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Abstract: Monitoring of (surface) urban heat islands (UHI) is possible through satellite 

remote sensing of the land surface temperature (LST). Previous UHI studies are based on 

medium and high spatial resolution images, which are in the best-case scenario available 

about four times per day. This is not adequate for monitoring diurnal UHI development. 

High temporal resolution LST data (a few measurements per hour) over a whole city can 

be acquired by instruments onboard geostationary satellites. In northern Germany, 

geostationary LST data are available in pixels sized 3,300 by 6,700 m. For UHI 

monitoring, this resolution is too coarse, it should be comparable instead to the width of a 

building block: usually not more than 100 m. Thus, an LST downscaling is proposed that 

enhances the spatial resolution by a factor of about 2,000, which is much higher than in any 

previous study. The case study presented here (Hamburg, Germany) yields promising 

results. The latter, available every 15 min in 100 m spatial resolution, showed a high 

explained variance (R
2
: 0.71) and a relatively low root mean square error (RMSE: 2.2 K). 

For lower resolutions the downscaling scheme performs even better (R
2
: 0.80, RMSE: 1.8 K 

for 500 m; R
2
: 0.82, RMSE: 1.6 K for 1,000 m). 
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1. Introduction 

Increasing urbanization has caused changes in the heat balance in densely built urban areas [1–3].  

In such cases, both mean air temperature and land surface temperature (LST) in the urban centers are 

usually higher than their respective temperatures in the rural surroundings. This phenomenon is known 

as urban heat island (UHI) [4–6]. Recent studies show that the development of UHI can be monitored 

using thermal remote sensing [7–12]. Remote sensing has a great advantage over in situ measurements. 

Instead of measurements at irregularly spaced point locations, remote sensing provides UHI with a 

quasi continuous monitoring of surfaces [13]. However, remote sensing of urban climates is restricted 

by several factors [14,15]. In particular, only the surface temperature UHI (also SUHI, here further 

referred to as UHI) can be directly monitored by remote sensing, which can largely differ from the canopy 

layer UHI. Another general problem of the satellite remote sensing is the lack of data having both high 

spatial and temporal resolution; a recent review of available sensors is given by Tomlison et al. [16]. 

In terms of UHI monitoring, a spatial resolution of 1 km allows coarse scale temperature mapping and 

limits the analysis of relationships between the UHI and in situ measurements of air temperature [17]. The 

highest spatial resolutions of spaceborn LST sensors are about 100 m, which would be much more 

appropriate, because it is a good approximation for an average width of a building block. Satellite 

instruments that retrieve data in such resolutions are the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER; spatial resolution of its thermal bands is 90 m) and Landsat  

(LS; spatial resolution of 120 m for LS 4 and 5, 60 m for LS 7 and 100 m for the coming LS 8 [18]). 

They fly on low earth orbiters with a relatively narrow swath and their revisit time is 16 days (eight 

days for ASTER including off-nadir acquisitions). Such a revisit time is too long to make these 

instruments suitable for the assessment of the diurnal evolution of UHI. 

Instruments in the geostationary orbit like the Spinning Enhanced Visible Infra-Red Imager 

(SEVIRI) aboard Meteosat Second Generation (MSG) satellites on the other hand have appropriate 

temporal resolution but too poor spatial resolution (standard retrieval time of SEVIRI is 15 min; one 

SEVIRI pixel for the case study area of Hamburg is approximately 3,300 by 6,700 m large). Many 

studies are thus based on instruments in polar orbits that have wide swath (over 2,000 km) and a revisit 

time of approximately one day (one daytime and one night-time image). Such instruments have 

nominal spatial resolution of about 1,000 m, thus they are considered as a reasonable compromise 

between the two previously described options. 

