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Abstract: Cloud contamination is one of the severest problems for the time-series analysis 
of optical remote sensing data such as vegetation phenology detection. Sub-pixel clouds 
are especially difficult to identify and remove. It is important for accuracy improvement in 
various terrestrial remote sensing applications to clarify the influence of these residual 
clouds on spectral vegetation indices. This study investigated the noises caused by residual 
sub-pixel clouds on several frequently-used spectral indices (NDVI, EVI, EVI2, NDWI, 
and NDII) by using in situ spectral data and sky photographs at the satellite overpass time. 
We conducted in situ continuous observation at a Japanese deciduous forest for over a year 
and compared the MODIS spectral indices with the cloud-free in situ spectral indices. Our 
results revealed that residual sub-pixel clouds potentially contaminated about 40% of the 
MODIS data after cloud screening by the state flag of MOD09 product. These residual 
clouds significantly decreased NDVI values during the leaf growing season. However, 
such noises did not appear in the other indices. This result was thought to be caused by the 
different combination of wavelengths among spectral indices. Our results suggested that 
the noises by residual sub-pixel clouds can be reduced by using EVI, NDWI, or NDII in 
place of NDVI. 
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1. Introduction 

Remotely sensed spectral indices calculated from a combination of band reflectances are widely 
used to monitor biophysical quantities related to the terrestrial ecosystem, such as leaf area index [1-4] 
and leaf onset/offset phenology [5,6]. However, occasionally, clouds contaminate these data, and 
therefore, obscure the monitoring by optical remote sensing satellites. In particular, clouds smaller than 
a satellite image pixel, i.e., sub-pixel clouds, often hinder the retrieval of biophysical parameters of the 
ecosystem from spectral indices. Although cloud masks have been produced and demonstrated to be 
effective [7], they are not always able to completely offset the contamination caused by clouds [8]. 
Noise due to irremovable clouds is one of the severest problems for time-series monitoring using 
satellite sensors with low-to-medium spatial resolution (i.e., 250–1,000 m) such as the Terra/Aqua 
moderate resolution imaging spectroradiometer (MODIS). 

To completely remove cloud noise from time-series spectral indices data, we should first understand 
the behavior of cloud noise in several frequently used spectral indices. Normalized difference 
vegetation index (NDVI) [9] is the most widely used spectral index for monitoring vegetation changes. 
Clouds generally show high reflectance in the visible and near-infrared domains (300–1,000 nm), 
which results in lower NDVI values in comparison to vegetation [10]. Based on this knowledge, 
several cloud-screening techniques for time-series NDVI have been developed [11-13]. The numerical 
simulation for the effect of sub-pixel clouds showed that it also led to a measurable decrease of 
NDVI [14]. However, the actual impact of sub-pixel clouds is not entirely clear since it is difficult to 
quantify clouds at the sub-pixel scale. Furthermore, for other frequently used spectral indices such as 
the enhanced vegetation index (EVI) [15], 2-band EVI (EVI2) [16], normalized difference water index 
(NDWI) [17], and normalized difference infrared index (NDII) [18,19], the effects of cloud 
contamination are not well understood. We hypothesize that different spectral indices may also show 
different responses to cloud contamination because the reflectance of different wavelength domains 
may show different responses to cloud contamination. 

In this study, we investigated the effects of cloud contamination on several widely used spectral 
indices measured by the MODIS sensor: NDVI, EVI, EVI2, NDWI, and NDII. To evaluate the 
sub-pixel cloud noise in satellite data, we conducted highly-frequent automatic in situ measurements 
using spectral radiometers and digital cameras. These measurements provided a set of hyper-spectral 
reflectances of the ground surface and hemispherical photos of the cloud conditions in the sky at the 
satellite overpass time. Several papers have demonstrated the usefulness of these monitoring systems 
when evaluating ecological remote sensing [20-23]. We evaluated the residual sub-pixel cloud noise 
by comparing the MODIS data with the in situ data. 
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2. Materials and Methods 

