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Abstract: The fraction of vegetation cover (FVC) is often estimated by unmixing a linear
mixture model (LMM) to assess the horizontal spread of vegetation within a pixel based
on a remotely sensed reflectance spectrum. The LMM-based algorithm produces results
that can vary to a certain degree, depending on the model assumptions. For example, the
robustness of the results depends on the presence of errors in the measured reflectance
spectra. The objective of this study was to derive a factor that could be used to assess the
robustness of LMM-based algorithms under a two-endmember assumption. The factor was
derived from the analytical relationship between FVC values determined according to several
previously described algorithms. The factor depended on the target spectra, endmember
spectra, and choice of the spectral vegetation index. Numerical simulations were conducted
to demonstrate the dependence and usefulness of the technique in terms of robustness against
the measurement noise.

Keywords: fraction of vegetation cover; linear mixture model; propagated error; vegetation
index; optimum algorithm; asymmetric ellipse; noise robustness

1. Introduction

The spatio-temporal distribution of biophysical parameters on land surfaces has been retrieved from
remotely sensed surface reflectances [1,2]. The fraction of vegetation cover (FVC) is the fraction of the
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horizontally projected area occupied by green vegetation, which is estimated to quantify the horizontal
spread of vegetation on the subpixel level. FVC provides useful information for monitoring changes in
the forest [3] or land use [4], and it guides policy development decisions [5]. FVC estimates at the
continental and larger scale have been used as input parameters to describe surface processes in climate
models [6,7].

Several types of algorithm have been introduced and developed for estimating FVC from multispectral
and hyperspectral data. Among them, techniques based on linear mixture models (LMM) have
been employed most frequently [8-13] The framework of these models was proposed by [14] and
extracts useful information in terms of the fractional abundances of spectra corresponding to pure
components (endmembers) within a certain area. The LMM algorithms have been developed in several
studies [15,16] to analyze surface materials or minerals [17,18], classify [19,20], and inform other
environmental studies [21]. FVC retrieval techniques have been facilitated by unmixing an LMM to
compute the weights of vegetation endmembers [22]. Subsequently, numerical inversion of a radiative
transfer model [23,24] and signal processing approaches, including neural networks [25,26], have been
applied to FVC estimation.

This study focuses on an LMM-based algorithm that shows some variation in the retrieved FVCs
owing to differences in the model assumptions and constraints on the retrieval algorithms [27,28]. This
study is performed as a series of investigations [28,29] about the three LMM-based FVC algorithms,
which are widely used in practical applications. In these studies, a two-endmember LMM assuming
two multispectral bands was used throughout to facilitate analytical derivations. Previous studies
have investigated the relationship among the three types of LMM-based FVC algorithms under a
two-endmember assumption [28]. Here, the relationship between FVC values derived from different
algorithms is expressed analytically. Errors in the calculated FVC, which were propagated from errors in
the reflectance spectra, are investigated [29], and the relationships among errors propagated in different
algorithms are described. The results show that the relationships are described by an asymmetric
ellipse with coefficients that depend on the target spectrum, assumed endmember spectra, and vegetation
indices (VIs) used as constraints. Although the relationship was derived analytically and demonstrated
numerically, a technique for deterministically judging the robustness of the algorithms against errors
in the reflectance spectra has not been previously addressed. This study attempts development of such
a technique.

The objective of this study was to introduce a technique for comparing different LMM-based
algorithms for FVC. Using an analytical approach, we derived a factor that deterministically compares
the relative robustness of two algorithms. Note that sources of error can arise from various intervening
factors, such as poor radiometric calibration and atmospheric contamination [30,31]. As a result, errors
in the reflectance spectra eventually propagate into FVC estimations [32-34]. An assessment of the
algorithm robustness toward these errors can be performed based on intensive parameter studies of
reflectance models. An advantage of analytical approaches is that they provide deterministic information
without uncertainty (without parametric studies.)
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2. LMM-Based Algorithms

The LMM approach represents a target spectrum as a linear combination of the endmember
spectra [35]. The weights of the endmember spectra are the fractional abundances of endmember
components in a target field. After extracting the endmember from satellite data or measurements,
spectral unmixing may be conducted to retrieve the fractional abundance of each endmember by
minimizing distance metrics, such as the Euclidean norm, between the modeled and the target spectra.
The algorithms can vary, depending on the choice of endmember variables and constraints assumed in
the algorithms. The standard algorithm uses reflectance as an endmember variable, and constraints are
provided by distance metrics defined on the reflectance spectra.