This paper examines the possibility of using an alternative approach based on the fusion of data 

with different temporal and spatial resolutions. Such an approach should provide results in high 

temporal (15 min) and high spatial (100 m) resolution. This should be possible as LST spatial 

distribution is well correlated with numerous parameters. Many of them can be observed by remote 

sensing in high spatial resolution. If the correlation between these parameters in high spatial resolution 

(HR) and low spatial resolution (LR) LST is known, LST in HR can be estimated. The factor of this 

downscaling was not larger than 100 in previous studies. This study aims to examine whether LST 

downscaling can be used with a higher downscaling factor in order to fulfill the needs of urban 

climatology (Section 2.1). Furthermore, it is investigated which predictors are most suitable to 

implement such a downscaling scheme and how the errors depend on the target resolution (Section 3). 

At the end possible improvements are discussed (Section 4).  
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2. Data and Methodology 

2.1. LST Downscaling  

Downscaling, image fusion, spatial sharpening and disaggregation are known methods to “improve” 

the spatial resolution of the input data using predictors of higher spatial resolution. In the first attempts 

of image fusion, the goal was the production of sharper multispectral images based on information 

obtained from the panchromatic band (e.g., [19–21] describe how to merge data from various 

instruments). In recent years, some studies proposed resolution improvement (from image sharpening to 

downscaling) for certain physical or ecological parameters. For instance, Kaheil and Creed [22] have 

improved the spatial resolution of wet areas and boreal landscapes; Zurita-Milla et al. [23] enhanced 

MERIS data for the vegetation seasonal dynamics monitoring to 25 m spatial resolution, and statistical 

and dynamical downscaling are used in meteorology to improve meteorological model outputs [24,25]. 

Therefore, LST downscaling is possible using physical or statistical based methods. Among physical 

based LST downscaling methods, the dual band method, often used in thermal anomaly monitoring [26], is 

the most common. With this method the percentage of thermally anomalous pixel coverage and the 

anomaly’s temperature can be estimated. However, the method yields no solution regarding the 

position of the anomaly. Another physical based LST downscaling method assumes that the data to be 

downscaled are isothermal, thus one can estimate subpixel emissivity and afterwards subpixel LST 

iteratively [27].  

More common are statistical based methods. Most of them rely on the linear correlation between 

predictors (see following paragraph) and LST, e.g., [28–30]. Dominguez et al. [31] applied exponential 

functions to the predictors before applying the linear regression. Zakšek and Oštir [32] first performed 

principal component analysis over their predictors and then applied linear regression to the principal 

components. Zhou et al. [11] used support vector machine regression to determine the relationship 

between LST and predictors. 

Statistically based downscaling can only be successful if appropriate HR predictors are available. 

Many biophysical parameters are well correlated to the LST spatial distribution. As most of them can 

be observed in finer resolution than LST, they are suitable as downscaling predictors. The most 

renowned is the negative correlation between LST and normalized difference vegetation index  

(NDVI) [29,30,33–37]. Merlin et al. [38] proposed to enhance the correlation between NDVI and LST 

using the temperature difference between photosynthetically and non-photosynthetically active 

vegetation. It is also possible to employ land cover data. Weng et al. [39] derived the vegetation 

fraction from ETM+ images; LST was better correlated with vegetation fraction than with NDVI. Yuan 

and Bauer [40] made a similar analysis but correlated the fraction of impervious surface area (soil 

sealing) that is strongly positive correlated to the LST in urban areas. Stathopoulou and Cartalis [41] 

showed that emissivity and season-coincident LST are also well correlated with the measured LST. 

It was also shown that there is a distinct correlation between water surfaces in urban areas and 

UHI [10,32]. Zhou et al. [11] reported a good correlation between some standard meteorological 

observations (atmospheric aerosol optical depth, relative humidity, sunshine duration, and 

precipitation) and LST. Bechtel [42] proposed annual cycle parameters (ACP) from multitemporal 

LST data as downscaling predictors. The utilization of LST data for LST downscaling might seem 
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circular at the first glance. However, these predictors are independent and can be processed from 

globally available free Landsat data. Another option is the use of principal components of the 

multitemporal LST data. To conclude, all the listed parameters and all further parameters that are 

related to urban climatic processes like multispectral data (albedo) or morphological parameters 

(building geometry and irradiation) can be considered as LST downscaling predictors. 

