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Abstract: To estimate global gross primary production (GPP), which is an important 
parameter for studies of vegetation productivity and the carbon cycle, satellite data are 
useful. In 2014, the Japan Aerospace Exploration Agency (JAXA) plans to launch the Global 
Change Observation Mission-Climate (GCOM-C) satellite carrying the second-generation 
global imager (SGLI). The data obtained will be used to estimate global GPP. The rate of 
photosynthesis depends on photosynthesis reduction and photosynthetic capacity, which is 
the maximum photosynthetic velocity at light saturation under adequate environmental 
conditions. Photosynthesis reduction is influenced by weather conditions, and photosynthetic 
capacity is influenced by chlorophyll and RuBisCo content. To develop the GPP estimation 
algorithm, we focus on photosynthetic capacity because chlorophyll content can be 
detected by optical sensors. We hypothesized that the maximum rate of low-stress GPP 
(called “GPP capacity”) is mainly dependent on the chlorophyll content that can be 
detected by a vegetation index (VI). The objective of this study was to select an appropriate 
VI with which to estimate global GPP capacity with the GCOM-C/SGLI. We analyzed 
reflectance data to select the VI that has the best linear correlation with chlorophyll content 
at the leaf scale and with GPP capacity at canopy and satellite scales. At the satellite scale, 
flux data of seven dominant plant functional types and reflectance data obtained by the 
Moderate-resolution Imaging Spectroradiometer (MODIS) were used because SGLI data 
were not available. The results indicated that the green chlorophyll index,  
CIgreen(ρNIR/ρgreen-1), had a strong linear correlation with chlorophyll content at the leaf 
scale (R2 = 0.87, p < 0.001) and with GPP capacity at the canopy (R2 = 0.78, p < 0.001) 
and satellite scales (R2 = 0.72, p < 0.01). Therefore, CIgreen is a robust and suitable 
vegetation index for estimating global GPP capacity.  

Keywords: GCOM-C/SGLI; Vegetation index; Gross primary production; Photosynthesis; 
Chlorophyll content; Light-response curve; FluxNet 

 

1. Introduction 

Terrestrial ecosystems are major sinks in the global carbon cycle, sequestering carbon and slowing 
the increase in CO2 concentration in the atmosphere [1]. The amount of carbon removed from the 
atmosphere by vegetation via photosynthesis is the gross primary production (GPP). To understand 
vegetation activity, highly accurate estimation of GPP is important, and satellite remote sensing offers 
an efficient approach to estimate GPP globally. The Japan Aerospace Exploration Agency (JAXA) 
plans to launch the Global Change Observation Mission-Climate (GCOM-C) satellite carrying the 
second-generation global imager (SGLI) sensor in 2014 [2]. The SGLI sensor will observe seven 
spectral bands from the visible to the near infrared (NIR) with a spatial resolution 250 m for land area 
observations. The obtained data are planned to be used to estimate global GPP.  

Many studies have estimated GPP based on the concept of the light-use efficiency (LUE) model [3] 
using satellite data [1,4‒6]. In LUE models, GPP is calculated as the product of the maximum LUE 
(LUEmax), the reduction of LUEmax due to environmental stress [7‒9], the photosynthetically active 
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radiation (PAR), and the fraction of PAR absorbed by the plant canopy (FPAR). LUEmax, the stress 
factor, and leaf area index (LAI) estimations are crucial to the LUE model. The LUE concept has been 
applied to diagnostic models for estimating GPP, such as the Biosphere Model Integrating 
Ecophysiological and Mechanistic Approaches Using Satellite Data (BEAMS) [10], as well as 
machine-learning techniques in conjunction with remote sensing data and flux tower data [11,12]. 
Another approach includes process-based models such as the Boreal Ecosystem Productivity Simulator 
(BEPS) [13], the two-leaf process-based BEPS model [14], and the Breathing Earth System Simulator 
(BESS) [15]. The two-leaf process-based BEPS model is an hourly process-based diagnostic model 
that computes canopy-level GPP as the sum of sunlit and shaded leaf groups [14]. The BESS model 
couples atmospheric and land processes including leaf photosynthesis, stomatal conductance, and 
transpiration of the sunlit and shaded portions of vegetation and soil [15]. However, the BESS model 
includes a major source of uncertainty that originates from satellite-derived LAI [15]. Zhang et al. [13] 
demonstrated that process-based models that separate sunlit and shaded leaves perform better than the 
LUE model, in which LUEmax does not vary spatially and temporally. However, process-based models 
are more complex and require many parameters, whereas LUE models have the advantage of simplicity. 