In this study, we considered three variants of the LMM-based algorithm under the two-endmember
assumption. The choice of endmember variable (endmember model) and constraints on the algorithms
are summarized in Table 1. Below, we briefly introduce the three algorithms for the two-band case, as
assumed in previous studies [28,29].

Table 1. Assumed endmember variables and constraints in the three LMM-based algorithms.

Type of algorithm Endmember model Constraint
Reflectance-based LMM reflectance spectrum reflectance spectrum
VI-based LMM VI VI
Isoline-based LMM reflectance spectrum VI

2.1. Algorithm-1: Reflectance-Based LMM

The reflectance-based LMM [22], denoted algorithm-1 in this study, uses reflectance as an
endmember variable and the Euclidian norm as the distance measure on the reflectance spectra
(Table 1). Algorithm-1 defines the FVC as a function of three spectra, the target spectrum,
ρρρt = (ρt,r, ρt,n), vegetation endmember spectrum, ρρρv = (ρv,r, ρv,n), and non-vegetation endmember
spectrum, ρρρs = (ρs,r, ρs,n), which are used to define two-dimensional vectors in the red and NIR
reflectance subspace. According to this algorithm, the FVC can be written as

ω̂1 =
ddd · (ρρρt − ρρρs)

ddd · ddd
(1)

where ddd is the vector from ρρρs to ρρρv defined by

ddd = ρρρv − ρρρs (2)

2.2. Algorithm-2: VI-Based LMM

The endmember spectra can be selected according to other variables, such as the VI. In the second
variant of the LMM-based algorithm (algorithm-2), the VI for a target pixel is modeled as a linear sum
of the endmember VIs [36] (the VI-based LMM in Table 1). In this study, we employed three VIs,
NDVI [37], SAVI [38], and EVI2 [39], as examples. The FVC estimation is written as a function of the
three VIs (the target spectrum, vt, vegetation endmember, vv, and non-vegetation endmember, vs)

ω̂2 =
vt − vs
vv − vs

(3)
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where v (two-band VI) is a function of ρρρ, and the VI coefficients are

v =
ccc1 · ρρρ+ r1
ccc2 · ρρρ+ r2

(4)

with the definition of ccci given by

ccci = (pi, qi) (i = 1, 2) (5)

The coefficients pi, qi, and ri depend on the choice of VI, as summarized in Table 2.

Table 2. Coefficients of the two-band VIs (pi, qi, and ri) used as examples in this study.

p1p1p1 q1q1q1 r1r1r1 p2p2p2 q2q2q2 r2r2r2

NDVI −1 1 0 1 1 0
SAVI −(1 + L) 1 + L 0 1 1 L

EVI2 −2.5 2.5 0 2.4 1 1

2.3. Algorithm-3: Isoline-Based LMM

The third algorithm (Isoline-based LMM, algorithm-3) is essentially a combination of algorithm-1
and -2. In the third algorithm, the reflectance spectrum is modeled as in algorithm-1, using VI as a
constraint [40], similar to algorithm-2 (Table 1). The FVC of this algorithm is represented by

ω̂3 =
(ccc1 − vtccc2) · ρρρs + r1 − vtr2

(vtccc2 − ccc1) · ddd
(6)

3. Error Propagation in FVC

3.1. Measurement Errors in the Reflectance Spectra and Propagated Errors in the FVC

Biased errors in the spectral measurements are modeled as band-correlated noise in the red-NIR
reflectance space [29]. The magnitude of the noise spectrum is represented by σt, and the direction
of the band correlation in the error is represented by the directional vector (unit vector) in the red-NIR
reflectance space, eee = (cos θ, sin θ). Hence, the band-correlated noise is assumed to be the product of
those variables, σteee(θ).

