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Abstract: Exposure to pesticides has been associated with increased risk of many adverse 
health effects. To understand the relationships between pesticide exposure and health 
outcomes, epidemiologists need information on where pesticides are applied in the 
environment. California maintains one of the most comprehensive pesticide use reporting 
systems in the world, yet the data are only recorded at a coarse geographic scale of 
approximately 2.6 km2 area. A method is presented that uses Landsat image time series  
to downscale California pesticide use data to the crop field-level. The approach is 
demonstrated using paraquat applied to vineyard and cotton fields. 
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1. Introduction 

Exposure to pesticides has been associated with increased risk of adverse health effects such as 
cancer [1-5], birth defects [6], and Parkinson’s disease [7,8]. Populations living near agricultural fields 
are at higher risk of exposure due to their proximity to areas where pesticides are frequently applied [9-11]. 
To understand the relationships between exposure and health outcomes, epidemiologists need accurate, 
unbiased exposure estimates as study participants rarely, if ever, know what, when, or where pesticides 
were applied to crops grown near their residence. Direct measurement of pesticide exposures are 
often expensive, difficult, or impossible to obtain, especially for retrospective studies where data are 
collected only after study enrollment (i.e., post-diagnosis), hence, epidemiologists are using GIS 
technology to estimate pesticide exposures. 

OPEN ACCESS



Remote Sens. 2011, 3                            
 

 

1806

Although California maintains one of the most comprehensive pesticide use reporting systems in 
the world (California Pesticide Use Reporting (CPUR) system) [12], a major limitation of the data is 
that they are recorded at a coarse geographic scale of approximately 2.6 km2 area (“Section” in the US 
Public Land Survey; approximately 1 mile by 1 mile) which is not adequate for residential-level 
exposure assessment [10,13,14]. The CPUR database is the primary source of information on where, 
when, and how pesticides are used in California. Information is recorded on the type of chemical applied, 
date of application, crop the chemical was applied to (e.g., cotton, tomato), among other attributes.  

Estimating pesticide use density near individual residences is usually calculated by taking a 
proportion of the total amount of a specific pesticide applied to crops within the entire Section [10,13] 
which has been found to result in substantial misclassification errors [13]. Improved estimates are 
possible by linking pesticide use to specific crop fields by incorporating land use maps developed by 
the California Department of Water Resources (CDWR) [10,11,13,15]. However, CDWR maps are 
produced only once every 7–10 years for a single county [16]. Since producers frequently rotate crops 
from year-to-year, these maps cannot merely be duplicated for intervening years. In addition, factors 
such as climate, soil conditions, cultivation, and irrigation practices allow for double- and triple-crops 
to be grown on a field within a single year in California [17,18]. Because CDWR maps are developed 
from field observations at only one time during the growing season, multi-cropped fields are frequently 
misclassified [19]. 

Landsat satellite images represent a vast resource for characterizing agricultural lands at a relatively 
high spatial resolution (30 m). Yet Landsat data have had only limited use in pesticide exposure 
studies [9,20-22] likely due to the previous high cost of the imagery and the lack of effective and 
efficient methods for linking the imagery to pesticide use data. The US Geological Survey (USGS) is 
now providing Landsat imagery free of charge eliminating one of the major barriers to using this 
data [23]. In a previous study, Maxwell et al. [19] explored the use of Landsat image time series to 
characterize crop management practices in southern Central Valley California. This research builds on 
the foundations presented in that paper. The objective of this paper is to present an approach for using 
Landsat satellite imagery to downscale CPUR data from Section-level to crop field-level. The concept 
is demonstrated using paraquat applications in western Fresno County, California. 

2. Case Study: Paraquat 

Overview 

Paraquat is a highly toxic herbicide and exposure has been linked to many acute and chronic health 
effects such as respiratory problems, kidney damage, and Parkinson’s disease [8,24]. In California, 
paraquat is widely used to control weeds in crop fields such as orchards and vineyards, and to defoliate 
green vegetation on crops (primarily cotton) prior to harvest. During the years 1991 through 2009, 
paraquat was applied to between 423,000 and 736,000 hectares annually in California. 