GPP is affected by seasonal changes in the maximum velocity of carboxylation (Vcmax) [16‒19]. 
The plant physiological parameter of Vcmax is estimated using satellite-derived LAI. Therefore, it is 
worthwhile to directly extract the ecophysiological and physiochemical properties of vegetation from 
satellite data. To accomplish this, many vegetation indices (VIs) have been developed, such as those 
related to the chlorophyll content of a leaf or the canopy. One VI uses NIR and green reflectance 
to estimate the chlorophyll content of a rice canopy [20]. The photochemical reflectance index  
(PRI = [R531−R570]/[R531+R570]) [21] and the green ratio index (GRI = R830/R550) [22]) are used to 
estimate photosynthetic efficiency and capacity. VIs for estimating chlorophyll include the chlorophyll 
index, CI = R880/Rred-edge or green − 1 [23‒28]; the chlorophyll content index, CCI = D720/D700 (where Dx 
is the first derivative of reflectance at wavelength x [29]); the red-edge position index (REP) [30]; the 
medium imaging spectrometer (MERIS) terrestrial chlorophyll index (MTCI) [31], which incorporates 
the REP index; the Transformed Chlorophyll Absorption in Reflectance Index/Optimized Soil-Adjusted 
Vegetation Index (TCARI [32]/OSAVI [33,34]) [32], which is sensitive to crop chlorophyll 
concentration and is used to minimize soil background effects; and the modified chlorophyll 
absorption ratio index (MCARI [35]/OSAVI) [36]). The CIred-edge, CCI, PRI, GRI, TCARO/OSAVI, 
and MCARI/OSAVI are calculated from hyperspectral satellite sensor data such as those obtained by 
the Project for On-Board Autonomy (PROBA) satellite carrying a Compact High Resolution Imaging 
Spectrometer (CHRIS) and by the Earth-Observing 1 (EO-1) satellite carrying the Hyperion imaging 
spectrometer. These indices cannot be calculated from data retrieved by multispectral satellite sensors 
such as SGLI and MODIS.  

Gitelson et al. [26,37] showed that total canopy chlorophyll content in crops is closely related to 
midday GPP, and Wu et al. [38] demonstrated the green CI exhibits a linear relationship with 
chlorophyll content; incident LUE (GPP/PAR) in the morning, which is related to total chlorophyll in 
the canopy [38–40]; and seasonal changes of incident LUE [4]. Using the chlorophyll index and 
incoming PAR, GPP was successfully estimated from LANDSAT data for crops [41] using MODIS 
data for deciduous and evergreen forest sites [42]. This GPP estimation method assumed a linear 
relationship between incoming PAR and GPP. 
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Another global GPP estimation model that uses light-response curves has also been applied to VIs 
to estimate maximum photosynthesis under light saturation (Pmax) [43‒45]. These studies have 
suggested that the VI should be linear to maintain sensitivity over as wide a range of Pmax as possible 
and to facilitate scaling and extrapolations across regional and global resolutions. The model, however, 
did not include weather conditions and used only a single shape of the light-response curve 
representing temperate vegetation in Japan. Ide et al. [46] analyzed the light-response curve by 
including weather conditions in a larch forest in Japan. They determined daily Pmax and the initial slope 
from seasonal and short-term variations. The seasonal variations in Pmax and initial slope were 
correlated with the ratio VI (RVI) or enhanced VI (EVI). These two research approaches estimated 
GPP using the light-response curve to examine the relationship between GPP and the VI. However, for 
global GPP estimation, the relationship between Pmax and VI should be determined more widely in 
other main biomes. 