2.1. Study Site 

The study site is a cool-temperate deciduous broadleaved forest near Takayama City in central 
Japan (137.4231°E, 36.1462°N, 1,420 m a.s.l. (above sea level) in WGS84). The annual mean air 
temperature and annual precipitation from 1980 to 2002 were 7.2 °C and 2,275 mm, respectively. The 
site is covered with snow from around December to April. Tree census and flux measurements were 
carried out over a 10-year period [24-28]. The forest canopy is dominated by Erman’s birch (Betula 
ermanii) and Japanese oak (Quercus crispula) [29]. The height of the dominant canopy trees ranges 
from 13 to 20 m. The forest floor is covered with evergreen dwarf bamboo (Sasa senanensis) with a 
height of 1.0 to 1.5 m. This site belongs to several monitoring networks: the Phenological Eyes 
Network [30] (http://www.pheno-eye.org/), JapanFlux network (http://www.japanflux.org/), and 
JaLTER (Japan Long-Term Research Network; http://www.jalter.org/).  

2.2. In situ Measurements  

We periodically and automatically observed spectral irradiance of the sky and forest canopy by 
using two hemispherical spectroradiometers (HSSRs) MS-700 and MS-712 (EKO Instrument Co. Ltd., 
Tokyo, Japan) (Table 1). We used the automatic rotating stage CHS-AR (Hayasaka Rikoh Co. Ltd., 
Sapporo, Japan), which can flip back and forth and is driven by an electric motor, to enable an HSSR 
to observe both the downward and upward directions in alternating fashion. The HSSRs and rotating 
stages were installed atop an 18-m canopy-access tower facing southeast (Figure 1(a)), and they were 
controlled by a personal computer and manufacturer-supplied software. We setup the HSSRs to 
observe both the downward and the upward directions at 10-min intervals from 10:00 to 14:00 Japan 
Standard Time (JST) every day. Data obtained from DOY120, 2008 (29 April) until DOY365, 2009 
(31 December) were used for analysis. Instrument failure resulted in more than seven days of missing 
data during the following periods: DOY150–158, 2008; DOY49–58, 2009; DOY62–82, 2009; 
DOY182–258, 2009; DOY297–316, 2009; DOY331–341, 2009. 

Table 1. Specifications of the MS-700 and MS-712 spectroradiometers. 

Specifications MS-700 MS-712 
Wavelength range (nm) 350–1,050 900–1,700 
Wavelength interval (nm) 3.3 1.56 
Number of bands 256 512 
Spectral resolution (half-bandwidth; nm) 10 7 
Wavelength accuracy (nm) ±0.3 ±0.2 
Aperture angle (°) 180 180 
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Figure 1. (a) Photo of the in situ observation system taken on 7 June 2010.  
(b) Pan-sharpened image by Quickbird on 3 October 2002 (image source and copyright: 
Digital Globe, CO, USA). The spatial resolution of the image is 0.6 m. The yellow arrow 
in the image indicates the location of the canopy-access tower.  

 

We also monitored the sky and forest canopy conditions by using automatic-capturing digital 
fisheye cameras (ADFC) (CoolPix-4500 digital camera, Nikon Corporation, Tokyo, Japan) with a  
fish-eye lens FC-E8 (Nikon Corporation, Tokyo, Japan; Equisolid Angle Projection) stored in a 
custom-built housing SPC31A (Hayasaka Rikoh Co., Ltd., Sapporo, Japan). We installed the ADFCs 
for the downward and the upward directions atop the 18-m canopy-access tower. The downward 
ADFC was installed next to the HSSRs to monitor their field of view. To control the camera functions 
(e.g., parameter configuration, image capture, and data retrieval), we used the free software “photopc” 
(http://photopc.sourceforge.net/) on the personal computers. The configuration of the cameras was as 
follows: mode, programmed auto; white balance, sunny or auto; fisheye mode, fisheye-1 (circular); 
image size, 2,272 × 1,704 pixels; and file format, JPEG. We set the cameras to capture the sky and the 
forest canopy at 2-min and 90-min intervals, respectively.  

