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Abstract: The availability of new very high spatial resolution sensors has for the past few 
years allowed a precise description of urban areas, and thus the settlement of specific 
ground or atmosphere characterization methods. However, in order to develop such 
techniques, a radiative transfer tool dedicated to such an area is necessary. AMARTIS v2 is 
a new radiative transfer code derived from the radiative transfer code AMARTIS 
specifically dedicated to urban areas. It allows to simulate airborne and spaceborne 
multiangular observations of 3D scenes in the [0.4; 2.5µm] domain with the ground’s 
geometry, urban materials optical properties, atmospheric modeling and sensor 
characteristics entirely defined by the user. After a general presentation of AMARTIS v2 
and a description of the performed calculations, results of radiometric intercomparisons 
with other radiative transfer codes are presented and the new offered potentials are 
illustrated with four realistic examples, representative of current issues in urban areas 
remote sensing. 
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landscapes with a homogeneous environment. Although COMANCHE [21,22] offers improvements 
by better modeling the Earth-atmosphere coupling irradiance using Monte Carlo methods which allow 
considering complex heterogeneous landscapes, the flat surface assumption still remains. For urban 
areas, the 3D structure of the landscapes needs to be taken into account. DART [23] can achieve such 
simulations but its main drawback is that it does not give access to all radiative terms at surface and 
sensor levels, which are essential to conduct radiative phenomenological studies. AMARTIS v1 
(Advanced Modelling of the Atmospheric Radiative Transfer for Inhomogeneous Surfaces [24-26]) 
has been developed to this end. It can simulate every radiative contributor on these two levels. 
Unfortunately, it is limited by the description of the landscape, defined by a 2D profile which is 
infinitely reproduced in the third dimension. Secondly, each urban surface, like roofs, walls and roads, 
is considered as uniform with unique optical properties. Furthermore, the aerosol distribution can only 
be described by a Junge law [27] whereas Thomas et al. [28] has shown the high variability of urban 
aerosols radiative properties. 

Therefore, in order to overcome these limitations a new radiative transfer code derived from 
AMARTIS v1 has been developed, taking into account a real 3D description of the landscape, each 
scene element being defined by its spectral bidirectional reflectance. The atmosphere modeling has 
also been improved with the addition of new aerosol models. This tool is also now able to perform the 
simulation and the visualization of synthetic remote sensing images. 

This paper aims to present this new tool: AMARTIS v2. In a first step, a description of the code is 
given (Section 2), then a comparison of its radiometric performances with other radiative transfer 
codes is detailed (Section 3). Finally, its new potentialities are illustrated with four examples: study of 
the radiative transfer for an urban canyon (Section 4.1), analysis of the impact of highly reflective 
windows in a shadowed canyon street (Section 4.2), comparison of the signal coming from an 
irradiated area and those from a shaded area in the case of a complex landscape (case of a crossroad, 
Section 4.3), and finally, evaluation of the directional effects induced on the at-sensor level signal by 
an urban canyon when using broader resolution at a street scale (Section 4.4). Conclusions and 
perspectives are then discussed (Section 5). 

2. Description of the 3D Radiative Transfer Code AMARTIS v2  

2.1. General Description 

AMARTIS v2 [29] aims to remove the drawbacks of the previous code AMARTIS v1. Its main 
functionalities, i.e., scene description, sensor and atmosphere characteristics and radiative transfer 
modeling, are discussed below. 

This code performs monochromatic radiative transfer computations in the [0.4; 2.5 µm] spectral 
domain. Its inputs are the geometry and the materials optical properties of a 3D scene, the atmospheric 
properties and the viewing and irradiating conditions. It computes all the radiative components of the 
signal, both at ground level (irradiance) and at sensor level (radiance) at every point of the landscape. 
Thus, it can simulate the radiance image of the scene acquired by the sensor. 
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2.2.2. Atmosphere 

The atmospheric radiative properties are modeled in AMARTIS v2 thanks to the radiative transfer 
code 6S [19]. The aerosols can be modeled by the standard models of 6S, by their physical properties 
(with notably Junge or multimodal distributions) or directly by their optical properties (spectral 
variation of the optical thicknesses, single scattering albedos and phase functions). The gaseous 
atmosphere can be modeled by the standard models of 6S or by the ozone and water vapor contents. 