To estimate global GPP, photosynthesis of a single leaf is key. The leaf photosynthetic rate depends 
on photosynthetic capacity and photosynthesis reduction. Photosynthetic capacity is influenced by 
chlorophyll and RuBisCo (ribulose-1, 5-bisphosphate carboxylase/oxygenase) content [47]. 
Photosynthesis reduction is affected by microclimatic factors (i.e., air temperature and vapor pressure 
deficit) and stomatal opening and closing. The chlorophyll pigment absorbs light energy and converts 
it to chemical energy, and RuBisCo is an enzyme involved in the first major step of carbon fixation [48]. 
Chlorophyll pigment has the greatest chemical influence on a leaf’s spectral properties [49] and can be 
detected by an optical sensor [50]. However, photosynthesis reduction, which fluctuates in the short term 
(from seconds to minutes), is difficult to detect by an optical sensor alone and may require different 
techniques. Therefore, we focused on leaf chlorophyll content to estimate leaf photosynthetic capacity. 

At the canopy scale, photosynthetic capacity is the integration of single-leaf chlorophyll content and 
the total leaf area [51]. Recent research has suggested that it is better to consider leaf angle distribution 
in the analysis of canopy photosynthesis [16]. We considered canopy photosynthetic capacity as the 
integration of leaf photosynthetic capacity for the effective leaf area exposed to light. The effective 
leaf area varies due to canopy structure and leaf angle distribution. We hypothesized that the maximum 
canopy photosynthesis rate in low-stress conditions is mainly dependent on the total leaf chlorophyll 
content of the effective leaf area. The objective of this study was to select an appropriate VI to estimate 
global GPP capacity (photosynthetic capacity) based on the light-response curve concept using 
GCOM-C/SGLI data (note that SGLI data are not yet available).  

2. Methods  

2.1. VI for Estimating the Maximum Rate of Low-Stress GPP 

We defined the GPP under low-stress conditions as GPP capacity. The light-response curve under 
low-stress conditions using a rectangular hyperbolic function is described as: GPPୡୟ୮ୟୡ୧୲୷ሺPARሻ ൌ Pౣ౗౮ _ౙ౗౦౗ౙ౪౟౯ ൈ ן౩ౢ౥౦౛ൈPAR ሺଵା ן౩ౢ౥౦౛ ൈPARሻ ,    (1) 

where GPPcapacity (mg·CO2·m−2·s−1) is the low-stress GPP, Pmax_capacity (mg·CO2·m−2·s−1) is the 
maximum GPPcapacity under light saturation, αslope is a photosynthetic quantum efficiency representing 
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the initial slope of the light-response curve, and PAR (µmol·m−2·s−1) is photosynthetically active 
radiation (Figure 1).  

To apply satellite data for estimating GPPcapacity using Equation (1), αslope and Pmax_capacity should be 
determined. Leaf physiological research has revealed that the initial slope of the light-response curve 
depends on the efficiency of light conversion into fixed carbon [52] and the chlorophyll concentration. 
Furthermore, analysis of flux data has shown that the initial slope of a light-response curve derived 
from a non-rectangular hyperbolic function changes under different weather conditions; however, the 
initial slope and Pmax both exhibit a linear relationship with the same VI [46], suggesting that the initial 
slope and Pmax are linearly correlated. On the other hand, other studies have reported that Pmax is 
related to the amount of chloroplasts [53,54]. From these findings, we in order to reduce the number of 
parameters, we assume that αslope is a constant for each plant functional type. In addition, we assume 
that Pmax_capacity is related to the amount of chlorophyll. From this perspective, we examined the method 
and VI for estimating Pmax_capacity from satellite data. 