2.2. Case Study Area 

The Southern part of Hamburg, Germany (53.38–53.63°E, 9.75–10.38°N) was chosen for the case 

study. It comprises the river Elbe (from South-East to North-West), rural areas with a high percentage 

of agricultural land use, forested areas in the Southwest and East and most of the city of Hamburg 

including the port areas (in the center), the central business district north of the river Elbe in the center 

as well as urban areas of different building densities (ranging from single family houses to very 

compact morphologies). Hamburg has a population of about 1.8 million inhabitants and is situated in 

the northern German lowland between the North Sea and the Baltic Sea. The domain of the study was 

limited by the availability of the morphological data (see below). 

2.3. Data 

2.3.1. Predictors 

The entire set of 296 predictors was processed from different sensors and data sources. All 

predictors were first prepared on a 100 m UTM grid. For further analysis the predictors were 

resampled to lower resolutions between 200 m and 1,000 m in 100 m steps using an area weighted 

average. The spatial resolution of 100 m is appropriate because it is approximately equal to the width 

of a building block in a city. Coarser resolutions are more suitable for monitoring broader areas like 

city districts. 

Topographic predictors derived from NEXTMap® Interferometric Synthetic Aperture Radar 

(IFSAR) data include simple statistics of the height distribution [43] as well as a morphological 

opening and closing profile, which includes spatial information about spacing and texture of buildings 

and other objects [44,45]. 

Multispectral predictors were derived from multitemporal data from the Thematic Mapper (TM) on 

board Landsat 4 and 5 and the Enhanced Thematic Mapper Plus (ETM+) on board Landsat 7. Since the 

predictors are only used in empirical models, calibration, atmospheric correction and conversion to 

reflectance were not considered necessary [46] and the raw digital numbers were applied. Bands 3 (RED) 

and 4 (NIR) were used to calculate the Normalized Differenced Vegetation Index (NDVI). The thermal 

infrared (TIR) acquisitions from multitemporal TM and ETM+ data (TIR band: 10.4–12.5 µm) were 

also included as predictors and several aggregated parameters were calculated. These include the two 

annual cycle parameters (ACP) mean annual surface temperature (MAST) and yearly amplitude of 

surface temperature (YAST) [47] as well as the best five principle components of all TIR scenes. 

Further, some land cover data were included, more specifically the proportion of water per pixel 

(watershare) from a classification, the soil sealing from the EEA’s Fast Track Service Precursor 
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Sealing Product “European Mosaic” (soilseal) and the percentage of larger roads as estimated from 

OpenStreetMap vector data. 

2.3.2. LST Data 

For calibration of the downscaling scheme the LSA SAF operational LST product was used. Their 

LST is produced every 15 min for cloud-free pixels [48]. SEVIRI TIR channels at 10.8 and 12.0 µm 

are applied to the generalized split-window algorithm [49]. The identification of pixels including the 

clouds is based on the Nowcasting and Very Short Range Forecasting SAF software [50]. The general 

accuracy of the LST product is below 2 K [48,51]. The quality of the derived LST mainly depends on 

the cloud detection accuracy, but also on the sensor performance, the accuracy of atmospheric 

corrections as well as the spectral variation in emissivities of different land-surface elements [51,52]. 

A significant parameter for LST accuracy is land surface heterogeneity, which can produce a 

significant variation in LST measurements.  

The independent HR LST used for validation came from ASTER on board the Terra satellite. It 

retrieves data approximately 15 min after LS 7 in the same orbit. ASTER measures five thermal bands 

(between 8 and 11 µm) at 90 m horizontal resolution. Its LST product is calculated with the 

“temperature and emissivity separation algorithm” [53]. Although a campaign was launched for the 

entire summer of 2011, the request resulted in only one cloud free acquisition that covers the entire 

area of interest dating from 2 August 2011. The original swath data were first projected to UTM, then 

rasterized in 15 m resolution with nearest neighbor interpolation, and finally resampled to 100 m 

resolution (the same grid as the predictors) using area weighted average with SAGA GIS  

(http://saga-gis.org/). This method ensures a minimum data loss and was found to be superior to a 

Multilevel B-Spline interpolation.  