Errors propagated in the FVC retrieval by LMM-based algorithms are computed from σteee(θ) as
an input noise. The errors are determined by four types of input variables: (i) band-correlated
noise (σteee(θ)), (ii) target spectrum (ρρρt), (iii) endmember spectrum assumed in the LMM-based
algorithms (ρρρv and ρρρs), and (iv) choice of VI. Below, these parameters comprise the input data.
Figure 1 illustrates the input noise and the band-correlated errors propagated in the FVC based on
algorithm-1 and -3, as examples. The blue dot in Figure 1(a) indicates the target spectrum, and
the red dot indicates the band-correlated noise, which is a distance σt from the target spectrum.
The circle around the blue dot indicates the positions of the noisy target reflectance spectrum,
which includes band-correlated noise, determined by the directional parameter θ in the vector eee.
Figure 1(b) illustrates the FVC retrieval processes for the target spectrum (blue dot) and the biased
spectrum (red dot) using algorithm-1 and -3 with the NDVI constraints. We then obtain the error
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propagated in the FVC as the FVC difference between the target spectrum and the biased spectrum,
represented by ε1 and ε3 for algorithm-1 and -3, respectively (Figure 1(b)). As described in Figure 1, the
amplitudes of the propagated error in the FVC differ by algorithm.

Figure 1. Error model in the measured spectrum (a) and the errors propagated in the FVCs
by algorithm-1 and -3, (b) in the red-NIR reflectance space. In (a), the blue dot indicates
the target spectrum and the red dot indicates the band-correlated noise, a distance σt from
the target spectrum. The circle around the blue dot indicates the choices of band-correlated
noise. In (b), the FVCs and propagated errors for the two algorithms are indicated by empty
circles on the line spanned by the vegetation and non-vegetation endmember spectra.

The errors propagated in the FVC by each of the three algorithms were derived previously [29]. The
errors in algorithm-1 are represented in terms of the band-correlated noise and the endmember spectra
(independent of the target spectrum) as

ε1 =
σt
ddd · ddd

ddd · eee (7)

The errors propagated in the FVC by algorithm-2 are a function of the input data, expressed as

ε2 =
σtaaa · eee

σtbbb · eee+ φ
(8)

where

φ = (vv − vs)(ccc2 · ρρρt + r2)
2 (9a)

aaa = (ccc2 · ρρρt + r2)ccc1 − (ccc1 · ρρρt + r1)ccc2 (9b)

bbb = (vv − vs)(ccc2 · ρρρt + r2)ccc2 (9c)

The errors propagated by algorithm-3 also depend on an input data set according to

ε3 =
σtsss · eee

σtttt · eee+ ψ
(10)
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where

ψ = [ccc1 · ρρρt + r1 + η(ccc2 · ρρρt + r2)]
2 (11a)

sss = ζ[(ccc1 · ρρρt + r1)ccc2 − (ccc2 · ρρρt + r2)ccc1] (11b)

ttt = (ccc1 + ηccc2)[ccc1 · ρρρt + r1 + η(ccc2 · ρρρt + r2)] (11c)

and where

η = −d
dd · ccc1
ddd · ccc2

(12a)

ζ =
[(ccc1 · ρρρs + r1)ccc2 − (ccc2 · ρρρs + r2)ccc1] · ρρρv + (r2ccc1 − r1ccc2) · ρρρs

(ccc2 · ddd)2
(12b)

The relationship among those errors can be determined by varying the parameter θ in eee (Equations (7),
(8), and (10)). For example, the relationship between ε1 and ε2 is shown in Figure 2 as a function of
θ. In this example, the target spectrum and the vegetation and non-vegetation endmember spectra are
set to (0.1,0.2), (0.05,0.4), and (0.2,0.2), respectively (Figure 2(a)). The magnitude of the input error is
0.01, and NDVI is used as the endmember model in algorithm-2. The relationship among these variables
becomes an asymmetric ellipse (Figure 2(b)).