First, we examined spectral reflectance to select potential candidate VIs that show linear 
correlations with chlorophyll content from a set of VIs. Second, we studied the relationship between 
candidate VIs and Pmax_capacity of canopy light-response curves under low-stress conditions. Finally, the 
selected VI was validated. 

Figure 1. Canopy light-response curve. Low-stress global gross primary production 
(GPPcapacity) (mg·CO2·m−2·s−1) is the low-stress GPP, Pmax_capacity (mg·CO2·m−2·s−1) is the 
maximum GPPcapacity under light saturation, and αslope is photosynthetic quantum efficiency 
representing the initial slope of the light-response curve. 

 

2.2. Selection of Vegetation Indices (VIs) 

At leaf and canopy scales, we resampled spectral reflectance for the following spectral bands of 
GCOM-C/SGLI: blue ( blueρ ; 438–448 nm), green ( greenρ ; 520–540 nm), red ( redρ ; 663.5–683.5 nm), 

and NIR ( IRNρ ; 858.5–878.5 nm), as summarized in Table 1. At the satellite scale, we used data from 

the MODIS sensor on board the TERRA satellite (MOD09A1.005; 8-day land-surface reflectance). 
The wavelengths of TERRA/MODIS are summarized in Table 1. We used MODIS sensor data in this 
study because MODIS is the most similar sensor to SGLI in that both have a short repeat cycle (2‒4 
days), wide swath (>2,000 km), high radiance resolution, moderate spatial resolution (1 km/250 m), 
and spectrally similar bands. 

 

αslope  

GPPcapacity 
(mg·CO2·m−2·s−1) 

PAR 
(µmol m-2s-1)  

Pmax_capacity 
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Table 1. Global Change Observation Mission-Climate (GCOM-C)/ second-generation 
global imager (SGLI) and TERRA/MODIS spectral bands (showing only bands 1 to 4). 

  GCOM-C/SGLI   TERRA/MODIS   
Band Name Wavelength (nm) Width Wavelength (nm) Width 

ρblue 443 10 469 20 
ρgreen 530 20 555 20 
ρred 673.5 20 655 50 
ρNIR 868.5 20 858.5 35 

Gitelson et al. [50] suggested that chlorophyll concentration can be derived using reflectance at 
550 nm (ρgreen) and 675 nm (ρred). For low chlorophyll concentrations, the reflectance sensitivity is 
higher at the maximum absorption located around 675 nm (ρred). At medium to high concentrations, 
reflectance sensitivity is higher at 550 nm (ρgreen). Thus, we selected several VIs that may relate to 
chlorophyll content. Moreover, it better to select the VI which has the best linear relationship with 
chlorophyll content to estimate GPP at the global scale. Because the uncertainty involved in aggregating 
remote sensing data from smaller to larger spatial scales (up-scaling) is related both to non-linearity in 
the response function and to heterogeneity within a site. When the response is non-linear, conventional 
averaging of reflected radiation gives a biased estimate of photosynthesis [49]. Spectral reflectance 
data were used to calculate VIs as illustrated in the following Equations (2) to (8): 

(1) The NDVI [55] is the most widely used index for many vegetation applications. However, the 
NDVI has a saturation problem with very dense vegetation. 

NIR red

NIR red

ρ  - ρNDVI
ρ   ρ

=
+

 (2)  

(2) The enhanced VI (EVI) [56] is an improved VI that accounts for the effects of residual atmospheric 
contamination and soil background. The EVI reduces the saturation problem in various canopies.  