2.4. Used Methods  

2.4.1. Spatial Aggregation of Predictors to the SEVIRI Grid 

Downscaling starts with the aggregation of HR predictors to the same grid as LR LST. The input 

LST is given for a SEVIRI pixel that has an “irregular” shape according to the HR predictors in UTM 

projection. Instead of a simple geometrical resampling, the predictors were aggregated using the point 

spread function (PSF) of the sensor [54]. PSF was approximated by a Gaussian function in the 

proposed approach. Thus, the distances to a particular pixel center of SEVIRI LST were used to 

compute weights that express the influence of the PSF. The weights are normalized to a sum of one 

within each SEVIRI pixel. Therefore, those HR pixels that are closer to the centers of the SEVIRI 

pixels, have a greater influence on the aggregation results than pixels positioned in the corners of the 

SEVIRI pixels. To aggregate the predictors’ values to one SEVIRI pixel, it is necessary to sum all the 

products of the corresponding HR predictors and their normalized weights.  

2.4.2. Selection of Suitable Predictors 

To find optimal predictors for the downscaling scheme, the performances of different predictor sets 

were compared. First, predictors were grouped according to their origin in order to evaluate which data 
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sources contain relevant information. Then, single predictors with high potential were tested and sets 

were combined by expert knowledge. Further sets were compiled by different feature selection 

algorithms (described in the following three paragraphs) in order to eliminate covariant, irrelevant, 

redundant and noisy variables and find the most meaningful predictors. 

The Minimum Redundancy Maximal Relevance approach (MRMR) was first used in bioinformatics 

for genome classification [55]. The algorithm is based on the fact that the most relevant individual 

features are likely to be highly redundant and hence additional predictors might not significantly 

improve the result. For optimum choice, the relevance for the target variable and the redundancy with 

the prior selected predictors are combined in a single (Mutual Information Quotient) criterion. As the 

algorithm was developed for classification of ordinal data, the predictors and LST data were 

discretized into ten classes for the selection. 

Forward selection is a linear step-by-step algorithm that has been successfully used by many 

researchers in order to build robust prediction models [56,57]. In this approach, which is based on a 

linear regression model; the first step to sort the explanatory variables according to their correlation 

with the dependent variable. Then, the predictor that is best correlated with the dependent variable is 

selected as the first input. The remaining variables are added one by one as the second input according 

to their correlation with the output. The variable that increases most significantly the explained model 

variance (R
2
) is selected as the second input. This step is repeated for all predictors. Finally, among the 

obtained subsets, the subset with optimum R
2
 is selected as the model input subset. This means adding 

further variables to this subset does not significantly increase the R
2 
[57]. 

An alternative to MRMR and forward selection would be the principal component analysis (PCA) 

as applied in LST downscaling by Zakšek and Oštir [32]. PCA decreases the possible set of predictors 

to some highest ranking principal components (PC) describing the most variability in the whole set of 

the predictors. 

2.4.3. Downscaling 

Figure 1 explains the basic principle of statistical downscaling. It is assumed that the predictors are 

correlated to LST in a similar manner in LR as well as HR spatial domain. Therefore, a linear 

regression model, calibrated from the (upscaled) LR predictor sets, and measured LR LST should be 

suitable to explain HR LST distribution from HR predictors. The example in Figure 1 shows that: 

 a predictor, in the example MAST Figure 1(a) and the first TIR PC Figure 1(b) are used, is 

correlated to LST in both LR (red) and HR (blue) domain. 

 the variance in the LR domain is much lower for both predictors and dependent variable 

(which is plausible since the upscaling is essentially a low pass filtering operation), and  

 the linear relation is similar for both domains. 

