-47]. 

Figure 3. Radiometers used to acquire in situ field spectra above water from the boat. The 

HyperSAS Lsky and LT sensors (a) were mounted on a frame on a tripod viewing over the 

side of the boat and the ES cosine collector (b) was mounted vertically on a 2 m dowel at 

the highest point on the boat. 

 

Endmember spectra were also measured. Samples of each substrate were collected and transported 

in seawater in a cooler. Within thirty minutes of collection, three or more samples of each substrate 

were laid flat, four layers thick, on black canvas and measured with the HyperSAS radiometer. In the 

case of eelgrass, blades were measured before and after removing epiphytes with a soft brush. 

Measurements were made at 31 cm height with the same sensor-solar geometry configuration as the 

above-water spectra, and samples were three times the diameter of the field of view to ensure that the 

canvas did not impact the spectra. Each sample was rearranged and measured three times and then 

averaged. These measurements represented the ―pure‖ spectra of each cover type without the spectral 

influence of water optical constituents and adjacent/underlying substrates and served as the basis of 

evaluation of water column correction of the above water in situ spectra.  

To remove possible sun glint outliers from the above-water spectral measurements, LT spectra 

containing values exceeding 1.5 standard deviations from the mean spectrum of the site were removed 

from the dataset [45]. The remaining radiance measurements were converted to above-water remote 

sensing reflectance (Rrs(λ)) according to Equations (1–3) [48] based on modified Fresnel reflectance 

glint correction algorithm S95, which removed any remaining sky-glint and standardized for variability 

in solar angle, irradiance, and sea surface state between measurements [44,45]. All remaining remote 

sensing reflectance spectra from the acquisition interval were then averaged. Note that for the 

remainder of the text following Equation (1), the wavelength symbol (λ) will be omitted from all 

(b) 

ES 

(a) 

LT 

Lsky 
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spectral terms for simplicity. However, all spectral quantities are wavelength dependent unless 

otherwise stated. 

  )(/)()()()0(  SskyTrs ELLR 
  (1) 

ρ' = 0.0256 + 0.00039W + 0.000034W
2
, when Lsky(750)/ES(750) < 0.05    (2) 

ρ' = 0.0256, when Ls(750)/ES(750) ≥ 0.05     (3) 

where ρ' is the proportionality factor relating the amount of sky radiance reflected off of the sea surface 

to the total sky radiance, and is dependent on wavelength (λ), wind speed (W), and the proportion of 

cloud cover present in the sky radiance distribution as defined by the ratio Ls(750)/Es(750), which 

represent sky radiance and irradiance at 750 nm respectively. When sky conditions are clear 

(Lsky(750)/ES(750) < 0.05), ρ' varies with wind-generated surface roughness, which increases 

reflections off of the water surfaces. Under cloudy conditions, ρ' is independent of wind speed because 

the diffuse light limits glint [44,48]. 

A vertical offset error was inherent in each spectra, likely because every spectral acquisition has a 

slightly different ρ' value, which can only be estimated through modeling (Equations (1–3)) and cannot 

be known with absolute certainty. To correct this error, each spectrum was offset by a constant value 

equal to its mean reflectance value from 750 to 800 nm, which standardized each spectrum to a  

near-infrared (NIR) value of zero in this range. The validity of this method was verified by simulating a 

case 1 IOP model in Hydrolight [49,50] with Chl-a = 2.1 µg/L and average ooid sand bottom at 0.5 m 

depth. The modeled NIR reflectance values were zero beyond 750 nm. Finally, all in situ spectra were 

cropped below 400nm to avoid low signal-to-noise data [51] and to match the calibrated range of 

imagery to which the results of this study will be further applied. 

Sun-glint and NIR correction were not necessary for endmember spectra as they were not 

submerged. The measured radiance spectra were converted to remote sensing reflectance as follows:  

Rrs = LT / ES      (4) 

After spectra corrections, six benthic classes were defined based on substrate type and depth: deep 

water (>30 m), deep sand and deep eelgrass (>3 m); shallow sand, shallow eelgrass and shallow green 

algae (<3 m). No green algae sites could be found deeper than three metres and hence representative 

spectra are absent from this study. The three meter threshold was defined because preliminary analysis 

of the in situ spectra for each substrate showed noticeable reflectance magnitude differences beyond 

this depth, particularly in the 700–750 nm spectral region. This threshold is also in agreement with 

previous in situ measurements and radiative transfer models [52] as well as image analyses [53-55], 

which found seagrass species and broad cover classes to be inseparable beyond three metres. Depth 

stratification has been shown to improve classification accuracy by ensuring that dense shallow beds of 

eelgrass are not confused with sparse deep beds [54,56].  

The last step of spectra pre-processing was water attenuation correction. The Maritorena et al. [57] 

water attenuation correction was applied to the in situ above water remote sensing reflectance, 
)0( 

rsR (λ), 

by first converting it to reflectance just below the water surface, 
)0( 

rsR (λ) [58]:  
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][1.7+0.52 )0(

)0(

)0(
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rs
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R      (5) 

then following Brando et al. [59], solving for the reflectance of the substrate at depth 0.0 m, i.e., water 

attenuation corrected substrate spectra, 
b

rsR , (Equation (7)) in Maritorena‘s equation [57] (Equation (6)), 

  zKdp

rs

b

rs

dp

rsrs
deRRRR

2)0()0()0(       (6) 

zK

zKdp

rsrsb

rs
d

d

e

eRR
R

2

2)0()0( )1(


 


    (7)
 

where z is the substrate depth measured concurrent with spectral acquisition, Kd is the diffuse 

downwelling attenuation coefficient of the water, and 
)0( dp

rsR is the reflectance of optically deep water 

(>30 m depth). The efficacy of the water column correction was assessed by comparing the resulting 

spectra to measured endmember spectra of the same benthic class.  