The area for a 250 m radius around the canopy-access tower was almost covered with deciduous 
forest according to the high-resolution satellite image shown in Figure 1(b). Ohtsuka et al. [24] 
reported that the basal area of deciduous broadleaved trees accounted for approximately 95% of the 
total basal area in a 100 m × 100 m plot adjacent to the northwest of the canopy-access tower. The 
field view of the HSSRs, which was largely consistent with the area shown in the ADFC photos (the 
area about a 10 m radius in following figure), also consisted of the same deciduous broadleaved trees. 

2.3. Calculation of Spectral Reflectance from in situ Data 

To correct the instrumental error between the MS-700 and MS-712, the spectral irradiance by  
MS-712 was adjusted to the spectral irradiance by MS-700 by comparing the data for the 900–1,000 nm 
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wavelength domain (i.e., empirical linear regression). We then converted the spectral irradiance into 
band-averaged irradiance by using the following weighted function [31]:  
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where Ii is the spectral irradiance at each wavelength, Iband is the band-averaged irradiance, and wi is 
the relative spectral response (RSR) of Terra MODIS bands 1–6 (Figure 2) as a function of wavelength 
λ. We did not use the RSR of Aqua MODIS because the RSRs of Terra MODIS and Aqua MODIS 
were not very different, as shown in Figure 2. The irradiances of bands 1, 2, 3, and 4 were obtained 
from the MS-700 data and the irradiances of bands 5 and 6 were obtained from the MS-712 data. We 
obtained the daily band-averaged irradiance by averaging the band-averaged irradiance measured from 
10:00 to 14:00 each day because this time slot was less affected by low sun elevation angles and a 
shadow of the canopy-access tower. We then calculated the daily band-averaged reflectance by 
dividing the daily band-averaged irradiance of the ground by that of the sky. By referring to the ADFC 
images, data taken under rainy conditions were discarded and only data collected under sunny or 
cloudy conditions were used for analysis.  

Figure 2. Spectral reflectance measured by the spectroradiometers (MS-700 and MS-712) 
on DOY 278, 2008 and relative spectral response (RSR) of Terra/Aqua MODIS bands 1–6.  

 

Because the canopy-access tower also comes into the field of view (FOV) of the HSSRs, we 
corrected the contamination of the tower reflectance. Using the linear mixture model theory [32], we 
assumed that the reflectance measured by the HSSRs (ρHSSR) can be expressed by the following 
equation: 

canopyttowertHSSR )1( ρρρ ⋅−+⋅= ff       (2) 

where ft is the coverage of the tower to the FOV of the HSSRs, ρtower is the reflectance of the tower, 
and ρcanopy is the reflectance of the forest canopy. For simplicity, we did not consider the directional 
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variation of the reflectance (i.e., bi-directional reflectance function) from the canopy and tower. We 
obtained ρcanopy by substituting the values of ρHSSR, ρtower, and ft into the above equation. For ρHSSR, we 
used the daily band-averaged reflectances measured by the HSSRs. For ρtower, we used the reflectance 
of the tower’s iron pipe measured by the Fieldspec FR spectroradiometer (ASD Inc., Boulder, CO, 
USA; Figure 3). For ft, we used ft = 0.11, which was determined by the following ADFC image 
analysis. We first extracted the pixels of the canopy-access tower to meet both of the following criteria 
determined through trial and error: 

DNblue < DNgreen (3) 

DNblue > 200 (4) 

where DNblue and DNgreen are the 1-byte digital numbers (0–255) of blue and green, respectively. We 
then calculated the ratio of the number of extracted pixels to the number of total pixels, which was 
regarded as the coverage of the canopy-access tower (Figure 4).  