Figure 2. An example of the relationship between ε1, and ε2, determined by numerical
simulations. (a) shows the target spectrum (0.1,0.2), the vegetation spectrum (0.05,0.4), and
the non-vegetation endmember spectrum (0.2,0.2), indicated by the blue dot, the filled and
empty squares, respectively. The magnitude of the input error is set to 0.01. NDVI is used
as the endmember model in algorithm-2. In (b), the ellipse is obtained by varying θ in
Equations (7) and (8).

ε

ε

In a previous study, we derived the relationships among the errors propagated in the three FVC
retrieval algorithms under a two endmember assumption [29]. Because the variable θ was eliminated
during the derivation process, the expression describing the relationship was independent of θ. In the
next subsection, we summarize the relationships among the errors associated with the three algorithms.
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3.2. Relationships Among the Errors Propagated in the FVC

The relationships among the propagated errors (ε1, ε2, ε3, ε′2 and ε′3, the definitions of which are
provided in [29]) were derived for all pairs. Figure 3 illustrates a schematic diagram describing the
relationships among the propagated errors. The relationships are indicated by bidirectional arrows with
different colors, which are labeled according to the corresponding figure numbers in the results section,
discussed in detail below. The corresponding sections and equations derived in [29] are also indicated
in the figure. Proceeding with the explanation, we define a set S of the propagated errors according to

S = {ε1, ε2, ε3, ε′2, ε′3} (13)

A pair of any two choices in S is represented by x and y. The relationship between x and y, except for
the pairs ε2 and ε3, and ε′2 and ε′3, can be represented by [29]

2∑
i=0

2∑
j=0

pi,jx
iyi = 0 (14)

where the definitions of the coefficients pi,j are summarized in [29]. Equation (14) represents an
asymmetric ellipse, as shown in Figure 2.

Figure 3. Schematic diagram illustrating the relationships among the errors propagated by
the FVC calculated according to each of the three algorithms. The relationships are indicated
by bidirectional arrows of different colors. The figure and section numbers in the illustration
indicate the results of numerical validation calculations and the derivations described in a
previous study [29].

Sec. 5  Eqs. ( 44 ) and (46)

Sec. 6  Eqs. ( 66 ) and (75)
Sec. 7  Eq. ( 79 )

Fig. 9, 10 

Fig. 12 

Fig. 12

Fig. 11 Fig. 11 

Sec. 5  Eq. ( 51 )

The relationship between ε2 and ε3 (or between ε′2 and ε′3), denoted by a green bidirectional arrow as
shown in Figure 3, becomes

ε3 =
γ1ε2

1− γ2ε2
(15)
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where

γ1 =
(1− νω̂3)

2

1− ν
(16)

γ2 =
ν

ν − 1
(17)

and

ν =
(vv − vsccc2) · ddd
(vvccc2 − ccc1) · ddd

(18)

Figure 4 shows a plot of Equation (15) under the same conditions (except non-vegetation endmember
spectrum) as were applied in the simulation illustrated in Figure 2. Note that NDVI were chosen as the
variables or constraints in both algorithms. The relationship shown in Figure 4(b) is one-to-one.

Figure 4. Example of the relationship between ε2 and ε3. (a) The target spectrum, vegetation
spectrum, and non-vegetation endmember spectrum denoted by the blue dot, filled squares
and empty squares, respectively. The values are the same as those shown in Figure 2 except
non-vegetation endmember spectrum; (b) The error relationship between algorithm-2 and -3.

ε

ε

In general, Equation (14) describes an asymmetric ellipse rotated to a certain degree and centered at
the origin (Figure 2(b)). The shape and degree of rotation (the inclination of major axis) depend on the
coefficients pi,j . Similarly, the shape and rotation (or slope of the relationship) in Equation (15) depend
on the coefficients γi.