2.2.3. Sensor 

AMARTIS v2 allows the simulation of airborne or satellite sensors. The sensor is defined by the 
following parameters: its zenith and azimuth viewing angles defined by the optical axis orientation 
pointed at the centre of the scene, its pixels matrix (number of pixels by rows and columns and pixel 
size), its spatial resolution, the wavelengths of observation (AMARTIS v2 simulates monochromatic 
observations), and the focal length of the instrument. The altitude of the sensor is deduced from the 
previous geometrical parameters. The modeled instrument has a perfect signal-to-noise ratio 
corresponding to no instrumental noise. 

2.3. Method Description 

In remote sensing, a flat ground assumption is usually made to model the signal at ground and 
sensor levels. However, in cities, at very high spatial resolution, this hypothesis is no longer valid 
because of the complexity introduced by the relief which induced specific radiative effects. Thus, it 
becomes necessary to use a new formalism adapted to those areas. The signal at ground and at sensor 
levels is the result of several radiative components as described in Figure 3 ([24,25]). 

The irradiance at ground level (Itot) is the sum of four components (Figure 3(a)): the direct 
irradiance (Idir), the scattered irradiance (Iscat), the Earth-atmosphere coupling irradiance (Icoup) and the 
downward reflected irradiance (Irefl). The radiance at sensor level (Rtot) is the sum of three components 
(Figure 3(b)): the direct radiance (Rdir), the environment radiance (Renv) and the atmospheric 
radiance (Ratm). 

The formalism and the radiative calculations performed in AMARTIS v2 are the same as in 
AMARTIS v1, except for Iscat and Ratm. 

Their expressions are now detailed but to avoid complications, the wavelength dependence has been 
omitted in the formulations. 

The direct irradiance corresponds to the photons directly coming from the sun, and is defined for a 
point P at ground level by [33]: 

),,()
)cos(

)(
exp(),().()( SS
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PTnPNIPI ϕθ

θ
τθ

↓
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SnPN ).(  the scalar product of 

)(PN
→

 (unit vector normal to the ground at the point P) and Sn
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 (unit vector directed from P to the sun), 
),( Sg PT θ↓  the gaseous transmission of the atmosphere between the top of the atmosphere and P, )(P↓τ  

the optical thickness of the total atmosphere column (aerosols and molecules), Sθ  and Sϕ  the zenith 
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to the photons directly transmitted to the ground after reflections from the neighborhood. The  
Earth-atmosphere coupling irradiance cannot be expressed by an analytical formulation because of the 
complex geometry of the scene. This is the reason why this component is computed by means of 
Monte Carlo methods [25]. The downward reflected irradiance might be calculated by an analytical 
method. This has not been selected as the Earth-atmosphere coupling computation simultaneously 
calculates the downward reflected irradiance. This Monte Carlo principle consists of modeling the 
radiometric flux by analyzing the propagation of a high number of photons (usually ~109 to 1010 per 
simulation) in the Earth-atmosphere system. The phenomena of scattering and absorption by the 
atmosphere and of reflection and absorption by the ground are modeled by statistical laws [25]. As the 
Earth-atmosphere coupling irradiance and the downward reflected irradiance result from interactions 
with the ground, the neighborhood of the scene has an impact on the signal. As it is not modeled by the 
3D scene, this impact is calculated by duplicating virtually the original scene. A comparable approach 
was implemented in AMARTIS v1 [33]. As the ray-tracing was not implemented, a method by photon 
propagation was used. Now, the introduction of the ray-tracer RayBooster (http://www.hpc-sa.com) 
has considerably improved the computation time. 