Figure 3. Spectral reflectance of the tower’s iron pipe as measured by the Fieldspec (FR) 
spectroradiometer on DOY 301, 2004, and the corrected and non-corrected spectral 
reflectances measured by MS-700 and MS-712 on DOY 278, 2008. 

 

Figure 4. Automatic-capturing digital fisheye camera (ADFC) image used for extracting 
the area of canopy-access tower. This image was taken on DOY 220, 2008. The red pixels 
in the right image were extracted as the canopy-access tower. We applied the extraction of 
the tower pixels for the region enclosed by the dotted line in the right image.  
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2.4. Processing of Terra/Aqua MODIS Data  

We used the data from the MODIS sensor onboard the Terra and Aqua satellites. We downloaded 
the products of atmospherically corrected surface reflectance data (MOD09GA and MYD09GA; daily 
temporal resolution; 500-m and 1-km spatial resolution; collection 5) from the NASA Land Processes 
Distributed Active Archive Center (LP DAAC, https://lpdaac.usgs.gov/). The MOD09GA product  
was obtained by the Terra MODIS in the morning during its descending orbit, and the MYD09GA 
product was obtained by the Aqua MODIS in the afternoon during its ascending orbit. In the 36 
spectral bands of MODIS, we used the data of bands 1–3, 5, and 6 with 500-m spatial resolution. The 
conversion of map projections was performed by using the MODIS Reprojection Tool provided by the 
LP DAAC. The integrated sinusoidal (ISIN) projection of the original data was converted into a 
geographic projection (datum, WGS84; sampling protocol, nearest neighbor; output pixel size, 
0.004167°). We then extracted the values of the band reflectance, quality control (QC) flag, state flag 
(including a cloud mask), and sensor zenith angle of the pixel over the study site. By referring to the 
QC flag, data with sensor troubles were discarded. To evaluate cloud noise that could not be removed 
by the cloud mask, only data with a ‘clear’ cloud state flag were used; data with ‘cloudy’, ‘mixed’, and 
‘not set’ flags were not used. We also only used the data taken when the sensor zenith angle was less 
than 50° to avoid degradation of the spatial resolution due to large sensor zenith angles.  

2.5. Calculation of Spectral Indices 

We calculated NDVI [9], EVI [15], EVI2 [16], NDWI [17], and NDII [18,19] from the in situ  
band-reflectance and MODIS band-reflectance by using the following equations: 

B1B2
B1B2NDVI

+
−=        (5) 

LB3C2B1C1B2
B1B2GEVI

+⋅−⋅+
−⋅=      (6) 

( ) 1/5.76
2

+−+
−⋅=

B1cB2
B1B2GEVI       (7) 

B5B2
B5B2NDWI

+
−=        (8) 

B6B2
B6B2NDII

+
−=        (9) 

where B1, B2, B3, B5, and B6 are the reflectances of MODIS bands 1, 2, 3, 5, and 6, respectively 
(Figure 2). In the calculation of EVI, we adopted L = 1, C1 = 6, C2 = 7.5, and G = 2.5 in reference to 
Huete et al. [15]. For EVI2, we adopted c = 2.08 and G = 2.5 in reference to Jiang et al. [16]. EVI was 
designed to reduce the influences of saturation for high-biomass vegetation, canopy-background 
reflectance, and residues of atmospheric correction in the NDVI value [15]. EVI2 was developed to 
show a change similar to the original 3-band EVI without using a blue band [16]. NDWI and NDII are 
often used for monitoring the water cover or content of the ground surface [33-35]. 
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2.6. Cloud Coverage at the MODIS Overpass Time 

We assessed sky conditions at the overpass times of Terra/Aqua MODIS using the ADFC images. 
The Terra/Aqua overpass time each day was obtained from the L1A geolocation fields product 
(MOD03/MYD03, 1-km resolution, collection 5). The MOD03/MYD03 products were  
downloaded from the Level 1 and Atmospheric Archive and Distribution System (LAADS, 
http://ladsweb.nascom.nasa.gov). The original map projection was converted into a geographic 
projection (datum, WGS84; sampling protocol, nearest neighbor; output pixel size, 0.008333°) using 
the MODIS Swath Reprojection Tool provided by the LP DAAC. 