The depth limit for this correction was assumed to be the same as the average depth at which 

eelgrass is no longer discernable from deep water (i.e., becomes ―optically deep‖). Following [19], the 

detectability threshold of a given submerged substrate occurs when the second term of Maritorena‘s 

equation (Equation (6)) equals the detecting threshold of the sensor in reflectance terms (
DT

rsR ), as 

expressed below: 

  DT

rs

zKdp

rs

b

rs ReRR d 
 2)0(

     (8) 

In the case of the in situ spectral data, 
DT

rsR was defined as the wavelength-dependent standard 

deviation of a homogeneous in situ reflectance measurement of optically deep water. In the case of 

imagery, it was defined as the wavelength-dependent standard deviation of reflectance within a 

homogeneous 33 × 33 pixel optically deep water region [59,60]. The detectability depth limit of each 

substrate was computed by solving for z in Equation (6):  















dp

rs

DT

rs

dp

rs

b

rs

d RR

RR

K
z ln

2

1

     (9) 

Beyond this depth, z, the substrate is no longer discernable from deep water. 

2.3. Data Reduction and Variable Selection 

Identifying Major Spectral Variables 

To identify major spectral variables in the in situ spectra, three methods were employed. First, 

visual comparison between the mean and 95% confidence interval (Figure 4) spectra for each class 

provided a preliminary list of reflectance peaks and valleys that appeared capable of separating eelgrass 

from other substrates. If a peak or valley location of a specific substrate did not overlap with that of any 

other substrate, it was considered unique to that substrate. Second, the first derivative curve for each 

spectral curve was calculated to establish the exact location (R‘) where these major features 

occurred [61]. It has been observed that while the spectral measurements of a single substrate can be 

variable in reflectance magnitude, spectral shape is typically retained [62]. Therefore, the third step 



Remote Sens. 2011, 3              

 

984 

incorporated spectral shape by calculating the ratios and slopes (denoted λ:λ and sλ-λ respectively) 

between the absorption and reflectance features identified in first derivative analysis. The results were 

compiled into a list of 23 indices (Table 3). Fourteen published vegetation indices were calculated and 

added to the list along with the first derivative values at each wavelength. 

Figure 4. (a) Average above-water reflectance with 95% confidence interval for each 

benthic substrate type and (b) major reflectance (grey) and absorption (black) features for 

each benthic substrate with 95% confidence interval, as derived by first derivative analysis. 

 

Table 3. List of indices (spectral slopes, denoted s, and ratios, denoted r) defined by visual 

examination and first derivative analysis. 

Wavelengths 
Slope(s) 

Ratio(r) 
Description Reference 

480, 490 s,r Chl blue absorption  This study 

500, 530 s,r Green peak: Ascending edge to 530 nm shoulder This study 

536, 566 s,r Greek peak: Ascending edge shoulder to max This study 

500, 566 r Max blue absorption: Max green reflectance This study 

566, 600 s,r Green peak: Descending edge This study 

620, 640 s,r Chl-b & water red absorption: Descending slope This study 

630, 640 s,r Detect diatom epiphytes This study 

650, 660 s,r Chl red absorption: Descending edge This study 

566, 670 r Chl max green reflectance: Max red absorption [63] (672:550) 

566, 694 r Green peak: Sand NIR peak This study 

566, 710 r Green peak: Vegetation NIR peak [64] 

570, 710 r Green peak: Vegetation NIR peak This study 

670, 700 s,r Red edge: Correlated with chlorophyll-a  [65] 

668, 710 r Red edge [66] (RVI) 

690, 710 r NIR peak position [64] 
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Variable Selection: M-Statistic and Discriminant Analysis 

Hyperspectral measurements provide detailed information but also contain high redundancy and 

yield long data processing times. Furthermore, discriminant analysis, which is applied further in this 

study, is valid only if the band set contains less than n-1 bands (where n = number of training 

samples) [67]. Since the original spectra, first derivative spectra, and indices totaled over 388 available 

variables, a dataset reduction was necessary. A two step reduction approach was adopted: M-statistic 

and discriminant analysis (DA). 

The M-statistic is a measure of class separability, which normalizes the difference between the 

means of two benthic classes (μ1(λ) – μ2(λ)) by the sum of their standard deviations (σ1(λ) + σ2(λ)) at the 

specified variable [68]. A large M-statistic indicates good separation between the two classes as 

within-class variance is minimized and between-class variance maximized. Following Kaufman and 

Remer [68], M > 1.0 indicates good class separation and M < 1.0 indicates poor separation. Since the 

M-statistic assesses separability for each benthic class pair independently, it offers the beneficial option 

of focusing only on pairs involving eelgrass. Selecting variables that are important solely to eelgrass 

classification ensured that in the next reduction step, the discriminant analysis did not compromise 

eelgrass classification accuracy for the classification accuracy of other substrates.  

For the M-statistic analysis, all cases of eelgrass-other substrate class pairing were defined (i.e., 

eelgrass-sand, eelgrass-green algae, etc.). The M-statistic was then calculated for every variable of each 

eelgrass-substrate pair case, retaining only those variables with the highest M-statistic values (i.e., the 

greatest spectral separation between the specified substrate pair). These retained variables were termed 

―Set 1.‖  

In the second step, a DA with stepwise variable selection was run on the Set 1 variables to eliminate 

remaining redundancy, yielding ―Set 2,‖ the variable set with the minimum number of variables and 

maximum discriminating ability [67]. A Set 2 was derived for each of the following separability cases: 

shallow substrates (<3 m), deep substrates (>3 m), and both shallow and deep substrates together. 

The classification accuracy of each Set 2 was evaluated by applying the DA model equations to a 

dataset. Rather than separating the dataset into training and testing data, leave one out cross-validation 

(LOO-CV) was used, whereby each case was classified using a discriminant function derived from all 

cases except the given case. This maximized the number of samples in both the test (n) and training  

(n-1) sets while eliminating bias in the classification accuracy value [69]. Prior probabilities of class 

membership were assigned based on sample sizes to minimize bias due to unequal sample sizes. All 

models and classification tests were run with 500 bootstrap samples stratified by substrate at a 

confidence level of 95%. 

2.4. Case Study: Classification of Hyperspectral Airborne Image 

The reduced variable set (Set 2) derived by the previous steps was further tested on hyperspectral 

imagery. Supervised classification algorithms were applied to an AISA hyperspectral airborne image 

and validated with ground-truth data in the following scenarios:  

Image 1: Full spectral resolution above-water image  

Image 1R: Reduced variable above-water image (Set 2 from previous) 
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Image 2: Full spectral resolution water-corrected image 

Image 2R: Reduced variable water-corrected image (Set 2 from previous) 

Hyperspectral high spatial resolution AISA airborne imagery was acquired over Sidney Spit by 

Terra Remote Sensing on 16 August 2008 at 12:14 during low tide (0.42 m). The AISA sensor flew at 

an elevation of 1,500 m, acquiring six flight-lines with a pixel size of 2 × 2 m and a swath width of 

592 m. The sensor was programmed at 2-nm spectral resolution from 408 nm to 2,494 nm. Sun glint 

was minimized by flying in a direction as close as possible to perpendicular with the incident solar 

angle [46,70].  