These figures suggest an important observation: the robustness properties of the algorithms may be
directly compared by deriving the rotational angle of the major axis of the ellipse. For example, if the
major axis is more aligned with the X-axis than with the Y-axis (the rotational angle is less than π/4),
the average propagated error along the X-axis exceeds that along the Y-axis. This indicates that the
algorithm applied to the Y-axis is more robust than that applied to the X-axis.

4. Comparison of the Propagated Errors

An elliptical relationship is obtained by varying the angle θ of the band-correlated noise. Thus, a point
on the ellipse corresponds to a certain value of θ, which is implicitly included in Equation (14). Figure 5
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shows a cross plot of ε1 and ε2 for θ between 0 and 2π. In the figure, the values of θ are indicated by the
intersections with the lines of ε1 = ε2 and ε1 = −ε2. The red dots between θ = 96 and 233, and 274

and 53, indicate the range of θ in which the absolute value of ε1 is smaller than that of ε2. This suggests
that algorithm-1 is more robust under conditions in which errors are present in the target reflectance
spectrum. On the other hand, the blue dots indicate the ranges in which algorithm-2 is more robust.

Figure 5. Relationship between ε1 and ε2. The segments of the ellipse, on which algorithm-1
is more robust than algorithm-2, are indicated by the red dotted lines. The values of θ are
shown at the boundaries of the segments.

ε

ε

Note that the parameter θ depends on the type of noise present. For example, an increase in the
aerosol optical thickness increases the red reflectance but decreases the NIR reflectance [41], whereas
the soil brightness beneath the vegetation canopy tends to shift the reflectance along the one-to-one
line [42]. Although each effect influences the target spectrum in a different way, the robustness in the
presence of noise can be compared by averaging the relative robustness over the parameter range θ. To
do so, we use the slope of the major axis in the asymmetric ellipse (Equation (14)) as a robustness factor
in a comparison of the two algorithms. When the slope of the major axis in the ellipse (red line in
Figure 6(a)) is greater than one, the average absolute value of ε1 is less than that of ε2. In contrast, if the
slope of the ellipse is less than one (Figure 6(b)), the average absolute value of ε1 is larger than that of ε2,
indicating that algorithm-1 is less robust than algorithm-2. We next discuss a derivation of the rotation
angle of the ellipse.

The inclination of the ellipse results from the cross terms in Equation (14). Among the cross terms,
the term with coefficient p1,1 provides the most significant contribution. To indicate this fact, we plot the
ellipse by setting p1,1 equal to zero (Figure 7(a)). As is clearly shown in the figure, the ellipse is no longer
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inclined. The inclination angle θ0 (illustrated in Figure 7(b)) can then be approximated by transforming
(rotating) the coordinates.

Figure 6. Two examples of an asymmetric ellipse describing the relationship between ε1
and ε2. In (a), the slope of the major axis exceeds unity, meaning that the average value of
|ε1| is less than that of |ε2|. This suggests that algorithm-1 is more robust than algorithm-2 in
terms of the propagated error; (b) The opposite case as is shown in (a), the conditions under
which algorithm-1 is less robust than algorithm-2.

ε

ε

ε

ε

Figure 7. Example of an asymmetric ellipse obtained by setting p1,1 = 0 in Equation (14)
(a), and the definitions of the angle θ0 and the new coordinate system (x′, y′) (b).