We only used the data with a ‘clear’ cloud state flag for the MOD09/MYD09 products, but several 
data were still measured under cloudy conditions according to the ADFC sky images. Therefore, we 
classified the data into three categories in terms of the cloud coverage in the ADFC image at the 
overpass time as interpreted by the human eye (Figure 5): 

• Category 1: cloud coverage of the sky was less than 20%; 
• Category 2: cloud coverage was more than 20%; 
• Category 3: cloud coverage was unknown because of missing ADFC images. 

We included thin clouds over the sky in category 2 because the coverage was difficult to estimate 
with the human eye.  

Figure 5. Examples of cloud classification for ADFC sky images at the MODIS  
overpass time. 

 

3. Results 

Seasonal changes in the MODIS spectral indices were roughly in accordance with the in situ 
spectral indices (Figure 6). All of the in situ spectral indices rapidly increased during the leaf green-up 
period in spring (DOY 130–150) and decreased during the leaf senescence period in autumn (DOY 
270–300). When the ground was covered with snow, NDVI, EVI, and EVI2 showed their minimum 
values for the year (about 0.1 for NDVI and EVI); on the other hand, NDWI and NDII showed 
maximum values for the year (about 0.3 for NDWI, 0.6 for NDII). These characteristics were also 
found in the spectral indices observed by the MODIS sensors, but the MODIS spectral indices were 
sometimes systematically higher than the in situ spectral indices at the start and end of the growing 
period.  
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Figure 6. Seasonal changes in spectral indices as measured by the ground 
spectroradiometers (HSSRs) and Terra/Aqua MODIS: (a) NDVI, (b) EVI, (c) EVI2, (d) 
NDWI, and (e) NDII. The top horizontal box diagram represents the condition of the site 
observed from the canopy photos. We discarded the data with sensor trouble or cloud 
contamination with reference to the QC flag and state flag; we also discarded data captured 
when the sensor zenith angle was more than 50°. 

 

Figure 7 shows the seasonal changes in the band reflectances observed by MODIS and in situ 
HSSRs. For both the MODIS data and the in situ data, the reflectance of bands 1 and 3 became 
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relatively low during the growing period; on the other hand, the reflectance of bands 2, 5, and 6 
became relatively high during the growing period. The MODIS measured reflectances showed some 
fluctuations around the in situ reflectances. 

Figure 7. Seasonal changes in MODIS band reflectances measured by the ground 
spectroradiometers (HSSRs) and Terra/Aqua MODIS: (a) band 1, (b) band 2, (c) band 3, 
(d) band 5, and (e) band 6. The top horizontal box diagram represents the condition of the 
site observed from the canopy photos. We discarded the data with sensor trouble or cloud 
contamination with reference to the QC flag and state flag; we also discarded data captured 
when the sensor zenith angle was more than 50°. 
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The values with the MOD09GA product (Terra MODIS) and MYD09GA product (Aqua MODIS) 
were not much different. However, the number of data points of Aqua’s band 6 (n = 44) was much 
smaller than that of Terra’s data (n = 136) because of several inoperable detectors in band 6 of Aqua  
MODIS [36,37]. Because Aqua’s band-5 data also fluctuated more than Terra’s data, we did not use 
the Aqua MODIS data for the statistical analysis described below. 