The direct radiance corresponds to the photons reflected by the surface directly toward the sensor. It 
is defined by: 

ω
π
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where dir
dirR , scat

dirR , and reflcoup
dirR _  are respectively the contributions to the direct radiance resulting from 

the direct irradiance, the scattered irradiance and the coupling and reflected irradiances; iΩ  is the solid 
angle corresponding to the field of view of the pixel i; ωdS  is the surface at ground level seen by this 
pixel in the direction of ωd ; ),( ϕθd

skyR  is the radiance scattered by the sky in the direction defined by 
the zenith angle θ  and azimuth angleϕ  (in W.m−2.µm−1.sr−1); )( ωddir ST ↑  is the direct transmission of the 
atmosphere between ωdS  and the sensor; ddρ  is the bidirectional reflectance of the corresponding 
material; and hdρ  its hemispheric-directional reflectance.  

For lambertian materials, Equation (3) becomes: 

ω
π

ρ ω
ωω dSTSSIiR

i

ddir
ddtot

i
dir ∫∫

Ω

↑

Ω
= )()()(1)(  (in W.m−2.µm−1.sr−1) (4) 

with ρ  the lambertian reflectance. 
The environment radiance, Renv, corresponds to the photons coming from the surface and scattered 

by the atmosphere. As for the Earth-atmosphere coupling irradiance, this term cannot be modeled by 
an analytic expression and is also solved with Monte Carlo calculations [25]. 

The atmospheric radiance, Ratm, corresponds to the photons that have been scattered by the 
atmosphere without reaching the ground and is directly calculated thanks to the radiative transfer 
code 6S. 
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Thus, AMARTIS v2 allows the computation of the incident irradiances to the ground as described 
above (Idir, Iscat, Icoup and Irefl) and of the sum of those components (Itot) for each facet of the scene. 
Whereas irradiances are calculated for each facet, radiances are calculated for each pixel. In order to 
represent these different irradiances at the sensor resolution and to model the at sensor radiances, the 
different irradiances incident to a given facet must be aggregated. Each irradiance type incident to a 
ground pixel is the sum of the corresponding irradiance type incident to each facet included in this 
ground pixel and weighted by the solid angle defined by this facet. The sum of these solid angles 
equals the instantaneous field of view of a pixel.  

The radiances at sensor level (Rdir, Ratm and Renv) are directly calculated for each pixel and their sum 
will simulate the synthetic image acquired by the sensor (Rtot). Therefore, all the radiative components 
of the signal can be represented on different images. 

To perform these calculations, the following atmospheric radiative terms are directly derived from 
6S: atmR , ↑

dirT , ↓
gT , d

skyR , ↓τ . 

3. Comparison of AMARTIS v2 with Existing Radiative Transfer Codes 

The potentialities of AMARTIS v2 are unique. Indeed, it allows both the use of complex 3D  
scenes and a large modeling of the atmosphere. This is the reason why the comparison between 
AMARTIS v2 and existing radiative transfer codes should be limited. Nevertheless, major efforts have 
been done in order to estimate its performances. A comparison has been performed, first with 
AMARTIS v1 to assess they provide the same results on simple cases, and then with 6S to validate the 
atmospheric modeling.  

3.1. Comparison with AMARTIS v1 

AMARTIS v2 is first compared with AMARTIS v1 to check the coherence of those two codes. As 
AMARTIS v1 can only take into account simple 3D scenes and is limited in atmospheric modeling, the 
comparison procedure is restrained to conditions AMARTIS v1 can simulate.  

This comparison is performed for the different radiative components of the signal. However, 
different atmospheric scattering models are used in AMARTIS v1 and v2. Indeed, in AMARTIS v1, a 
Gauss-Seidel model [34] is used whereas in AMARTIS v2, the 6S kernel used performs different 
analytical calculations based on the successive orders of scattering [19]. Thus, the scattered irradiance 
and the atmospheric radiance are not compared.  