Prior to classification, the six flight lines were geometrically corrected with Hyperbatch, custom 

software developed by the Hyperspectral and LiDAR Research Group at the University of Victoria, 

incorporating the airplane‘s positional measurements and a LiDAR DEM collected simultaneously 

with the radiance data. The flight lines were geographically matched to one another manually to 

minimize residual geo-locational error (average RMSE = 0.60 m) and then mosaicked together. A land 

mask was defined as DN(450 nm) > 2,200. All remaining pixels were land vegetation pixels and were 

masked out manually with knowledge of the area. To remove scene noise, a Gaussian spectral 

smoothing window of 10 nm was applied to each pixel. The image was next atmosphere corrected with 

empirical line calibration (ELC), using one deep water site and one shallow sand site [71], and 

corrected for surface glint following Hedley et al. [72]. Subsequently, optically deep water was masked 

with a threshold of 5.5 m, which was the eelgrass detectability limit of the AISA sensor at 566 nm 

following Dekker et al. [19] (Equation (9)). These processing steps resulted in Image 1. Image 1R was 

created by reducing the Image 1 band range to the variable set (Set 2) selected in Section 2.3:  

s500-530, R‘566, R‘580, R‘602. Further processing was performed in Image 1 by applying the 

Maritorena water attenuation correction [57] (Equation (7), where a multibeam bathymetry layer of 

1.0 m interval and 5 × 5m pixel size defined depth, z), thus resulting in Image 2. Lastly, Image 2R was 

derived by reducing the band range of Image 2 to the selected variable set of 566:600 and 566:710, 

following the results of water corrected data from Section 2.3. 

The minimum distance (MD) supervised classifier was applied to each of the four images. The more 

statistically complex maximum likelihood (ML) classifier was applied only to the variable reduced 

images (Images 1R and 2R). ML classification could not be applied to the full spectral resolution 

images (Images 1 and 2) due to statistical constraints. ML requires the band set to contain less than n-1 

bands, where n is the number of training samples in each substrate class [31]. In this study, the 175 

bands of the full-resolution spectra greatly exceeded n-1, as n varied from 2 to 51.  

Approximately 20% of the ground-truth data sites (n = 99) were used for classifier training. The 

eelgrass classification accuracy of each image was determined by validation using the remaining 80% 

of ground-truth sites (n = 408). Table 4 shows testing and training sample numbers for each substrate 

class. The classification scheme was as follows: shallow eelgrass (sE), deep eelgrass (dE), shallow 

sand (sS), deep sand (dS), shallow green algae (sAg), shallow brown algae (sAb), and exposed sea 

asparagus (eAsp), with the same three meter threshold between shallow and deep classes. Note the 

addition of two classes, eAsp and sAb, to the classification scheme. 

Classification accuracy was evaluated according to eelgrass producer and user accuracies, as well as 

overall accuracy. Eelgrass producer accuracy represents the percentage of eelgrass testing pixels that 
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were classified correctly (i.e., how well the training sites were classified), while user accuracy 

represents the percentage of pixels designated to the eelgrass class that truly are eelgrass (i.e., how well 

the classification represents ground-truth) [73]. Overall accuracy considers the accuracy of all 

substrates; it is the percentage of correctly classified sites of all substrate types combined.  

Table 4. Ground truth survey sites for each substrate and number of sites designated as 

training and validation ROIs for supervised classification. 

Substrate Classes 
Substrate 

Abbr. 

Ground-truth 

Survey Sites 

AISA Training/Validation  

Sites (~20%/80%) 

Shallow Eelgrass (sE) 265 51/214 

Deep Eelgrass  (dE) 19 4/15 

Green Algae  (sAg) 129* 24/105 

Shallow Sand (sS) 49 10/39 

Deep Sand (dS) 32 6/26 

Brown Algae (sAb) 7 2/5 

Exposed Sea Asparagus (eAsp) 6 2/4 

  * 84 Ulva fenestrata , 23 Enteromorpha spp., and 22 filamentous green algae 

3. Results 

3.1. Spectral Characteristics of the Benthic Substrates  

Figure 4 summarizes the above-water reflectance curves for the substrates at Sidney Spit. Spectral 

attenuation features of the water column and constituents were found in all measured spectra and were 

more pronounced with water depth. For instance, the characteristic water molecule absorption features 

appeared at 520 nm, 570–600 nm and 700–760 nm [74] and additional absorption features appeared in 

the blue spectral region due to CDOM, and the blue and red regions due phytoplankton chlorophyll. 

Reflectance features appeared in the red spectral due to suspended solids—evident in masked red 

absorption features of benthic vegetation with depth—and at 685 nm due to chlorophyll 

fluorescence [75]. The combination of light attenuation by the different water constituents resulted in 

lower reflectance magnitudes for deep substrates when compared with shallow substrates. Of the 

shallow substrates, sand showed the highest reflectance, followed by green algae, non-biofouled 

eelgrass, and biofouled eelgrass in decreasing order. Of the deep substrates, deep sand had higher 

reflectance, while deep water and deep eelgrass showed lower and very similar magnitudes. The most 

marked differences between benthic classes occurred in the green spectral range between 500 and 

600 nm (Figure 4), coinciding with the lower Kd values (Figure 2). Within this spectral region, a broad 

green peak at the photosynthetic pigment absorption minimum between 560 and 575 nm was present 

for all substrates (Figure 4(b)). However the peaks of shallow eelgrass and shallow sand occurred at an 

average of 5 nm beyond that of the other benthic types (570 vs. 565 nm). Green peak ascending and 

descending slopes of all classes became steeper with decreasing water depth, and overall, green algae 

slopes were steeper than those of eelgrass. Eelgrass and green algae exhibited a small shoulder at  

470–480 nm, which interrupted the ascending slope. 
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The marked absorption feature in the blue range (400–500 nm) present in all substrates mostly due 

to CDOM and Chl-a, was strengthened in vegetation classes by chlorophyll-a and -b, and lutein, and 

by the additional accessory pigment β-carotene in green algae. A second major absorption feature 

appeared in the red region at 662–669 nm for all except sand, which occurred at 675 nm (Figure 4(b)). 