The MODIS spectral indices shown in Figure 6 occasionally showed sudden decreases and became 
much smaller than the in situ spectral indices, especially during the growing period. The mismatches in 
NDVI were bigger than that of the other indices. The scatter plots between the Terra MODIS and  
in situ spectral indices (Figure 8) clearly showed that the MODIS NDVI was lower than the in situ 
NDVI at high values of the latter from 0.6 to 0.9. The MODIS EVI and EVI2 also sometimes showed 
sudden decreases, but it was less apparent than in the MODIS NDVI. NDWI and NDII did not show 
such clear differences. 

According to the ADFC sky photos, the sudden decrease in MODIS NDVI mainly occurred when 
cloud coverage was greater than 20% (category 2). In almost all cases of category 2, small patchy 
clouds (cumulus clouds) or cirrus clouds were distributed in the sky. Category 2 made up 40.0% of all 
data for NDVI, EVI, and EVI2, 41.0% for NDWI, and 39.5% for NDII (Table 2). The statistics of the 
relationships between the Terra MODIS and in situ spectral indices are shown in Table 2. The relative 
root mean square deviation (RRMSD) and relative mean bias (RMB) are calculated as follows: 

n

xy

xx
RRMSD

n

i
ii∑

=

−
⋅

−
= 1

2

minmax

)(
1  (10) 

n

xy

xx
RMB

n

i
ii∑

=

−
⋅

−
= 1

minmax

)(
1  (11) 

where i = 1, 2, …, n is the number of data, xi is the in situ spectral index, yi is the MODIS spectral 
index, and xmax and xmin are the maximum and minimum values of the in situ spectral index during the 
study period. The RRMSD and RMB are expressed as percentages of the range of the in situ spectral 
index during the study period. Perfect agreement between x and y would be expressed by RRMSD = 0 
and RMB = 0. R2 is the determination coefficient for linear regression. For all data, NDVI showed 
larger RRMSD and lower R2 than the other indices. RMB was within ±0.05 for all indices, and it did 
not greatly vary among the spectral indices. For category 1 (cloud cover <20%), RRMSD and R2 were 
almost same among the spectral indices. All indices showed relatively high R2 values for category 1 
(more than 0.7). For category 2 (cloud cover ≥20%), NDVI, EVI2, EVI, and NDII showed larger 
RRMSD and lower R2 in comparison to their values for category 1, but the differences in EVI and 
NDII were relatively small. Such a difference was not clear in NDWI. The RMB of category 2 was 
lower than that of category 1 for all indices, and NDVI showed a relatively big difference in RMB in 
comparison to the other indices. 
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Figure 8. Scatter plots between the ground-based spectral indices and the Terra MODIS 
(MOD09GA 500 m) based spectral indices during the study period: (a) NDVI, (b) EVI, 
(c) EVI2, (d) NDWI, and (e) NDII. Black dots represent the data with less than 20% cloud 
cover in sky photographs at the satellite overpass time. White dots represent the data with 
more than 20% cloud cover. Solid lines represent the linear regression lines for all data.  
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Table 2. Number of data (n), relative root mean square deviation (RRMSD), relative mean 
bias (RMB), and determination coefficient (R2) for linear regression of the relationships 
between the Terra MODIS–based and in situ–based spectral indices. 

Spectral Index n RRMSD RMB R2 
NDVI All data 80 0.227 −0.024 0.485 (p < 0.0001) 

(1) Cloud cover < 20% 42 0.156 0.093 0.826 (p < 0.0001) 
(2) Cloud cover ≥ 20% 32 0.292 −0.177 0.324 (p < 0.001) 
(3) No sky-image 6 – – – 

EVI All data 80 0.167 0.017 0.744 (p < 0.0001) 
(1) Cloud cover < 20% 42 0.150 0.070 0.793 (p < 0.0001) 
(2) Cloud cover ≥ 20% 32 0.202 −0.048 0.600 (p < 0.0001) 
(3) No sky-image 6 – – – 