ε

ε
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4.1. Derivation of the Angle

Let us define a new coordinate system (x′, y′) obtained by rotating the original coordinate system by
θ0 in the counterclockwise direction (Figure 7(b)). The geometric transformation is represented by[

x

y

]
=

[
cos θ0 − sin θ0

sin θ0 cos θ0

] [
x′

y′

]
(19)

Substituting Equation (19) into Equation (14), we obtain the following expression for the ellipse in the
new coordinate system,

4∑
i′=0

4∑
j′=0

µi′,j′(x
′)i

′
(y′)j

′
= 0, (i′ + j′ ≤ 4) (20)

where the definitions of µi′,j′ are summarized in Appendix A.
Because the major axis is now aligned with the X ′-axis, the coefficient of the first-order cross term,

µ1,1, must be close to zero,

µ1,1 = 2 sin θ0 cos θ0(p0,2 − p2,0) + (cos2 θ0 − sin2 θ0)p1,1 ≈ 0 (21)

Solving the above equation for θ0, we obtain

θ0 ≈
1

2
tan−1 p1,1

p2,0 − p0,2

(22)

Note that the coefficients, p2,0, p0,2, and p1,1 depend on three factors: the target spectrum, the
endmember spectra, and the choice of VI. Also, note that the term p0,2, which depends on σt, is negligibly
small compared to the other terms [29]. This indicates that σt does not affect θ0. Finally, the slope of the
major axis is approximated by tan θ0. If tan θ0 exceeds 1, the error propagated along the Y -axis is larger
than that propagated along the X-axis.

5. Comparison between Algorithms-2 and -3 under Identical VI Conditions

The relationship between the FVC errors associated with algorithm-2 and -3, assuming identical VI,
is more straightforward than the relationship described above, because the relationship is one-to-one
(Equation (15)). The robustness factors may be compared using the derivative of the relationship. The
derivative of ε3 with respect to ε2 is

∂ε3
∂ε2

=
γ1

(1− γ2ε2)2
(23)

Note that ε2 is a function of the directional parameter θ.
The robustness properties should be compared based on the average over the range of the directional

parameter θ. The average derivative (represented by α) can be approximated according to the average
value of ε2 (ε2)

α ≈ γ1

(1− γ2ε2)2
(24)
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Applying the definition of ε2 shows that α is negligibly smaller than unity. Thus, in the context of the
above equation, ε2 is considered to be

ε2 =

∫ 2π

0

ε2(θ) dθ ≈ 0 (25)

As a result, Approximation (24) becomes

α ≈ γ1 (26)

Note that the average slope (α) depends on the target spectrum, endmember spectra, and choice of VI
(independent of the magnitude of the input error). Also note that ν < 0 [28] and γ1 > 0. As a result,
α becomes positive. When α is larger than one, the absolute value of ε2 is less than ε3, meaning that
algorithm-2 is more robust than algorithm-3 in terms of the propagated error in the FVC.

6. Numerical Demonstrations

The robustness factors of the LMM-based algorithms were compared for various errors in the
target spectrum. Numerical simulations were conducted to compute the robustness factor (tan θ0 in
Equation (22) or α in Equation (26)) for various sets of endmember spectra and VI values over a range
of target spectra. The coefficients in Equations (22) and (26) were determined according to three types of
input data: (i) target spectrum, (ii) vegetation and non-vegetation endmember spectra, and (iii) two-band
VI used in the endmember model or the constraint. The target spectra assumed in the demonstration
are shown in Figure 8. For the endmember spectra, we prepared two pairs of spectra, EM1 and EM2.
Although the vegetation endmembers of both pairs were identical, the spectra of the non-vegetation
endmembers were different. The bright and dark soils were modeled using EM1 and EM2, respectively
(Table 3). The two-band VI was selected from three VIs: NDVI, SAVI, and EVI2. The magnitude of the
noise spectrum was assumed to be 0.01 throughout the demonstration (although it did not significantly
influence the robustness comparisons.)

Table 3. Two sets of endmember spectra (EM1 and EM2) used for the numerical
demonstration.