This feature is characteristic of chlorophyll-a, and -b absorption and was most pronounced in shallow 

waters because the short water column provided minimal red reflectance from TSM. The presence of 

epiphytic diatoms on eelgrass and green algae was signified by a unique chlorophyll-a and -c 

absorption trough between 630 and 640 nm and a broad spectral flattening caused by fucoxanthin 

absorption in the 530–566 nm range and physical obstruction of eelgrass green reflectance in the  

500–600 nm range [26,29]. For all shallow vegetation classes, the red-edge occurred in the range of 

670–705 nm and a NIR peak occurred between 687 and 710 nm (Figure 4).  

3.2. Water Correction 

Generally, the water correction correctly increased reflectance of substrate spectra by one order of 

magnitude, which is in agreement with endmember spectra. For the substrates shallower than three 

metres, all corrected spectra averages were within one standard deviation of their respective 

endmember. Specifically, corrected magnitudes were within 20% error between 480 and 660 nm for 

eelgrass and 500–700 nm for sand and green algae. The only exception was a 30% error for green algae 

from 520 to 620 nm. The blue wavelengths were overcorrected for all shallow benthic substrates. This 

overcorrection was less for eelgrass when the depth variable was reduced by 0.5 metres in 

compensation for eelgrass blade height; however, the compensation instead resulted in an 

underestimation of the long red and short NIR range. All deep eelgrass and deep sand (>3 m) spectra 

were significantly overcorrected at all wavelengths and held no similarity in spectral shape to their 

respective endmembers. This suggests that the water column correction is not suitable for substrates 

deeper than three metres when Kd is greater than Kd(440) = 0.82 m
−1

, Kd(550) = 0.72 m
−1

, and  

Kd(650) = 1.06 m
−1

, which is the highest Kd found in a deep water class during this study and used in 

the sensor depth threshold calculation. Reflectance magnitudes were however within 20% error 

between 550 and 590 nm; the portion of the spectrum where Kd was lowest (Figure 2) and therefore 

light penetrated the furthest. This observation is supported by calculations of the HyperSAS depth limit 

for substrate detection (Equation (9)). The minimum bound of the depth threshold was approximately 

four metres for sand and three metres for biofouled eelgrass at 600 nm and dropped to 3 and 2.5 m 

respectively by 700 nm (Figure 5). 

3.3. Spectral Variable Selection 

Indices 

Twenty-three indices resulted from the calculation of slopes and ratios between major absorption 

and reflectance features (Table 3). These indices, together with the original and first derivative 

wavelengths, totaled 388 variables. 
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Figure 5. The depth at which the HyperSAS sensor can no longer distinguish each 

substrate from optically deep water for the lowest (thin lines) and highest (thick lines) Kd 

found at the study site. Calculated as per [19]. Refer to Figure 2 for high and low Kd values. 

 

The M-statistic generally defined higher values for the first derivative variables and indices, 

suggesting that spectral shape was more effective at separating substrates than reflectance magnitude 

was. The most extreme cases were the substrate pairs sE-sAg and dE-dW, where M-statistic values 

greater than one were yielded solely by first derivatives and indices. In shallow water (<3 m), defined 

Set 1 variables were [R‘506, R‘532, R‘592, s500-530] for sE-sS and [s566-600 and R‘524, R‘580, 

s500-530, s566-600, 536:566] for sE-sAg. In deep water (>3 m), Set 1 variables were [R‘580, 566:600] 

for dE-dW and [R‘474, R‘530, R‘596, 480-490, 566-600, sR500-R530] for dE-dS. 

Set 2 variables for shallow and deep water sub-groups, derived from the discriminate analysis, are 

reported with total eelgrass classification accuracy in Tables 5 and 6. Shallow water Set 2 variables 

were s500-530, R‘566, R‘580, and R‘602 for a total classification accuracy of 97%. The only 

misclassification was of one (out of eight) green algae sample classified as shallow eelgrass. Deep 

water Set 2 variables were s500-530, R‘580, and R‘602 for a total classification accuracy of 100%. 

Caution should be taken in interpreting this result as the sample size of deep eelgrass was small (n = 4), 

and therefore the 100% accuracy attained by this set is likely a high estimate. The Set 2 variables for 

each depth group were pooled to test their combined efficacy in a single classification. The stepwise 

DA retained all four variables in the model for a total classification accuracy of 98%, misclassifying 

the same green algae sample as shallow eelgrass. Note that Tables 5 and 6 also include an infrared 

band index—more specifically the red-edge. Previous studies have suggested a necessity for a benthic 

classification scheme to include one NIR band to assist in identifying vegetation at the surface of the 

water (e.g., exposed / floating seagrass and macro algae) [26,76]. The DA had not selected a NIR band, 

presumably because the dataset included no exposed vegetation samples. To test whether a NIR band 

would have an impact on the classification of submerged vegetation, the red edge variable 668:710 nm 

was added to Set 2 and the classification accuracy re-evaluated. The 668:710 variable was found to 

have no effect on classification, as the eelgrass classification accuracy remained at 98%. 

For the water-corrected data set, Set 2 variables were 566:600 and 566:710, with a total 

classification accuracy of 97%, misclassifying only one green algae sample as eelgrass (Table 7). 
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Table 5. Set 2 (DA result) variable set showing spectral separability of shallow eelgrass 

(<3 m) from other benthic substrates from above water. A dark box represents good 

separability (M-statistic > 1) and an empty box denotes poor separability (M-statistic < 1). 