Hence, linear functions are calibrated by Multiple Regression in the LR domain and then applied to 

the HR predictors. However, it can also be seen that the linear equation only explains a part of the 

variance and that certain areas have a divergent thermal behavior. 
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Figure 1. Relation between dependent variable land surface temperature (LST) in high 

spatial resolution (HR) (blue) and low spatial resolution (LR) (red) domain and different 

predictors. (a) mean annual surface temperature (MAST) (b) first principal component of 

thermal infrared (TIR) data. 

  

(a) (b) 

3. Results  

3.1. Linear Regression with Different Predictor Sets 

The results of the Linear Regression models with different predictor sets are presented in Table 1. 

Generally, models with large predictor sets tended to overfit. This resulted in a high level of explained 

variance (R
2
) for the training set in the LR domain but produced some high errors (mean absolute error 

(MAE), root mean square error (RMSE)) as well as small R
2
 for the independent validation data in the 

HR domain. Conversely, using regression with merely a single TIR predictor (selected from the 

highest correlation in LR) reached an RMSE of 2.63 K and an R
2
 of 0.53 for the HR validation data. 

The ACP predictors performed much better with RMSE = 2.17 K and R
2
 = 0.71 for MAST only and 

RMSE = 2.21 and R
2
 = 0.68 for MAST and YAST. Comparably, the principal components of all TIR 

scenes reached very good results in the downscaling scheme, with only the first component slightly 

outperforming larger sets (RMSE = 2.17, R
2
 = 0.70 for the first PC, RMSE = 2.37, R

2
 = 0.63 for the 

first three ranking PC, and RMSE = 2.42, R
2
 = 0.61 for the first five ranking PC). The sets chosen by 

expert knowledge also performed quite well (RMSE = 2.35, R
2
 = 0.63 for “expert1”, containing of 

YAST, tirpca1, watershare, soilseal, NDVI from LS scene #LT41960231992178XXX02, the blue 

band from #LT51950232006185KIS00 and the TIR band from #LE71950232001227EDC00). The sets 

“expert2” and “expert3” consist of MAST for the one and tirpca1 for the other, supplemented by 

watershare, since the water pixels are believed to have a different thermal signature. Although both are 

among the best predictor sets (RMSE = 2.47 K, R
2
 = 0.57 and RMSE = 2.31 K, R

2
 = 0.65), the 

addition of watershare leads to a better fit in LR domain but a slightly higher error in the HR domain. 

The sets chosen by feature selection performed differently. While the smallest MRMR (TIR band from 

#LT51960232010155MOR01 and NIR from #LE71960232002093EDC00) set was still among the 

best (RMSE = 2.51 K, R
2
 = 0.54), the forward selection failed in selecting suitable downscaling 
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predictor sets (RMSE = 4.18 K, R
2
 = 0.19 with 3 TIR bands, one green band and a morphological 

closing from the profile). 

Table 1. Downscaling accuracy with linear regression for different predictor sets. Number 

of predictors in the set (Num), explained variance (R
2
) of the model in LR domain, mean 

absolute error (MAE), root mean square error (RMSE), R
2
 and BIAS for the independent 

validation data in HR domain. Best predictor sets are highlighted blue.  

Predictor Set Calibr. Validation (HR) 