Class Vegetation Non-vegetation
Band Red NIR Red NIR
EM1 0.05 0.4 0.2 0.2
EM2 0.05 0.4 0.1 0.1

The robustness factors, tan θ0 and α, were computed for various combinations of the input parameters.
The results are summarized in four sets of figures (Figures 9, 10, 11, and 12.) The factors are plotted as
contour maps on the logarithmic scale (ln(tan θ0) or ln(α)) as a function of the red and NIR reflectance.
The FVC errors propagated in the algorithms were compared, pairwise, and are indicated in the figures
as “A vs. B”. In the figures, the region corresponding to positive values indicates the subspace in which
the error “A” is smaller than the error “B”. Additionally, the algorithm corresponding to the error “A” is
more robust than the error “B”.



Remote Sens. 2011, 3 1356

Figure 8. Target spectra over the red-NIR reflectance space used in the numerical
demonstration.

Figure 9 compares algorithm-1 and -2 (upper three panels), and algorithm-1 and -3 (lower three
panels) for the endmember pair EM1 with the three VIs. In general, ε1 is independent of the target
spectrum. Therefore, variations in tan θ0 are caused by the variations in ε2. In the figures, the contour
lines for ln(tan θ0) = 0 are proximal to the lines spanned by the two-endmember spectra. This suggests
that, for the target spectra located on the left-hand sides of the lines spanned by the endmember spectra,
algorithm-1 is more robust than the other two algorithms.

Figure 10 shows a comparison similar to that shown in Figure 9, with different endmember spectra,
EM2. Recall that EM2 is a darker non-vegetation endmember spectrum than EM1. In the figures, the
positive value regions increased in size (relative to the regions in the previous figures), indicating that
algorithm-1 is more robust than the other two algorithms over a wider range of the target spectra. This
also indicates that algorithm-1 is more robust than the others for darker non-vegetation spectra.
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Figure 9. Results of the numerical simulation describing the distribution of tan θ0 on a log
scale over the red-NIR reflectance space, for comparing the performance of algorithm-1 and
-2, or algorithm-1 and -3 (comparison of the inter-algorithm relationship) using EM1 as the
endmember spectra. The results indicate the influences in the target spectrum and the choice
of VI on tan θ0. (a–c) show the tan θ0-map for algorithm-1 and -2 using NDVI, SAVI, and
EVI2 as the endmember models.(d–f) show the tan θ0-map for algorithm-1 and -3 using
those VIs as the constraints.

In summary, algorithm robustness depends on the endmember spectra assumed in the algorithm. Even
when assuming identical endmember spectra, the robustness properties of two algorithms can vary with
the measured target spectrum. In general, the brightness of the target spectrum and the position of its
reflectance spectra relative to the endmember spectra are important factors.

Figure 11 shows an intra-algorithm comparison (for different VIs) of algorithm-2 and -3 using EM1.
Although the contour lines showed similar patterns, the use of SAVI or EVI2 for ε2 (upper-right figure)
resulted in different patterns, and the mechanism remains unclear. The line spanned by the endmember
spectra was no longer the discriminator of robustness in this case.
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Figure 10. Results of numerical simulations obtained by replacing the endmember spectra
EM1 with EM2, shown with respect to those used in previous calculations, Figure 9. The
results indicate that the relationship is influenced by the choice of VI as well as endmember
spectra (non-vegetation class). A comparison with previous results is also shown. (a–c)
show tan θ0-map for algorithm-1 and -2 using NDVI, SAVI, and EVI2 as the endmember
models. (d–f) show tan θ0-map for algorithm-1 and -3 using the VIs as constraints.

Figure 12 plots the values of α to compare algorithm-2 and -3 for a given VI with two sets of
endmember spectra. The upper three panels show the results using EM1, and the lower three panels
present results using EM2. In general, when the VI of the target spectrum is high, algorithm-2 is more
robust (hence, a better choice) to noise in the target reflectance spectrum. Interestingly, the contour
patterns were similar, and were comparable to the pattern considered to be an exception, as shown in
Figure 11 (upper right panel). We also note that the differences in the non-vegetation spectra did not
significantly influence the patterns of the contour lines, whereas the magnitude of α varied significantly.