EVI2 All data 80 0.199 −0.027 0.622 (p < 0.0001) 
(1) Cloud cover < 20% 42 0.140 0.065 0.810 (p < 0.0001) 
(2) Cloud cover ≥ 20% 32 0.266 −0.141 0.413 (p < 0.001) 
(3) No sky-image 6 – – – 

NDWI All data 78 0.133 −0.050 0.769 (p < 0.0001) 
(1) Cloud cover < 20% 39 0.150 −0.029 0.755 (p < 0.0001) 
(2) Cloud cover ≥ 20% 32 0.109 −0.068 0.881 (p < 0.0001) 
(3) No sky-image 7 – – – 

NDII All data 81 0.164 0.047 0.729 (p < 0.0001) 
(1) Cloud cover < 20% 43 0.163 0.092 0.817 (p < 0.0001) 
(2) Cloud cover ≥ 20% 32 0.170 0.015 0.552 (p < 0.0001) 
(3) No sky-image 6 – – – 

4. Discussion 

Both of the Terra and Aqua MODIS reflectances showed good correspondence with the in situ 
reflectance under non-cloud conditions (RRMSD < 20%, RMB < 10%, R2 > 0.75, p < 0.0001). 
However, about 40% of the MODIS data after cloud-screening by the MOD09 state flag was 
potentially contaminated with irremovable small clouds. Since the fluctuations (expressed by RRMSD 
and R2) under cloudy conditions were higher than those under cloud-free conditions, the irremovable 
small clouds caused the errors in the spectral indices. This error differed among the spectral indices. 
For NDVI, the fluctuations and biases under cloudy conditions differed widely from those under  
non-cloudy conditions. In particular, the noise cannot be negligible during the leaf-growing season 
(NDVI > 0.5) as shown in Figure 6. EVI2 also showed the relatively big differences in fluctuations and 
biases between under cloudy conditions and non-cloud conditions, but it was less than in NDVI. For 
EVI, NDWI, and NDII, the fluctuations and biases were relatively small in comparison to NDVI  
and EVI2. 

This difference is possibly due to the difference in combination of the wavelength between the 
spectral indices. When considering clouds covered with fc percent of a pixel of the homogeneous 
ground surface, according to the spectral linear mixture model, the satellite-observed reflectance of 
band i, or ρi, is expressed as follows: 

iii ff gccc )1( ρρρ ⋅−+⋅=       (12) 
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where ρgi and ρci represent the reflectances of the ground surface and clouds for band i, respectively. 
By using this expression, the normalized difference index, NDI, using bands i and j reflectances (e.g., 
when i = 2 and j = 1, NDI is equal to NDVI) can be expressed by the following equation: 
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If cloud coverage fc is 0, then we can obtain the value under cloud-free conditions, which is expected 
to be equal to the in situ observed value, 
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When ρci/ρgi is nearly equal to ρcj/ρgj, Equation (11) can be approximated by Equation (12) through 
canceling the terms related to cloud contamination (fc, ρci, and ρcj). This means that the cloud noise on 
a spectral index can be canceled depending on the combination of band wavelengths. As shown in 
Table 3, ρc/ρg is about 8–13 for visible bands (MODIS bands 1, 3, and 4) and about 2 for infrared 
bands (MODIS bands 2, 5, and 6). The relationship between the cloud and forest canopy reflectances is 
totally different depending on wavelengths, especially visible versus infrared. NDVI is calculated from 
the combination of visible and infrared reflectances; therefore, we consider that NDVI cannot reduce 
the noise caused by small sub-pixel clouds. On the other hand, because NDWI and NDII are calculated 
from the near-infrared and short-infrared reflectances, they can cancel most of the cloud noise. 

Table 3. Average Terra MODIS (MOD09GA) band reflectance for the data with  
“clear-sky” and “cloudy” state flag and ρc/ρg values during the leaf growing season 
(DOY130–DOY300 in 2008 and 2009). 