NIR red

NIR red blue

2.5(ρ  - ρ )EVI
(ρ   6ρ -7.5ρ 1)

=
+ +

  (3)  

(3) The modified NDVI (mNDVI) [57] was developed to eliminate the effects of surface reflectance 
by incorporating the blue band. This VI is more strongly correlated with total chlorophyll and 
eliminates the effect of surface reflectance. 

NIR red

NIR red blue

ρ  - ρmNDVI
ρ   ρ -2ρ

=
+

 (4)  

(4) The green and red ratio VI (GRVI) [58] was proposed as an index to monitor the 
photosynthetically active biomass of plant canopies. The GRVI is calculated from the visible green and 
red reflectance. 

green red

green red

ρ  - ρ
GRVI

ρ   ρ
=

+
 (5)  

(5) The simple ratio index (SR) [59] is probably the first index and is the most commonly used to 
derive LAI for a forest canopy. 
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(6) The green NDVI (GNDVI) [50] is a better VI at a higher LAI and is good at detecting chlorophyll. 
The GNDVI can detect a wider range of chlorophyll compared to the NDVI. 

(7) The green chlorophyll index (CIgreen) [25] is sensitive to a wide range of chlorophyll variation. 
CIgreen can estimate canopy chlorophyll content under a wide range of canopy conditions. 

NIR

green

ρCI 1green ρ
= −        (8) 

2.3. Data Sets 

To investigate relationships between VIs and photosynthesis capacity, data at three scales were 
used: leaf, canopy, and satellite scales. 

2.3.1. Leaf-Scale Data Set 

Data sets of the chlorophyll content (μg·cm−2) of 19 sampled leaves (minimum chlorophyll 
content of 0.88 μg·cm−2, maximum of 50.76 μg·cm−2, average of 16.08 μg·cm−2, standard deviation of 
14.56 μg·cm−2) were used, and reflectance data with a spectral range of 350 to 2,500 nm, were 
obtained from Furumi et al. [60] for 20 types of leaves measured in various states (fresh green, 
yellowish green, yellow, red, and dead leaves). 

2.3.2. Canopy-Scale Data Set 

Eddy covariance (EC) flux data and canopy spectral reflectance of broadleaf deciduous trees at a 
site in Takayama, Japan, were used. The EC flux data for 2003 and 2004 were used to calculate 
Pmax_capacity from the light-response curve. These data were downloaded from AsiaFlux 
(http://asiaflux.yonsei.kr/) and included the net ecosystem exchange (NEE; μmol·CO2·m−2·s−1), friction 
velocity (U*; m·s−1), photosynthetic photon flux density (PAR; mol·m−2·s−1), net radiation (Rn; 
W·m−2), air temperature (Tair; °C), relative humidity (Rh; %), soil temperature (Tsoil; °C), vapor 
pressure deficit (VPD; kPa), and precipitation (PPT; mm). Precipitation data were provided by the 
Institute for Basin Ecosystem Studies, Gifu University, Japan. Respiration, NEE, and GPP data were 
provided by the National Institute for Environmental Studies (NIES). The data had a time interval of 
30 min.  

For canopy reflectance, data measured by a hemispherical spectroradiometer (HSSR; MS-700,  
EKO Instruments Co., Ltd.) in 2004 were used. The HSSR had a spectral range of 350 to 1,050 nm  
and spectral interval of 3.3 nm. The data were downloaded from the PEN website  
(http://www.pheno-eye.org/) [61]. 

NIR

red

ρSR
ρ

=   (6)  

NIR green

NIR green

ρ  - ρ
GNDVI

ρ   ρ
=

+
 (7)
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Table 2. Description of the study sites representing seven plant functional types. 