7. Conclusions

This study derived the robustness factors necessary for comparing LMM-based FVC algorithms. The
derivations relied on analytical expressions for the relationships between the errors propagated in FVC,
introduced previously [29]. Based on our derivations, the relative robustness between the two algorithms
can be judged by a single factor, θ0 (or α). This approach is significant in that the robustness of different
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Figure 11. Results of numerical simulations describing the distribution of tan θ0 on a
log scale over the red-NIR reflectance spectrum. Algorithm-2 or -3 were compared using
different VI conditions (comparison of the intra-algorithm relationship) and with EM1 as
the endmember spectra. The results indicate the influences on the target spectrum and the
choice of VI on tan θ0. (a–c) show the tan θ0-map for algorithm-2 using NDVI and SAVI,
NDVI and EVI2, and SAVI and EVI2 as the endmember models. (d–f) show tan θ0-map for
algorithm-3 using the same sets of VI used in the upper three panels as constraints.

algorithms can be compared deterministically (statistical approaches are not necessary) using only prior
knowledge of a target field and the endmember spectra assumed in the algorithms. Also note that
parameter studies and iterative approaches are not involved in comparison processes. These factors
provide important information for discussions of the optimum algorithm under two-endmember and
two-band assumptions.

Although the range of practical applications to which the results of this study may be applied is
somewhat limited due to the assumptions made on the LMM (number of bands and endmember species),
the findings and the essence of the theoretical development contribute to a better understanding of the
FVC retrieval algorithms in terms of robustness to noise. Further studies are required to expand the
techniques to achieve broader applicability.
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Figure 12. Results of numerical simulations describing a distribution of α on a log
scale over the red-NIR reflectance spectrum to compare algorithm-2 and -3 using identical
VI conditions (comparison of the inter-algorithm relationship). The results indicate the
influence of the target spectrum, endmember spectra, and choice of VI on tan θ0. (a–c)
show the tan θ0-map using NDVI and SAVI, NDVI and EVI2, and SAVI and EVI2 as the
conditions for algorithm-2 and -3 based on EM1. (d–f) show the tan θ0-map for the VIs
assumed in the upper three panels, based on EM2.
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Appendix

Coefficients in the geometric transform equation.
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The coefficients µi′,j′ (i′, j′ = 0, 1, · · · , 4) in Equation (20) may be expressed as follows,

µ4,0 = sin2 θ0 cos2 θ0p2,2 (27)

µ0,4 = sin2 θ0 cos2 θ0p2,2 (28)

µ3,1 = 2 sin θ0 cos θ0(cos2 θ0 − sin2 θ0)p2,2 (29)

µ1,3 = 2 sin θ0 cos θ0(sin
2 θ0 − cos2 θ0)p2,2, (30)

µ2,2 = (sin4 θ0 − 4 sin2 θ0 cos2 θ0 + cos4 θ0)p2,2 (31)

µ3,0 = sin θ0 cos θ0(cos θ0p2,1 + sin θ0p1,2) (32)

µ0,3 = sin θ0 cos θ0(sin θ0p2,1 − cos θ0p1,2) (33)

µ2,1 = cos θ0(cos2 θ0 − 2 sin2 θ0)p2,1 + sin θ0(2 cos2 θ0 − sin2 θ0)p1,2 (34)

µ1,2 = sin θ0(sin
2 θ0 − 2 cos2 θ0)p2,1 + cos θ0(cos2 θ0 − 2 sin2 θ0)p1,2 (35)

µ2,0 = cos2 θ0p2,0 + sin2 θ0p0,2 + sin θ0 cos θ0p1,1 (36)

µ0,2 = sin2 θ0p2,0 + cos2 θ0p0,2 − sin θ0 cos θ0p1,1 (37)

µ1,1 = 2 sin θ0 cos θ0(p0,2 − p2,0) + (cos2 θ0 − sin2 θ0)p1,1 (38)

µ1,0 = cos θ0p1,0 + sin θ0p0,1 (39)

µ0,1 = − sin θ0p1,0 + cos θ0p0,1 (40)

µ0,0 = p0,0 (41)
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