The year 1994 was selected to demonstrate the methodology since a CDWR map was available for 
Fresno County to use in validating the results. Four Public Land Survey Sections (Section 1 in Range 
17 East, Townships 14, 16, 17, and 18) were selected in western Fresno County, California (Figure 1). 
Six Sections were originally selected in an evenly spaced north-south transect however, two Sections 
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Identifying pesticide use at the crop field-level involves the integration of CPUR, Landsat image 
time series data, and a crop signature library (Figure 2). The Landsat image time series is first used to 
identify crop field boundaries and acquire measurements of the vegetation over the growing season for 
each crop field within the Section. Identification of the specific crop field(s) is then determined by 
comparing the crop phenological measures for each field to an existing crop phenological signature 
library [19] to determine the closest match.  

Figure 2. System diagram for integrating Landsat image time series, Section-level 
pesticide use data, and a crop signature library to map pesticide use at the field-level. 

 

A principal components analysis (PCA) transformation was applied to the image time series and the 
first three components used to enhance field separation. A segmentation algorithm was applied to 
obtain initial field unit boundaries using Definiens eCognition software. Segmentation parameters 
were set to scale 10, shape 0.2, and compactness 1.0. The field unit boundary delineates a group of 
contiguous pixels that have similar phenological characteristics. Manual corrections were made to 
obtain the final field unit boundaries. 

Classification was performed by comparing 20 samples selected from the crop signature library 
(collected in a previous study [19]) to signatures for each of the crop fields identified in the Section. 
NDVI values for the Landsat image dates were matched to the corresponding NDVI values for time 
periods in the crop signature library in the classification. A distance measure (median value of the sum 
of differences squared for all 20 samples in the crop library) was used to identify the closest match. An 
existing crop map obtained from the CDWR was used to validate the classification [16].  
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3. Results and Discussion 

3.1. Section 14S17E01 

CPUR records indicated that paraquat was applied to two vineyard fields in Section number 
14S17E01. Seventeen unique field units were identified in the segmentation of the Landsat image time 
series (Figure 3). Some field units appeared to have multiple fields within the boundary (Figure 3, field 
at the top noted with a white “V”). The fields were treated as one unit due to their similar NDVI time 
series patterns. The majority of fields identified as vineyards (5 out of 6) had median difference values 
less than 0.09 (Table 2). One vineyard field (Figure 3; vineyard-12; blue dashed line) had a median 
difference value of 0.17 due to the very low NDVI values (<0.3) during the first half of the growing 
season possibly because this was a newly planted vineyard. Additional signatures need to be added to 
the library in this case to characterize newly planted vineyards. Identification of the specific two fields 
that were sprayed with paraquat was not possible in this example because more than two fields were 
identified as vineyards within the Section. 

Figure 3. Landsat time series color composite image (left, PCA123) and Normalized 
Difference Vegetation Index (NDVI) time series plots (right) for selected crop fields within 
Section 14S17E01. Paraquat was applied to two vineyard fields. Five of the six field units 
(identified as a white “V” on the image and blue lines in the graph) identified as vineyard 
on the California Department of Water Resources (CDWR) map had NDVI time series 
closely matching vineyard library signatures (median ≤ 0.09). One field unit identified as 
vineyard on the CDWR map appeared to be newly planted (white “V” inside of white box). 
The difference value was greater for this field (0.17) because the library did not contain 
signatures for newly planted vineyards. Identification of the specific two fields that were 
sprayed with paraquat was not possible in this example because more than two fields were 
identified as vineyards within the Section. 
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Table 2. Field identification results for each of the study Sections. Results are sorted from 
lowest to highest median difference value. 

Section #: 14S17E01 Section #: 16S17E01 

Field Unit 
Median 

Difference  CDWR Class Field Unit 
Median 

Difference CDWR Class 
FU16  0.03 vineyard FU6 0.34 field crop 
FU1  0.04 vineyard FU9 0.41 alfalfa 
FU14  0.05 vineyard FU10 0.81 almonds 
FU2  0.06 vineyard FU7 0.87 sugar beets 
FU5  0.09 vineyard FU12 1.07 prunes 
FU13  0.14 cotton FU2 1.16 other ag 
FU12  0.17 vineyard FU5 1.32 tomatoes 
FU6  0.31 walnuts FU4 1.61 tomatoes 
FU15  0.32 field crop FU1 1.71 tomatoes 
FU3  0.34 almonds FU3 1.88 tomatoes 
FU8  0.39 cotton FU8 1.92 tomatoes 
FU7  0.39 almonds FU11 1.96 grain/hay 
FU4  0.40 almonds 
FU11  0.40 alfalfa 
FU17  0.44 cotton 
FU9  0.71 cotton 
FU10  0.94 alfalfa 