The value in the box is the M-statistic result. 

 sE vs.: 

Band sS sAg dE dS dW 

s500-530 5.73 1.63 1.90 0.49 1.76 

R'566 0.56 1.40 2.51 0.68 2.80 

2.79757
2 

 

R'580 2.10 1.64 0.33 3.21 1.05 

R'602 5.70 0.64 0.56 2.46 0.25 

668:710 2.06 0.34 1.45 1.44 1.49 

Table 6. Set 2 (DA result) variable set showing spectral separability of deep eelgrass (>3 m) 

from other benthic substrates from above water. A dark box represents good separability 

(M-statistic > 1) and an empty box denotes poor separability (M-statistic < 1). The value in 

the box is the M-statistic result. 

 dE vs.: 

Band sS sAg sE dS dW 

s500-530 11.45 2.91 1.90 4.55 0.09 

R'566 1.62 0.56 2.51 1.47 1.10 

R'580 3.86 2.93 0.33 6.60 2.10 

R'602 8.93 1.19 0.56 4.22 0.26 

668:710 1.35 0.95 1.45 0.86 0.75 

Table 7. Set 2 (DA result) variable set showing spectral separability of water-corrected 

shallow eelgrass (<3 m) from other water-corrected benthic substrates. A dark box 

represents good separability (M-statistic > 1) and an empty box denotes poor separability 

(M-statistic < 1). The value in the box is the M-statistic result. 

 

Water-corrected 

sE vs.: 

Band sS sAg 

566:600 0.78 1.23 

566:710 1.76 0.77 

3.4. Case Study: Classification of a Hyperspectral Airborne Image 

Of the four processing approaches used on the AISA image, the glint and atmospheric corrected 

(ELC) reduced variable image (1R) showed the best results. MD classification of the full-resolution 

Image 1 yielded eelgrass producer/user accuracies of 74%/86% for shallow (<3 m) and 72%/90% for 

deep (>3 m) eelgrass; overall accuracy was 63%. Error occurred primarily between sE-sAg and dE-dS. 
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Approximately 11% of all sAg sites were misclassified as sE (producer error), while 14% of all pixels 

classified as sE were actually sAg and 29% of all dE sites were misclassified as dS (user error). 

Figure 6. Most accurate eelgrass map produced in this study. Image processing steps were: 

atmospheric correction, glint correction, optically deep water masking, and maximum 

likelihood (ML) classification of the spectral variables: s500-530, R‘566, R‘580 and 

R‘602. Eelgrass producer/user accuracies were 85%/96% for shallow eelgrass and 

98%/93% deep eelgrass. Overall accuracy was 83.2%. 

 

MD classification of the reduced variable Image 1R yielded much lower accuracies: 20%/45% for 

shallow (<3 m), 59%/59% for deep (>3 m) eelgrass, and 24% overall accuracy. This was due to 

considerable confusion between shallow eelgrass (sE) and other green vegetation; 62% of all sE 

training sites were misclassified as eAsp, while 38% of all pixels classified as sE were actually sAg 

testing sites. In deep water, there was much confusion between dE and dS (40% user error and 39% 

producer error). However, when ML classification was applied to Image 1R, eelgrass producer/user 
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accuracy increased considerably to 85%/96% for shallow (<3 m) and 98%/93% for deep (>3 m) 

eelgrass; overall accuracy was 83%. The substrate map produced by this best classification is shown in 

Figure 6. The major source of confusion was between sE and sAg. Approximately 5% of all sAg 

training sites were misclassified as sE (producer error) while 14% of all pixels classified as sE were 

actually sAg (user error). The sand class resulted in the least confusion at all depths, with 3% sE-sS 

producer error and 2% dE-dS producer error. This confusion was mainly near the periphery of the 

eelgrass bed where sparse density and georeferencing error likely play a role. 

The Maritorena water column correction was unsuccessful in the image. At depths over 2.5 metres, 

the resulting spectral shapes were nonsensical and magnitudes were highly overestimated, especially at 

wavelengths greater than 600 nm (b). The water depth in which water-correction error began to occur 

was consistent with the results of the maximum depth of substrate detection for the AISA sensor 

(Figure 7(a)), as most substrates had a maximum detection depth of two to three metres in the blue, 

red, and NIR spectral regions. These spectral regions with shallower detection limit corresponded to 

the spectral regions in which water constituents, CDOM, TSM, and Chl-a had the greatest attenuating 

effect, and therefore highest Kd values (Figure 7(a)). As a result, Images 2 and 2R yielded the lowest 

accuracies. Shallow eelgrass producer/user accuracies of Image 2 were 8% /96% and total accuracy 

was 25%. ML classification of Image 2R showed some improvement over the MD classification of 

Image 2. Shallow eelgrass accuracies were 22%/81% and overall accuracy was 43%.  

Figure 7. (a) Depth restriction at which the AISA sensor can no longer distinguish between 

each substrate and deep water (solid lines) and average Kd value for the scene (dotted line) 

derived from in situ in water spectral profiles. Depth restriction is wavelength dependent 

and varies inversely with Kd. (b) Spectra of medium density eelgrass beds with epiphytes at 

varying depths extracted from the Maritorena water column corrected AISA image. 

 

4. Discussion 

Can Submerged Eelgrass be spectrally Distinguished from other Submerged Substrates? If so, What 

Spectral Variables (Bands and/or Band Slopes/Ratios) Offer the Most Accurate Separation among 

Substrates with the Least Redundancy? 
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Eelgrass and its associated substrates were spectrally distinct and the spectral shapes and relative 

magnitudes were in agreement with reported in situ above-water measurements [62,77-79] and pure 

endmember measurements [19,26,57,80-83]. Statistical variable reduction provided a set of spectral 

variables offering the greatest separation among two depth classes of eelgrass and four other benthic 

substrates within above-water and water-corrected data sets. In both datasets, spectral ratios, slopes and 

first derivatives were more effective at separating benthic substrates than absolute values of reflectance 

were, suggesting that spectral shape was more important for separating the benthic substrates than 

magnitude was. This is in agreement with other published results [62,79]. The selected variable set was 

s500-530, R‘566, R‘580, and R‘602 for above-water data and 566:600 and 566:710 for water-corrected 

data. 