Site Name CA-Let JP-TMK  JP-TKY  JP-Mase JP-FJY US-Dk1 TH-SKR 

(data year) 2002, 2003 2002, 2003 2003, 2004 2002, 2003 2003, 2004 003 2002, 2003 

City Lethbridge Hokkaido Takayama Tsukuba Yamanashi Nc Sakaerat 

Country Canada Japan Japan Japan Japan US. Thailand 

Latitude 49.709°N 42.737°N 36.146°N 36.054°N 35.454°N 35.971°N 14.492°N 

Longitude −112.940°W 141.519°E 137.423°E 140.027°E 138.762°E −79.093°W 101.916°E 

Plant Functional Types C3 grass, arctic NDT BDT,Temperate Crop NET,Temperate C3 grass BET,Tropical 

Dominant species Short/mixed grass  Japanese Deciduous Oak, Rice Japanese red  Tall fescue,C3 Dipterocarp 

  prairie (C3/C4)    Larch Birch   pine   grass and forbs   

Tree age (years)  - 45 50  - 90 1  - 

Elevation (m) 960 140 1420 13 1030 163 535 

Canopy height (m.)  - 16 15-20 1.2 20 0.1–1 35 

Flux measurement  4 27 25 3 25.4 3 45 

height (m)               

Annual  5.36 6.61 7.2 12.9 10.1 15.5 24.1 

avg. air temp. (°C)               

U* threshold (m/s)  0.2 0.3 0.5 0.1 0.12 0.2 0.2 

Reference Gilmanov et al. Hirata et al. Muraoka et al. Saito et al. Mizoguchi et al. Novick et al. Aguilos et al. 

  2005 2007 2005 2005 2012 2004 2007 

Plant Functional Types (PFTs) 1. NET, temperate = Needleleaf Evergreen Temperate Trees 2. NDT = Needleleaf Deciduous Trees 3. BET, Tropical = Broadleaf Evergreen Tropical Trees 

= 4.BDT,Temperate = Broadleaf Deciduous Temperate Trees, U* = friction velocity.  
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2.3.3. Satellite-Scale Data Set: EC Flux Data and MODIS Spectral Reflectance of Seven Plant 
Functional Types 

Seven EC flux tower sites were selected from Bonan, 1996 [62]. These sites correspond to seven of 
dominant plant functional types. We selected study sites on the basis of online availability and 
accessibility of necessary parameters. Details of each site are summarized in Table 2. The study sites 
were representative of C3 grass, arctic (CA-Let); needleleaf deciduous trees (JP-TMK); broadleaf 
deciduous trees, temperate (JP-TKY); crop-paddy fields (JP-Mase); needleleaf evergreen trees, 
temperate (JP-FJY); C3 grass (US-Dk1); and broadleaf evergreen trees, tropical (TH-SKR).  

All of the EC flux data were used to calculate Pmax_capacity using the light-response curve. The EC 
flux datasets were downloaded from the FluxNet project (http://daac.ornl.gov/FLUXNET/fluxnet.shtml) 
for the JP-Mase site, from AmeriFlux (http://public.ornl.gov/ameriflux) for the US-Dk1 site, from 
FluxNet Canada (http://www.fluxnet-canada.ca) for the CA-Let site, and from AsiaFlux 
(http://asiaflux.yonsei.kr/) for the JP-TMK and TH-SKR sites. For the JP-FJY site, original measurement 
data were downloaded from the Forestry and Forest Products Research Institute (FFPRI) [63]. 
Additionally, we used the level-2 product or original measurement data of AmeriFlux data to reduce 
errors that may arise in the gap-filling process. The downloaded data were the same parameters as 
those used for the canopy scale for JP-TKY. The time interval of the data was 30 min. 

All data for the year 2003 were used. To examine relationships between VIs and Pmax_capacity, 8-day 
composited level-3 global reflectance data from TERRA/MODIS (MOD09A1.005) with 500-m 
resolution were used. The datasets were downloaded from the Oak Ridge National Laboratory 
Distributed Active Archive Center (ORNL DAAC; http://daac.ornl.gov/MODIS/), which provides 
subsets of MODIS Land Products for any tower site in the global FluxNet network by area (from one 
pixel up to 201 × 201 km) and time period. From the subsets, one center pixel corresponding to the 
flux tower location was used. 