Two different synthetic landscapes are chosen (Figure 4): an urban canyon and a mountainous 
scene. The modeled grounds are considered as lambertian with spectrally constant reflectances ρ. For 
each scene, two different reflectance configurations are defined (Figure 4). Those scenes are observed 
in nadir viewing by a sensor onboard an aircraft flying at 2.25 km altitude with a spatial resolution of  
10 cm. The sun has a zenith angle of 30° and is located in a plan perpendicular to the street and the 
valley axis. The simulations are performed at 440, 870 and 1,600 nm. The atmosphere is modeled by 
the standard “mid-latitude summer” model of 6S for the molecules and by a Junge distribution [27] for 
the aerosols. This distribution is defined by particles of radius ranging from 0.01 to 10 µm, with a 
refractive index of 1.35 + 0.007i, spectrally constant in the [0.4; 2.5 µm] domain and with a Junge 
parameter of 3.32. Their abundances are defined from the following visibilities: 5 km and 23 km. 
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As can be noted in Table 1 and in Figure 5, these results are in very good agreement. The values of 
the direct irradiances are equal because their analytical expressions used in the two codes are identical. 
The direct and environment radiances show some small discrepancies that are directly due to the 
difference of total irradiance at ground level resulting from the different atmospheric scattering 
models: mean difference of 3% between AMARTIS v2 and AMARTIS v1 for those three terms.  

The Earth-atmosphere coupling irradiances and the downward reflected irradiances exhibit higher 
discrepancies, up to 8.9% in the case of Icoup. Those differences are due to two reasons. First, as 
previously, a part of those discrepancies are due to the difference of scattered irradiance at ground 
level. This can have a huge impact on the calculation of Icoup and Irefl notably in the street cases where 
the presence of shadows (areas where the direct irradiance is null) increases the relative contribution of 
the scattered irradiance. However, this is not the only reason. As can be seen in Figure 5 and especially 
in Figure 6, the other reason is the noisy signal resulting from AMARTIS v1 simulations. This noisy 
signal is due to the use of fewer photons for the Monte Carlo calculations in AMARTIS v1 than in 
AMARTIS v2. Indeed, AMARTIS v2 allows obtaining a very good convergence of the components 
calculated with Monte Carlo techniques by simulating the propagation of numerous photons (~1010 per 
simulation) in the atmosphere. This is possible thanks to the efficient ray-tracing tool that allows 
obtaining reasonable computation times (~1 h per simulation). The Monte Carlo methods of 
AMARTIS v1 are implemented in a way that makes the computations very slow compared to 
AMARTIS v2. Thus, it has not been possible to simulate the propagation of as many photons (less 
than 109 per simulation) because of the long computation times (up to 12 h per simulation in this case) 
and therefore we have obtained a less good convergence of Icoup, Irefl and Renv.  

Figure 6. Comparison of simulation results obtained with AMARTIS v1 (thin line) and 
AMARTIS v2 (thick line) in the street case No. 1 (cf. Figure 4) at 440 nm with a visibility  
of 5 km. 

 

Finally, it is interesting to note in Figures 5 and 6 that the components of the signal have the same 
spatial variations in AMARTIS v2 simulations as in AMARTIS v1 simulations, thanks to the precise 
ray tracing software used to handle the geometry of the code.  
  



Remote Sens. 2011, 3                            
 

 

1925

3.2. Comparison with 6S 

AMARTIS v2 has been compared with 6S for flat grounds to check both the correct use of 6S in 
AMARTIS v2 as a radiative transfer tool above canopy level and the atmospheric modeling. 

In AMARTIS v2, Idir, Iscat, Rdir and Ratm are calculated in the same way as in 6S or result from 6S 
calculations. So, the two codes should give similar results for those radiative components. However, it 
is necessary to check it. Then, as the Icoup, Irefl and Renv components are calculated with different 
methods, a comparison has to be done. 

To do so, a scene of lambertian reflectance 0.2 (spectrally constant) is used. A nadir satellite viewing 
is simulated at 440, 870 and 1,600 nm with a solar zenith angle of 30° and a molecular atmosphere 
modeled with the “mid-latitude summer” model. Four aerosols distributions are used, defined by 
spectrally constant single scattering albedos and asymmetry factors. The values of those parameters are 
presented in Table 2. The phase functions of aerosols distributions are defined by the Henyey-Greenstein 
function [35]. The concentrations of those particles are described by two visibilities: 5 km and 23 km. 
Another case is also computed corresponding to an atmosphere without aerosols. 