Name Num R
2
 (LR) MAE (K) RMSE (K) R

2
 BIAS (K) 

predefined sets       

heighstat 6 0.722 4.31 6.09 0.04 1.40 

LUCshare 3 0.634 2.23 2.96 0.33 1.33 

NDVI 32 0.825 6.40 9.15 0.00 1.46 

TIR 32 0.867 3.36 4.46 0.11 1.42 

single predictors       

bestNDVI[lres] 1 0.356 2.51 3.73 0.03 1.36 

bestTIR[lres] 1 0.628 2.08 2.63 0.53 1.32 

aggregated LST predictors       

MAST 1 0.468 1.76 2.17 0.71 1.29 

ACP 2 0.593 1.82 2.21 0.68 1.31 

tirpca1 1 0.575 1.79 2.17 0.70 1.31 

tirpca3 3 0.622 1.89 2.37 0.63 1.37 

tirpca5 5 0.633 1.89 2.42 0.61 1.38 

selected by expert knowledge       

expert1 7 0.698 1.86 2.35 0.63 1.35 

expert2 2 0.514 1.85 2.47 0.57 1.34 

expert3 2 0.591 1.82 2.31 0.65 1.33 

feature selection algorithms       

MRMR2 2 0.641 1.98 2.51 0.54 1.31 

MRMR6 6 0.702 2.03 2.64 0.52 1.35 

MRMR10 10 0.717 2.12 2.91 0.43 1.35 

ForwSel 5 0.799 3.07 4.18 0.19 1.42 

Hence, it can be stated that predictor sets should not be larger than a few predictors and that 

aggregated patterns of multitemporal thermal data are very powerful for downscaling LST. Figure 2 

shows the results of the downscaling scheme with the ACP predictor set and the spatial distribution of 

the error compared with the ASTER validation data. The predicted LST pattern with high LST for the 

port, other industrial areas as well as the inner city and the coolest temperatures for the forests 

(Southwest and East) (Figure 2(c)) is much finer than the SEVIRI LST data (Figure 2(a)) and visually 

similar to the ASTER testing dataset (Figure 2(b)). The residuals (Figure 2(d)) are rather low for the 

urban areas and somewhat higher for forest and water areas and have a large variance for agricultural 

fields. Orange colors prevail, indicating an overestimation of the HR LST, which is consistent with the 

bias of approximately 1.3 K for all models in Table 1. The systematic errors can partly be related to 

differing water lines, phenology (especially different crop status in the agricultural areas) and land  

use change. 
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Figure 2. (a) LR Spinning Enhanced Visible Infra-Red Imager (SEVIRI) land surface 

temperature (LST), (b) HR Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) LST, (c) Downscaling result for LST with ACP predictor set,  

(d) Spatial distribution of the error of the model compared with ASTER validation data. 

 

The equation presented below for the ACP downscaling is evidently only valid for the specific 

acquisition and the coefficients are in fact a function of time: 

LSTmod = 181.8288 + 0.9268 × YAST + 0.3643 × MAST (1) 

3.2. Downscaling to Different Resolutions 

Since the downscaling factor between SEVIRI and ASTER is quite large (approximately a factor of 

33 in East-West direction and 67 in North-South), both predictors and testing data were resampled to 

lower resolutions between 200 m and 1,000 m using an area weighted average in order to evaluate the 

performance of the scheme for different resolutions. Figure 3(a) shows the validation RMSE in 

different resolutions. As expected, the error decreases with decreasing resolution and an RMSE of 2 K 

(black dotted line) was reached at a target resolution between 200 m and 300 m for the better predictor 

sets. Accordingly, the explained variance of the validation dataset displayed in Figure 3(b) increases. 

The order among the predictor sets was essentially preserved and MAST, tirpca1 and ACP were the 
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best predictor sets for all resolutions. However, the predictor set “expert1” (with seven predictors) 

performed better in relation to the others at lower resolutions. 

Figure 3. Resolution dependent performance of the downscaling scheme for different 

predictor sets. (a) root mean square error (RMSE) (K). (b) R
2
. 

  

(a) (b) 

4. Discussion 

Regarding the large downscaling factor between SEVIRI and ASTER data, the results of the 

Hamburg case study are very promising. Three proposed predictor sets reached an RMSE of about 2.2 K 

and an explained variance of about 0.7. An RMSE of less than 2 K was reached by three predictor sets at a 

target resolution of 300 m, at 1,000 m resolution RMSEs of about 1.65 K and R
2
 of about 0.8 were reached. 