MODIS bands 
Average reflectance (SD) 

ρc/ρgClear-sky (n = 89) Cloudy (n = 212) 

Visible Band 1 (620–670 nm) 0.049 (0.047) 0.522 (0.528) 10.5 
Band 3 (459–479 nm) 0.041 (0.050) 0.528 (0.541) 12.8 
Band 4 (545–565 nm) 0.065 (0.047) 0.533 (0.522) 8.12 

Infrared Band 2 (841–879 nm) 0.307 (0.075) 0.593 (0.336) 1.93 
Band 5 (1230–1250 nm) 0.266 (0.081) 0.531 (0.300) 1.76 
Band 6 (1628–1652 nm) 0.160 (0.048) 0.333 (0.215) 2.08 

EVI was slightly decreased by the contamination of small clouds, but the mismatches between the 
MODIS data and in situ data were smaller than those of NDVI. Compared to EVI, EVI2 showed 
bigger mismatches between the MODIS data and the in situ data, but it was also smaller than those of 
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NDVI. This means that EVI and EVI2 were less sensitive to small cloud contamination in comparison 
to NDVI. This cannot be explained by the abovementioned logic for NDVI, NDWI, and NDII because 
of the different form of equation. A possible reason is that the parameters in the EVI and EVI2 
equation reduce the small cloud noise. For the differences between EVI and EVI2, Jiang et al. [16] 
suggested that it is mostly due to residual aerosol and cloud influences that remain after atmospheric 
correction of MODIS data. In our study, as shown in Figure 9, the MODIS data under cloudy 
conditions only showed the big difference between EVI and EVI2. This also suggested that a blue band 
(MODIS band 3) in the EVI equation plays an important role in reducing the sub-pixel cloud noise.  

Figure 9. Scatter plots between EVI2 and EVI: (a) in situ data and (b) Terra MODIS data. 

 

NDWI showed relatively low RRMSD and high R2 for both cloudy and non-cloudy conditions, but 
unlike the other indices, NDWI of cloudy conditions showed lower RRMSD and higher R2 than that of 
non-cloudy conditions. We cannot currently provide a conclusive reason for this.. One possible reason 
is sampling bias between the cloudy data and the non-cloud data. More data points are needed to make 
our results more reliable. Furthermore, since the measurement was conducted at only one forest site, 
further investigation at various sites is needed. 

The MODIS indices were systematically slightly higher than the in situ indices at the start and end 
of the growing season. This may be due to the difference in tree phenology between the MODIS pixel 
area and the in situ observed area. Although we had already checked the land-cover homogeneity in a 
MODIS pixel when referring to a high-resolution image, the timing for spring leaf green-up and 
autumn leaf senescence for individual trees can differ some extent [29], which can affect the timing of 
the spring increase and autumn decrease of spectral indices. In other seasons, the seasonal changes in 
MODIS reflectances and spectral indices agreed closely with the in situ indices. This result suggests 
that MODIS radiometric correction is effective in at least this area.  

In this study, we clarified the response to cloud contaminations of several well-used spectral indices 
based on in situ continuous measurements. Our results revealed that the sub-pixel clouds can 
potentially act as severe noise to time-series NDVI data, which can be improved without data loss by 
using other indices such as EVI, NDWI, and NDII. For NDVI, errors of greater than 25% of the 
seasonal dynamic range were present in 16% of the total data; however, for EVI, NDWI, and NDII, 
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these errors were present in less than 5% of the total data. Various spectral indices have recently been 
used for time-series retrieval of various ecosystem attributes such as vegetation phenology [38-43], 
leaf area index [4,44], and vegetation water content [33-35,45]. The availability of the data without 
cloud noise is one of the key points to improve the accuracy of these terrestrial ecosystem monitoring. 
Our results can provide the reference information to select the best spectral index for these applications 
from the viewpoint of the effects of cloud noise.  
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