Table 2. Single scattering albedos and asymmetry factors of the 4 aerosols models used for 
the comparison between AMARTIS v2 and 6S. 

Aerosols models Single scattering albedo Asymmetry factor 
M1 0.6 0.6 
M2 0.6 0.9 
M3 0.9 0.6 
M4 0.9 0.9 

In all, 27 simulations were performed both with AMARTIS v2 and 6S. The mean value of the 
absolute differences and the corresponding standard deviations obtained with 6S and for the central 
pixel of the images computed by AMARTIS v2 were calculated and presented in Table 3. To be able 
to assess the impact of the discrepancies on the total signal at ground and sensor levels, the mean 
differences and their standard deviation normalized by Itot for the irradiances and by Rtot for the 
radiances are also presented. Finally, in order to have the order of magnitude of the different 
components of the signal, the minimum, mean and maximum values obtained with the AMARTIS v2 
simulations have been added to this table. 

As expected, the results obtained for analytical calculations (Idir, Iscat, Rdir and Ratm) are identical 
with mean discrepancies compared to the total signal of 0.0% except for Rdir where a slight difference 
of 0.2% is obtained. This is explained by the difference obtained for the total signal at ground level  
due to the discrepancy on the Earth-atmosphere coupling irradiance. For the environment radiance, the 
mean difference compared to the total radiance is 0.8%, corresponding to a mean absolute error of 
0.5 W.m−2.µm−1.sr−1. For the Earth-atmosphere coupling irradiance, the mean difference compared to 
the total irradiance is 0.4%, corresponding to a mean absolute error of 3.3 W.m−2.µm−1. Those 
components are the ones that show the maximum discrepancies in absolute level with 6S because of 
the different calculation methods (analytical calculations for 6S, Monte Carlo calculations for 
AMARTIS v2). However, as can be noticed in Table 3, they are also the components that contribute 
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the least to the total signal at ground and sensor levels and those differences have very little impact on 
the signal modeling. 

Table 3. Comparison of the results obtained between AMARTIS v2 and 6S on the 27 
simulation cases. 

 

AMARTIS v2 values  
(W.m−2.µm−1) 

Difference between AMARTIS v2 and 6S 
Absolute difference 

(W.m−2.µm−1) 
Difference normalized 

by Itot 

Min Mean Max Mean Standard 
deviation Mean Standard 

deviation
Idir 171.80 474.06 1,132.67 0.23 0.33 0.03% 0.03% 
Iscat 0.14 175.51 746.00 0.01 0.00 0.00% 0.00% 
Icoup 0.06 17.40 60.43 3.34 4.06 0.42% 0.37% 
Itot 188.85 666.98 1,348.58 3.46 4.23 0.43% 0.39% 

 

 

AMARTIS v2 values  
(W.m−2.µm−1) 

Difference between AMARTIS v2 and 6S 
Absolute difference 

(W.m−2.µm−1) 
Difference normalized 

by Rtot 

Min Mean Max Mean Standard 
deviation Mean Standard 

deviation
Rdir 10.11 27.38 67.26 0.12 0.12 0.21% 0.16% 
Ratm 0.04 18.33 84.05 0.00 0.00 0.01% 0.01% 
Renv 0.01 7.27 30.24 0.54 0.75 0.90% 0.84% 
Rtot 11.26 52.97 121.53 0.43 0.67 0.74% 0.71% 

Finally, good agreements were obtained between 6S and AMARTIS v2 for flat ground simulations, 
proven by the very low difference for the total signals at sensor level, with a mean value of 
0.4 W.m−2.µm−1.sr−1 corresponding to a relative value of 0.7%. 

4. Illustrations of the Improvements Brought by AMARTIS v2 

As explained previously, AMARTIS v2 is a radiative transfer tool that allows the calculation of all 
the components of the signal with a good accuracy (cf. previous section) and their representation. It 
notably allows the simulation of the radiance image of the scene acquired by the sensor.  