In the visible wavelengths, absolute and relative reflectances of a submerged substrate are the result 

of both the total and the relative concentrations of substrate pigments, as well as constituents in the 

overlying water column. Accordingly, the selected slope between 500 and 530 nm (s500-530) is likely 

related to absorption by CDOM, chlorophyll, and lutein (a xanthophyll) in the blue spectra in relation 

to green reflectance. On one hand, the blue absorbing pigments chlorophyll-a, -b, and lutein (432 nm, 

475 nm, and 440–460 nm, respectively [84]), are present in both green algae and eelgrass. On the other 

hand, green algae contains the higher lutein concentrations and the additional blue-green (400–505 nm) 

absorbing accessory pigment β-carotene [38], thus resulting in a steeper spectral curve between 500 

and 530 nm than that of eelgrass (Figure 4). However, the role of β-carotene is likely minor compared 

to the strong spectral influence of epiphytes (diatoms and Smithora) in the 500–530 nm region. In 

addition to physically blocking eelgrass green reflectance, diatoms have a primary accessory pigment, 

fucoxanthin, with a major absorption feature at 500–590 nm. This is in agreement with the 

biofouled/non-biofouled eelgrass and green algae endmember spectra (Figure 8). The 500–530 nm 

slope was even flatter for eelgrass colonizing shallow waters, possibly due to one or more of the 

following: a shorter water column and therefore less blue absorption from CDOM and phytoplankton 

Chl-a, the presence of photoprotective anthocyanins that absorb in the range of 500–550 nm [85], or 

possible greater epiphyte coverage in shallow waters (personal observation). Shallow sand exhibited 

the steepest s500-530 due to its characteristically high green and red reflectance relative to blue 

absorption by CDOM and Chl-a in the water column. Additionally, the s500-530 provided poor 

separation between deep eelgrass and optically deep water (Table 6) because the attenuating effects of 

the deeper water column obscured the absorption/reflectance features of eelgrass. 

Another selected variable, the first derivative value at 566 nm (R‘566), represented the peak of 

green reflectance and occurred at slightly longer wavelengths in shallow eelgrass and all depths of 

sand. In eelgrass, this is likely due to the absorptive effects of anthocyanins at the range 500–550 nm 

displacing the derivative. For sand it was likely due to the high reflectance in the green to red 

wavelengths characteristic of a mineral signature [57]. The green peak of deep (>3 m) substrates was 

probably skewed to shorter wavelengths due to strong attenuation by water, which occurs at  

570–600 nm [74]. Other selected first derivative values, at 580 nm and 602 nm, represented, 

respectively, the descending slope of the green peak and the inflection point of the red absorption 

feature. These features were both significantly flatter for eelgrass, likely due to epiphyte presence, 

which increased reflectance between 566 and 640 nm [26], and photoprotective anthocyanins reflecting 
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in the 600–640 nm region [85]. R‘580 provided good separation between eelgrass and every substrate 

regardless of depth. 

Figure 8. Endmember spectra of healthy and senescent green algae and biofouled,  

non-biofouled and senescent eelgrass. Classifications exhibit confusion between healthy 

green algae and non-biofouled eelgrass as well as senescent green algae and bio-fouled 

eelgrass. 
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Lastly, the manually introduced 668:710 ratio identified the vegetation ―red edge.‖ Because NIR is 

attenuated exponentially at the water surface [24], the red edge is characteristic only of shallow 

vegetation. Therefore a low 668:710 ratio was seen only in shallow (<3 m) eelgrass and algae, enabling 

separation of shallow eelgrass from all other substrates except shallow green algae (Table 5). Although 

our results showed that this ratio had no effect on the accuracy of the final model, it could have 

potential for separating submerged vegetation from that which is exposed or floating [26,76].  

The variables selected for the water corrected data set were different than those selected for the 

above-water data set. The variables were 566:600 and 566:710. The green to red ratio 566:600 

separated eelgrass from green algae (Table 7). It should be noted that this ratio did not separate  

non-biofouled eelgrass from green algae (M-statistic = 0.29). The ratio was negative for green algae 

and non-biofouled eelgrass, due to red absorption and green reflectance by Chl-a, and was positive for 

biofouled eelgrass, due to the characteristic effects of epiphytes: dampening of green reflectance and 

increase of red reflectance at 590 nm [26] (Figure 8). The green to NIR ratio, 566:710, separated 

eelgrass and sand (Table 7) based on presence vs. absence of the red-edge characteristic of vegetation. 

The ratios selected for water-corrected spectra held similarity to some of the variables selected for the 

above-water data. The 566:600 ratio represented substrate properties similar to the R‘566 and R‘580 

variables of the above-water variable set, while the 566:710 ratio was similar to the above-water 

668:710 ratio. It can then be inferred that the remaining selected above-water variables, s500-530 and 

R‘602, either are more dependent on attenuation features created by water constituents, or add 

additional spectral information to compensate for that lost through attenuation by water constituents. 

The above-water variable set of s500-530, R‘566, R‘580, and R‘602 was selected by both a  

two-stage classification stratified by depth (less than and greater than 3 m) and a single classification 

addressing all six depth-substrate classes simultaneously. Therefore, assuming adequate atmospheric 
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correction, it should be possible to retrieve an eelgrass distribution map for Sidney Spit by applying a 

classifier which utilizes discriminant functions, e.g., the maximum likelihood (ML) classifier [86], to a 

remotely sensed image reduced to the selected variables without requiring areal stratification by depth. 

Additionally, the results show that eelgrass image classification with the selected variables should be 

robust to atmospheric interference because both (above-water and water corrected) variable sets avoid 

the blue wavelengths. Accuracy may not, however, be robust for more turbid waters; as turbidity 

increases, light attenuation in the water increases, causing the maximum depth of eelgrass detection to 

become shallower. 

To calculate these variables in an above-water remotely sensed image, one would require ten bands 

of 4 nm bandwidth: R500, R530, R554, R568, R578, R582, R600, R604, R668, R710 nm. A  

water-corrected image would require three bands of 4 nm bandwidth: R566, R600, and R710. These 

bands are in agreement with Fyfe‘s guidelines for an appropriate seagrass classification band set [26]. 

The guidelines state that the bands should be narrower than the spectral features they represent and 

should not overlap with any other spectral feature. They should be centered on or shouldering both 

sides of major absorption and reflectance features of all substrates present, including seagrass which is 

both non-fouled (suggesting 500, 550, 620, and 675 nm) and fouled (575, 590, and 640 nm) and should 

include one NIR band to discern exposed and floating vegetation. The above-water variables, targeted 

the peak (R‘566) and shoulders (s500-530 & R‘580) of the green reflectance maxima, the red 

absorption feature (R‘602 & 668:710), the epiphyte reflectance region (R‘580), and the vegetation NIR 

reflectance feature/red edge (668:710). The defined water-corrected variables targeted the green 

reflectance peak maxima and eelgrass epiphyte reflectance features (566:600) as well as the vegetation 

NIR reflectance feature/red edge (566:710). However, while Fyfe‘s recommendations are based on 

reflectance, this study selected relative measures of reflectance, which capture spectral shape.  