Section #: 17S17E01 Section #: 18S17E01 

Field Unit 
Median 

Difference  CDWR Class Field Unit 
Median 

Difference CDWR Class 
FU3 0.10 cotton FU2 0.08 Cotton 
FU1 1.30 grain/hay FU1 0.09 Cotton 
FU2 2.84 grain/hay FU4 1.52 Safflower 

FU3 2.12 Tomatoes 

3.2. Section 16S17E01 

CPUR records indicated that paraquat was applied to one cotton field in Section number 16S17E01. 
The segmentation process resulted in 12 individual field units (Figure 4). The field identified with a 
white letter “C” on the image, and as “field crop-6” in the time series graph in Figure 4, had the closest 
match to cotton signatures in the library (median difference = 0.34) (Table 2). The CDWR map labeled 
this field with a general class code (“field crop”) possibly because the crop had not matured to the 
point of identification at the time of the CDWR field visit. The NDVI time series pattern for “field 
crop-6” is clearly the only feasible match to typical cotton phenological patterns (see [19] and  
Figures 5 and 6 below for other cotton signature patterns). Identification of the specific field where 
paraquat was applied is possible in this case because there was only one field sprayed with paraquat 
and the NDVI time series patterned matched successfully to the crop type (cotton) in the CPUR.  
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Figure 4. Landsat time series color composite image (PCA123) and NDVI time series 
plots for selected crop fields within Section 16S17E01. Paraquat was applied to one cotton 
field. The field with the closest match to cotton is identified as a white “C” on the image to 
the left and black line in the graph on the right. Identification of the specific field sprayed 
with paraquat was possible in this example. 

 

3.3. Section 17S17E01 

CPUR data listed one paraquat application to a cotton field in Section 17S17E01. Three unique field 
units were delineated using the Landsat imagery (Figure 5). The field identified with a white letter “C” 
in Figure 5 was the closest match (median difference = 0.10) to cotton signatures in the library with the 
other two fields resulting in much higher differences (median differences of 1.30 and 2.84) (Table 2). 
The CDWR map labeled this field as cotton confirming the correct identification. Identification of the 
specific field where paraquat was applied was again successful. 

3.4. Section 18S17E01 

CPUR listed four paraquat applications to cotton fields in Section 18S17E01. Two records were 
likely applications to the same field because the planted area was exactly the same (59.5 h) and the 
area treated at each application summed to approximately the same total field area (57.4 h). Hence, the 
CPUR indicates that three cotton fields of approximately equal size (59.5 h, 61.9 h, and 62.7 h) should 
be grown within this Section. Four crop field units were delineated using the Landsat imagery of which 
only two fields (Figure 6, white letter “C”) had NDVI time series values close to cotton phenological 
signatures (median difference ≤ 0.09) (Table 2). The other two fields had distinctly different 
phenological patterns (Figure 6, red and blue lines on graph) and had relatively high differences 
(median differences ≥ 1.52) when compared to the cotton signatures in the library. The CDWR map 
confirmed the two fields identified as cotton were classified correctly and that the other two fields 
were not cotton (labeled as safflower and tomatoes on the CDWR map). Thus, the CPUR data was 
likely an error in that only two fields had paraquat applications. This example demonstrates the 
potential of using Landsat imagery to identify possible errors in CPUR data. Pesticide exposure 
estimates would have been substantially overestimated using the original CPUR data. Again, the two 
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fields where paraquat was applied were successfully identified, although it was not possible to identify 
which specific field linked to which paraquat record. In this case, the pounds of paraquat applied to 
each field was approximately equal (0.86 and 0.88) and using an average rate applied over both fields 
is possible. If the application rates were significantly different between the two fields, over or 
underestimation of exposure would result. 

Figure 5. Landsat time series color composite image (left, PCA123) and NDVI time series 
plots (right) for all crop fields within Section 17S17E01. Paraquat was applied to one 
cotton field. Only one field had NDVI time series values similar to cotton (identified as a 
white “C” on the image to the left and black line in the graph on the right). The specific 
field where paraquat was applied was correctly identified in this example. 