To illustrate the gain brought by this code compared to AMARTIS v1 and to present its new 
potentialities, four examples are presented. First, a simulation of the observation of an urban canyon is 
detailed. Then, the use of materials exhibiting high directional reflection behaviors is presented with 
the example of the specular reflection of light by window panes. A radiative analysis of the signal in 
sunny and shady areas in the case of a crossroad follows. Finally, the aggregation process over a 
heterogeneous landscape is presented in the case of a street pattern and the directional effects induced 
by this aggregation are evaluated.  

Note that the geometric accuracy of AMARTIS v2 is a major issue for such complex 3D scenes. 
However, this accuracy is directly linked to the precision of the ray-tracing tool used to handle the 3D. 
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5. Conclusions and Perspectives 

In this paper, a new radiative transfer code is presented: AMARTIS v2. It constitutes a powerful 
tool to study radiative transfer in urban areas and to simulate images of urban scenes acquired by high 
or very high spatial resolution sensors onboard aircrafts or satellites, in the [0.4; 2.5µm] domain. It 
allows the simulation of all the components of the signal at ground and at sensor levels for diverse 
atmospheric conditions, and for various solar and viewing configurations. Complex geometries and 
realistic materials radiative properties (using bidirectional reflection functions, like the window pane 
bidirectional reflection function) can be taken into account.  

This code also allows performing numerous phenomenological studies in urban areas. Indeed, as 
shown in this paper, this radiative transfer tool can for instance study the contribution of every 
component of the signal both at ground and at sensor levels. It also allows the comparison of the signal 
in the sunny and in the shady area of a landscape. The fourth case illustrates the aggregation process 
over a heterogeneous landscape. Thus, the evaluation of the introduced non-linearity in the mixing 
process can be evaluated which will help in the development of new non-linear unmixing methods.  

Beyond those examples, this tool is very useful and efficient to develop new remote sensing 
methods. First, it allows the comprehension of radiative phenomena in such media [36]. Then, it can be 
used to compute realistic synthetic remote sensing images, whose total parameters are defined by the 
user, in order to test new processing methods like atmospheric characterisation, atmospheric 
compensation, anomaly detection or classification. This tool can obviously be used for multispectral 
sensors, but the monochromatic calculations performed by AMARTIS v2 makes this radiative transfer 
code an appropriate tool to develop applications for hyperspectral sensors. It is currently used to test a 
new characterization procedure of urban aerosols radiative properties based on the transitions between 
sunny and shady areas [17,18]. It will also be used in the near future to test the new version of ICARE 
(atmospheric compensation code over urban areas from hyperspectral acquisitions [5]) able to process 
spectral and multiangular acquisitions which might give access to walls classification and also to new 
unmixing methods as proposed by Zeng [49]. 

This code has nevertheless two drawbacks. First, it requires many input parameters to completely 
describe the scene, notably the complex geometry and the radiometric properties of the ground that can 
make the modeling of realistic scenes difficult. However, the recent efforts performed by the remote 
sensing community on the merging of LIDAR and hyperspectal remote sensing data allow obtaining 
complete characterizations of 3D complex scenes with the assessment of their spatial and spectral 
properties. Then, such a code is time consuming. Indeed, with the Onera’s cluster dedicated to 
scientific calculations (64 bits cluster with 108 CPU), the AMARTIS v2 simulations last between a 
few minutes and a few hours. The duration of those calculations, performed without parallel 
processing, depends on the number of photons used for the Monte Carlo methods and on the number of 
facets describing the scene. For instance, the simulation of the observation of a scene of  
500 m × 500 m with a spatial resolution of 1 m lasts between two and three hours. 

Several points are considered to improve the performances of AMARTIS v2. First, new efforts must 
be done to pursue its validation. As no other radiative transfer code can both decompose the signal at 
ground and sensor levels and offer the modeling of complex 3D scenes, it will be necessary to validate 
AMARTIS v2 only on the total radiance entering the instrument. To do so, it will be possible to use 
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