How Effective are these Spectral Variables for Detecting Eelgrass in a Hyperspectral Airborne 

Image?  

The results of our case study suggest that hyperspectral airborne imagery, such as the one acquired 

with AISA, can produce accurate maps of eelgrass. High accuracy (85%) was achieved when 

classifying atmospheric and glint corrected, reduced-variable AISA imagery with a ML algorithm. This 

result emphasizes the importance of variable reduction because the ML classifier could not be applied 

to the full-resolution hyperspectral data due to restrictions based on the relationship between training 

sample size and number of input bands [31,67].  

The results obtained with a MD classifier were inferior, especially when using the variable reduced 

band set (20% overall accuracy). This suggests that the Euclidian distance measurements used in the 

MD algorithm required a larger set of input bands to improve the classification or that the variable 

reduction approach eliminated variables containing important information about substrate separability. 

Further, it is also possible that factors are not accounted for in the in situ spectra that are present in the 

image—a possibility supported by the lower classification accuracy even of the best image 

classification compared with in situ accuracy values. These factors include: (1) higher spatial 

heterogeneity within the 2 m × 2 m image pixel compared with the HyperSAS field of view; (2) lower 

substrate certainty due to the combined geolocational errors of the GPS and image georeferencing; and 
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(3) greater noise introduced by correcting a 1 km image atmospheric path, compared with a 1 m in situ 

atmospheric path. Such effects would possibly be even larger when up scaling these results to images 

acquired by satellites such as IKONOS or Quickbird. 

Application of the Maritorena water correction [57] to the AISA image produced spectral errors at 

depths deeper than 2.5 m (Figure 7(b)). This is because at approximately this depth threshold, 

submerged substrate and deep water became indistinguishable by the AISA sensor in the blue, red, and 

NIR spectral regions (Figure 7(a)), where the attenuating effects of water, CDOM, TSM, and Chl-a 

were the greatest. Classification of the water correct Image 2 revealed that even in shallow areas of less 

than three metres depth, the results were relatively poor. Since the Maritorena water correction method 

(Equation (7)) is highly sensitive to errors of depth and Kd [87], any erroneous estimate of these 

parameters will result in large errors in estimating the contribution of the water column to the substrate 

reflectance. This considered, the low classification accuracy of shallow substrates was likely caused by 

water correction error resulting from the coarse one-meter vertical resolution of the bathymetry layer, 

or a spatially variable Kd throughout the image. The slight improvement of Image 2R (reduced set of 

bands—in the green and NIR spectra) classification accuracy over Image 2 (full hyperspectral set) 

emphasizes the role of Kd in the water attenuation correction. The improvement is likely owed to the 

spectral location of the indices in the green portion of the spectrum, where Kd values were lowest 

(Figure 2) and water correction of the in situ spectra was most accurate (<20% error), and in the NIR 

region, where the water corrected spectra were overestimated but still relatively proportional to their 

respective substrates. On the contrary, the MD classifier considered all bands of the full resolution 

water-corrected spectra, including the red and blue spectral regions where large water correction errors 

were evident. Despite the accuracy improvement, high confusion remained between eelgrass and the 

other green substrates, sAg and eAsp. Therefore the Maritorena water correction is not recommended 

for remote eelgrass mapping of submerged substrates where water Kd values are similar to those of this 

study (Table 1). Perhaps more accurate water correction results may be derived by Tassan‘s 

model [88], which was developed for turbid coastal waters with horizontal Kd gradients. 

What is the Wavelength-Dependent Depth Limit of Eelgrass Detection in situ and in the Image? 

On average, the maximum depth of substrate detection was 4.5 to 6.0 m for in situ measurement, 

and 2.5 (blue, red, and NIR spectral regions) to 5.5 m (green spectral region) for the AISA image. This 

is a mid-range value among benthic mapping depth limits found by other authors, which, with Landsat, 

range from 1.0 to 3.0 m in modeled CDOM-rich waters (aCDOM(400) = 15.0 m
−1

, Chl-a = 6.0 µg L
−1

, 

TSM = 6.0 mg L
−1

 ) [62], approximately 2.0 m in TSM rich waters (TSM = 15.0 mg L
−1

) [19] and 

temperate case 2 waters [21], 3.0 m in turbid waters with Landsat [52], and 6.0 m in moderate case 1 

waters with IKONOS [89], to 11.0 m in modeled medium Case 1 waters (aCDOM(400) = 1.5 m
−1

,  

Chl-a = 2.0 µg L
−1

, TSM = 2.0 mg L
−1

 ) [62] and 18.0 m in very clear tropical case 1 waters with 

IKONOS, SPOT and CASI [90]. Note that our results with the AISA sensor showed a shallower depth 

limit, likely due to higher sensor noise and atmospheric influence, as has been suggested by 

others [19]). A satellite sensor would likely have an even shallower depth constraint, given similar Kd 

conditions.  
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The maximum depth of substrate detection will vary depending on the transparency of the water and 

the magnitude of substrate reflectance. Using the in situ calculations as an example, if measurements 

are taken when the water column is relatively clear (for instance, Kd(566nm) = 0.20 m
−1

), eelgrass may be 

detected up to a depth of 15.0 m if not biofouled and 11.0 m if biofouled. If water is more turbid 

(e.g., Kd(566nm) = 0.47 m
−1

), the detection may be limited to shallow intertidal areas of 3 m depth or less 

(Figure 5). 
 

5. Conclusions 

The spectral separability of eelgrass from other submerged substrates was demonstrated in this 

study based on reflectance values from in situ hyperspectral measurements by identifying the spectral 

variables (bands, slopes, and ratios) for which between-class variability was maximized. The results of 

this study suggested specific combinations of spectral variables that could be used to map eelgrass 

distribution with remote imagery, a non-destructive approach that permits repeated measurements in a 

specific location. The defined variables were further tested in classification of a hyperspectral airborne 

AISA image.  