These results are very good compared with the accuracy of the SEVIRI LST retrieval of 2 K [48,51]. In 

the past, only a few studies were dedicated to downscaling of LST in the urban areas. Liu and Pu [27] 

reached a better R
2
 (0.77) for their Yokohama (Japan) case study. However, they downscaled from 

MODIS to ASTER resolution, which is a much smaller downscaling factor (about 100); comparable 

results were achieved in this study for a resolution of 300 to 400 m, which is still a higher 

downscaling factor. The downscaling from ASTER to 10 m resolution in San Juan (Puerto Rico) 

suggested by Dominguez et al. [31] also resulted in higher explained variance (R
2
 = 0.81) and higher 

error (RMSE = 2.8 K) than in this study. Stathopoulou and Cartalis [41] downscaled AVHRR to LS 

TM resolution in Athens (Greece) with much higher errors than in this study (RMSE = 4.9 K). We are 

aware of two studies that tried to downscale LST in urban areas using geostationary data. Zakšek and 

Oštir [32] downscaled the SEVIRI data to 1,000 m resolution for the urban areas of central Europe. 

Their correlation is very high (R = 0.97, which corresponds to an R
2
 of about 0.94) but their error is 

also higher than ours (RMSE = 2.5 K). Keramitsoglou [58] also downscaled SEVIRI data to 1,000 m 

resolution but for the area of Athens (Greece); 67% of the processed datasets exhibit correlation 

coefficient between 0.6 and 0.8. 

Although the presented results are encouraging compared with the listed studies, improvements are 

still possible. The random error of the downscaling scheme is even much lower, if the large systematic 
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bias of about 1.3 K for all models and resolutions is considered. Thus, the overall error could be 

substantially decreased if an independent estimate of the bias was available. The reason for the bias is 

the geometry of data retrieval. The geostationary SEVIRI views Europe from the South, thus it sees a 

remarkable share of southern vertical sides of objects. These are warmer, while northern facades of 

buildings are not seen by SEVIRI at all. On board a low Earth orbiter, ASTER can be used off-nadir at 

low angles and thus also often observes surfaces towards West or towards East, resulting in an azimuth 

dependent LST. However, the viewing geometry of ASTER is still “largely perpendicular” compared 

with SEVIRI (for instance a pointing angle of 5.71° for the used ASTER scene instead of almost 60° 

for SEVIRI). Hence, mostly horizontal objects (especially roofs and streets) are seen by ASTER. This 

bias can also be seen in the scatterplots in Figure 1 (higher intercept of the LR data) and is in acceptable 

agreement with previous studies. Trigo et al. for instance reported that the SEVIRI LST was about 2 K 

higher than MODIS LST for the Iberian Peninsula, Central Africa, and the Kalahari [51]. MODIS (terra) 

has a comparable viewing geometry to ASTER, since it flies on the same platform. The bias seemed to 

be largely independent from the tested resolutions (the mean bias of eight selected predictor sets was 

between 1.310 and 1.314 for all tested resolutions). Besides the geometrical influences, systematic 

errors due to a small time difference between SEVIRI and ASTER retrieval and different emissivity 

retrieval algorithms used in both products cannot be excluded. 

In general, the aggregated TIR parameters (ACP, tirpca) turned out to be the most suitable 

predictors for LST downscaling and the sets selected by expert knowledge outperformed the automatic 

feature selection methods. Furthermore, the smallest predictor sets also resulted in the smallest errors. 

The predicted HR LST then just is a linear combination of few patterns. Since these parameters are 

essentially all derived from measurements at a similar time (and hence similar heating patterns), the 

downscaling is likely to perform less well for different times of the day. Unfortunately, ASTER 

validation data is mostly restricted to one acquisition time. Only a few night-time acquisitions are 

available (during the case study observation period, the night-time retrieval completely failed).  

Heating patterns acquired during different seasons can be assumed to show comparable effects. 

Hence, the correlations between the ASTER LST and Landsat TIR data from different times of the 

year (also from different years) were investigated. In Figure 4 the correspondence between LST from 

ASTER and Landsat TIR (blue) as well as NDVI (green) from different days of the year are shown. 