 

Figure 6. Landsat time series color composite image (left, PCA123) and NDVI time series 
plots (right) for all crop fields within Section 18S17E01. Paraquat was applied to two 
cotton fields. Two fields had NDVI time series values similar to cotton (identified as a 
white letter “C” on the image and black and purple dashed lines in the graph. Both fields 
closely matched signatures in the library (median difference ≤ 0.09). The specific fields 
where paraquat was applied were identifiable in this case. Determining which paraquat 
application was applied to which cotton field was not possible. 
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3.5. Summary 

The four case studies discussed above were presented to demonstrate the general concept for how 
Landsat satellite imagery could be used to downscale Section-level CPUR data to the crop field-level. 
Landsat was shown to be useful for identifying the specific field or group of fields where paraquat was 
applied and also for identifying suspected errors in the CPUR data (Section 18S17E01). In the cases 
presented, cotton and vineyards were distinguishable from the other crops grown in the Section, yet 
these case studies only represent a few of the possible crop combinations. The results are encouraging, 
however, further research is needed to test the methodology on other cropping regions in California 
and on other types of pesticides. 

The successful application of this technique will depend on several factors. Availability of an 
adequate number of cloud-free Landsat images spanning the growing season is important to 
characterize the crop field vegetation phenology. A comprehensive crop signature library is also 
essential to ensure that a wide range of crop conditions are represented. The crop signatures in the 
library were collected as part of an earlier study in Fresno County, California during the year 2000 and 
it currently contains less than 30 samples for each crop type [19]. The crop signature library should be 
expanded to include new signatures for different years and crop growing regions in California.  

The specific field will be difficult to determine if multiple fields of the same crop type are grown 
within the Section and the pesticide was applied to only one of the fields. For example, in Section 
14S17E01, several fields of vineyards were grown within the Section, yet only a portion of two fields 
were applied with paraquat. In this case, the method refined the pesticide use to a smaller region within 
the Section, yet could not identify the specific field. The area where the pesticide was applied was 
refined to a smaller area allowing for some improvement in the spatial accuracy of pesticide use. 
Sections 16S17E01, 17S17E01, and 18S17E01, demonstrate cases where substantial improvements 
could be made to paraquat exposure estimates by incorporating Landsat imagery. Using previous 
methods for estimating exposure (i.e., averaging paraquat over the entire Section) would have resulted 
in low estimates for residences living in Sections 16 and 17. Yet, exposures would be much higher for 
residents living near the actual field, such as the southeast corner of Section 17S17E01, as compared 
residences living further from the field (northwest corner). 

Determining the boundaries of the crop fields required some manual processing and a few of the 
fields could not be definitively identified (Section 14S17E01). A range of segmentation parameters 
were evaluated in an attempt to automate the generation of field boundaries. The process resulted in 
either too many boundaries (sub-field polygons) or not enough boundaries (multiple fields within one 
polygon) which has been found in other studies [29,30]. All of the case studies required manual editing 
to add or delete vector lines which, although was a fairly quick process for this limited number of 
Sections, the process could take a significant amount of time in a large study spanning hundreds of 
Sections and multiple years. In addition, it may not be feasible to delineate some individual field units 
even visually, as for example in the first case study 14S17E01. Orchard and vineyard crops tend to be 
grown on small parcels making it difficult to delineate specific field boundaries with the spatial 
resolution of Landsat imagery (30 m). Aerial photographs or a combination of aerial photographs 
and Landsat image time series would be more useful for identifying field boundaries for smaller crop 
fields [29].  
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Other data contained in the CPUR data, such as the number of hectares planted, may provide 
additional information useful for determining specific field(s) where pesticides are applied. For 
example, in Section 16S17E01 the CPUR data indicated that paraquat was applied to one cotton field 
of size 5.3 hectares. The field identified as cotton from the signature matching process was 7.5 hectares, 
a difference of only 2.4 hectares, offering further support to a correct identification. In Section number 
18S17E01, if the two cotton fields were different sizes, then it would have been possible to match the 
specific field to the specific paraquat record. The cotton fields in this case were similar sizes (59.5 to 
62.7 hectares).  

4. Conclusions 

A method was presented that used Landsat satellite imagery to downscale California pesticide use 
data from the Section-level (2.6 km2) to the crop field-level. The approach used a time series of 
Landsat imagery to identify crop field boundaries and to acquire measures of vegetation greenness 
over the growing season for each crop field within the Section, which was then compared to a crop 
signature library to identify the specific field or fields where paraquat was applied. Four case studies 
were presented in this paper to demonstrate the concept. Results indicated that identifying paraquat use 
at the field or field-group level was possible, allowing for significant improvements in residential-scale 
pesticide exposure estimation. Further studies are needed to test the approach on other regions in 
California and other types of pesticides. 
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