Based on the in situ data, 95% accuracy could be achieved when spectrally classifying eelgrass from 

above water, by applying a discriminant analysis classification procedure with the following set of five 

indices as inputs: s500-530, R‘566, R‘580, and R‘602 and 668:710. According to these in situ results, 

if these variables were used to classify a remotely sensed image, it would not be necessary to stratify by 

depth or mask out optically deep water. The classification should be resilient to slight atmospheric 

correction errors, as the spectral variable set is independent of the blue wavelengths, where 

atmospheric interference is the greatest. Effort should be made to collect imagery during times of the 

year when water is clearest (i.e., attenuation coefficients are low) so that the depth limit of eelgrass 

detection is maximized. 

It should be noted that although discriminant analysis is robust to departures from multivariate 

normality, and in the case of this dataset, the departures were fairly small, it still remains that the 

results should be interpreted with more care [91]. Therefore the discriminant analysis is used in this 

case for exploratory analysis rather than statistical testing. Additionally, stepwise variable selection 

does not allow variables back into the model once they have been removed; as such, the stepwise 

method may have limited the variable selection. A neural network technique such as Tabu search [92], 

which considers more variable combinations, may arrive at a different variable selection.  

The reduced variable set did not offer an advantage over the full-resolution dataset when classifying 

a hyperspectral airborne AISA image with a MD classifier. In fact, the eelgrass classification accuracy 

of the reduced variable image was markedly lower in this scenario—a result of high confusion between 

very shallow eelgrass and exposed vegetation. However, the major advantage of the reduced set was in 

attainment of a suitably small band set to enable use of the more statistically rigorous ML classifier. 

With ML classification of the reduced variable set, the higher eelgrass accuracies were achieved: over 

85% eelgrass producer and user accuracies and 83% overall classification accuracy.  

Still, supervised classifications, such as the ones used in this study, require a significant amount of 

ground-truth work. The field portion of a remote mapping project may constitute up to 70% of project 

duration, and, if set-up costs (i.e., software) are omitted, may account for approximately 86% of the 
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total project cost if using satellite imagery or 25% if using airborne imagery (estimates are for SPOT 

XS and airborne MSS respectively) [93]. Automation is the solution to this issue, and the ultimate goal 

of remote sensing procedures. Toward the goal of automation, the above-water and endmember spectra 

measured in this study will be compiled, along with future measurements, into a benthic substrate 

spectral library. This spectral library will be useful in the future evaluation of automated classification 

approaches, such as linear spectral unmixing (LSU), or the spectral angle mapper (SAM). An ideal 

spectral library for this purpose would include a wide array of substrates compiled from a variety of 

sites (e.g., additional macroalgae and varying sediment types from silt to cobble) and could be 

continually improved by collaboration with other in situ hyperspectral studies. 

The key wavelengths identified in this study are recommended for application with analysis of 

airborne and satellite imagery when the goal is delineating the spatial distribution of eelgrass. Applying 

these key wavelengths in the programming of airborne sensors, or the development of coastal based 

satellite spectral sensors, could yield effective mapping of eelgrass Zostera marina and associated 

benthic cover in the shallow coastal waters of Sidney Island, B.C., and possibly in other temperate 

coastal areas. These maps could be used as baseline inventory data and, when merged with other 

ancillary data layers (e.g., estuarine water flow and sediment loads, salinity, temperature, fish and 

invertebrate distributions), be used to report on the structure and functioning of coastal 

ecosystems [94,95]. However, it should be noted that species discrimination in the remote sensing of 

vegetation is achievable as long as the species and substrates under study are spectrally distinct over 

space and time [26]. For example, high classification accuracies at Sidney Island are owed in part to 

the large spectral magnitude differences between eelgrass and sand. Classification of an area where 

substrates are spectrally darker and more closely resemble the reflectance of submerged eelgrass 

(e.g., clays with high organic content) may not perform as well [21]. Likewise, plant phenology and 

water properties vary over time and between locations. Therefore it is recommended that the selected 

variables and image processing approach be tested on data gathered at Sidney Island over different 

seasons and at additional areas in the Gulf Islands National Park to confirm whether our suggestions 

are local- and time-specific, or more widely applicable.  

Eelgrass blade orientation must be considered when delineating eelgrass location. At an average 

length of 1.0 m, strong tidal current can alter the apparent periphery of the bed by about 1.0 m relative 

to slack tide when the blades are vertical. However, horizontal blades may provide higher classification 

accuracy; vertical orientation at slack tide would likely expose more underlying substrate to the sensor, 

creating a more heterogeneous signal and increasing the chance of substrate misclassification. This 

assumption was drawn from the results of the present study, where eelgrass producer error occurred 

largely in areas of spectral mixing in sparse eelgrass or bed peripheries. Further research into the 

spectral effect of blade orientation is recommended. In the meantime, it is important to be aware of 

prevailing current regimes of the study site, and whether one chooses to acquire at slack or flowing 

current, the state of the current should remain consistent throughout all images which are being 

compared over time. The blade orientation becomes still more important when developing and 

applying models for eelgrass biophysical parameters such as density and LAI. In this case, care should 

be taken to acquire imagery at a similar tidal state to that during which the biophysical model was 

developed.  
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Lastly, the area that can be effectively mapped depends on the depth of detection threshold of the 

sensor. Since the depth threshold varies with water depth and attenuation coefficient, it is 

recommended that imagery be acquired during the lowest possible tide. In any case, all effort should be 

made to acquire imagery in the months when waters are clearest, i.e., lowest Kd. Subtidal areas near the 

depth of detection threshold will still, however, show a higher level of classification error than shallow 

areas [59], and this error will vary with spatial and temporal variability of Kd. Since reliable temporal 

monitoring techniques must be functional over a range of conditions [96], it might be necessary to 

increase the reliability of subtidal eelgrass mapping with additional techniques. For example, 

Roelfsema stratified image data by depth and turbidity (>3 m and turbid vs. <3 m and exposed) [96]. 

On the shallow/exposed fraction, image classification techniques similar to the present study were 

applied. The deep and turbid areas, however, were manually digitized based on local knowledge, 

ground-truthing, IKONOS fused higher resolution panchromatic data, etc. Pe‗eri et al. similarly 

applied manual expert guidance post-classification to separate green macro-algae from eelgrass [97]. 

The methods of Roelfsema [96] and Pe‗eri et al. [97] could be applied as a secondary step to the 

recommendations of our study. 
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