The vertical line indicates the ASTER acquisition day and it can be seen that acquisitions from the 

same season have a higher R
2
 while the thermal patterns from winter acquisitions are substantially 

different. Hence, predictor sets of more than one pattern are expected to be more stable in order to 

produce heating patterns for different times of the day. 

NDVI predictors were expected to be suitable for the downscaling scheme. The correlation between 

single NDVI predictors and ASTER LST (see also Figure 4) in the case study was, however, 

significantly lower than the values from literature (for instance 0.7 in [36]). This is a result of several 

factors. First, a large time lag between LST and NDVI is responsible for different phenological 

conditions that have a major influence on LST (Figure 4 shows a strong seasonal dependency between 

the variance of ASTER LST explained by NDVI). An additional analysis revealed that the explained 

variance of the NDVI predictors with the respective TIR patterns of the same day is much higher  

(R
2
 = 0.36). Secondly, NDVI should not be linearly upscaled but recomputed from the upscaled red 

and NIR bands. Thirdly and most importantly, the low correlations of the different NDVI result from 
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the high fraction of water coverage in Hamburg. LST of the water bodies is largely dominated by their 

heat storage capacity as well as advection from upstream areas. For the given situation the water 

temperatures are lower than those of the vegetated areas. Conversely, water has a low NDVI like 

impervious surfaces (water bodies and adjacent sealed areas show LST deviations of more than 20 K). 

Hence, NDVI shows a much higher explained variance (e.g., R
2
 = 0.31 instead of R

2
 = 0.09 for scene 

#LT41960231989185XXX0) if the water pixels are excluded. Thus, we expect the fraction of active 

vegetation (besides those of impervious surfaces and water) to be a better LST predictor than NDVI. 

This is in agreement with Weng et al. [39], who argue that LST is more correlated to vegetation 

fraction than NDVI. 

Figure 4. Variance in ASTER LST data (day indicated by dotted line) that can be 

explained by Landsat data (TIR and NDVI) from different seasons.  

 

To answer the question which predictors are suitable for the downscaling scheme, the explained 

variances of single predictors in LR and HR were compared. The results are displayed in Figure 5. It 

can be seen that NDVI shows a much higher R
2
 in LR domain, which is again a consequence of the 

water bodies that cover only small proportions of single SEVIRI pixels. Hence, the basic assumption 

of the downscaling is not fulfilled for these predictors. Conversely, the ACP (red circles), the first TIR 

PC (magenta asterix at lower left), and soilseal (cyan, upper right) show very high R
2
 in both HR and 

LR, which are almost identical (indicated by black dotted line). Hence, they fulfill the basic 

assumption and are suitable predictors, which is in good agreement with their results in Table 1. The 

multispectral data partly suffers from the same problem as NDVI, while most of the morphological and 

heighstat features (besides the minimum height) and some of the additional TIR PCs explain only little 

variance. This leaves only a small number of the tested predictors that are really suitable. The same 

conclusion was also underpinned by an additional experiment with PCs calculated from the complete 

predictor set. The first PC, which explained about 52% of the overall variability, was only very weakly 

correlated to ASTER LST (R = 0.27) indicating that a large number of predictors are rather ineffective. 



Remote Sens. 2012, 4 3196 

 

Figure 5. Explained variance R
2
 of single predictors with LST in LR and HR. 

 

5. Conclusions  

This study demonstrates that it is possible to downscale land surface temperature (LST) for a factor 

of about 2,000. By this spatial improvement the resulting accuracy (root mean square error = 2.2 K) 

remained comparable to the accuracy of LST retrieved by geostationary satellites. The most suitable 

downscaling predictors are aggregated from thermal infrared data. A surprising outcome of the case 

study is that the normalized difference vegetation index failed to explain the LST variability. 

Eventually, we aim to achieve a time dependent downscaling scheme, which presupposes validation 

data from in situ measurements or thermography in high temporal resolution. Such complete diurnal 

cycles of LST at 100 m could be used to study the surface urban heat island and the specific thermal 

behavior of different urban morphologies, to validate mesoscale urban models and to derive material 

specific properties like thermal inertia. 
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