2.4. Data Processing 

Data processing included two main parts: the reflectance data process for calculating the VI and the 
photosynthetic capacity calculation processes. At the leaf scale, we analyzed the relationship between 
SGLI band reflectance and chlorophyll content. At the canopy scale, we analyzed the relationship 
between SGLI band reflectance and Pmax_capacity. At the satellite scale, we analyzed the relationship 
between MOD09A1 and Pmax_capacity. Pmax_capacity was calculated from EC flux data by fitting the  
light-response curve. 

2.4.1. Reflectance Data Process 

At the leaf and canopy scales, the reflectance was averaged over the wavelength interval of the SGLI 
sensor (Table 1) to calculate VIs. At the canopy scale, HSSR data between 10:20 a.m. and 10:40 a.m. 
(Terra overpass time) were averaged for 16-day periods. At the satellite scale, values of band 
reflectance and quality assurance (QA) descriptions of the surface reflectance data were extracted from 
the MOD09A1.005 data [64]. Only data with ‘no cloud shadow’ and ‘clear’ cloud-state flags were 
used; data flagged as ‘cloudy,’ ‘mixed,’ and ‘not set, assumed clear’ were excluded. We then averaged 
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8-day data to 16-day periods under the following conditions. If the cloud-state flag was ‘clear’ in both 
8-day periods, we used their average value. If ‘not clear’ appeared in only one dataset, we selected the 
8-day period with the clear-state flag. If ‘not clear’ appear in both datasets, we discarded both datasets. 

2.4.2. Photosynthetic Capacity Calculation Processes 

EC Flux Data Process for Selection of Low-Stress Data  

To identify criteria for selecting low-stress conditions, we investigated the diurnal change in net 
ecosystem production (NEP) by averaging half-hourly NEP over a 16-day period. We used a 16-day 
period to avoid strong confounding seasonal effects, to have a period long enough to provide sufficient 
data [65], and to decrease the number of spectral peaks and gaps captured in various types of 
ecosystem fluxes [66]. To find low-stress conditions, we then examined the VPD which is an 
important cause of the midday depression of net photosynthesis [67]. Therefore, we used half-hourly 
VPD averaged over 16-day periods to select low-stress conditions. The VPD threshold was determined 
when the midday depression of photosynthesis occurred in the diurnal NEP curve. Photosynthesis and 
midday depression [68] are shown in Figure 2, which categorizes pattern in the diurnal variation in 
photosynthesis into three types: (1) a single diurnal peak, which means that no stress occurs; (2) two 
diurnal peaks, which normally occur in nature; and (3) one peak with severe midday depression, which 
occurs mostly in drought areas. We used these three patterns to observe midday depression phenomena 
in the diurnal NEP curve.  

Figure 2. Three patterns of diurnal variation in net ecosystem production for the 
photosynthesis. Pattern 1: a single diurnal peak, indicating that no stress occurs; Pattern 2: 
two diurnal peaks, which is a common occurrence in nature; and Pattern 3: one peak with 
severe midday depression, which occurs mostly in drought areas. 

 
Pmax_capacity Calculation 

To draw the light-response curve, GPPcapacity data were plotted against PAR. GPP data are typically 
provided by the FluxNet project. When GPP data were not provided by a flux tower, we calculated 
GPP as a sum of NEP and ecosystem respiration (Rec). Rec was estimated using nighttime NEP as a 
function of air temperature. Appendix describes the Rec estimation in detail. Pmax_capacity and αslope were 
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by the arrow. In Figure 5(b), VPD at the time of the midday depression was around 2 kPa, as shown by 
the arrow. Figure 5(c) shows a midday depression for TH-SKR at around noon, indicating Pattern 2 
diurnal variation (Figure 2). In Figure 5(d), VPD at the time of the midday depression was around 2 
kPa. VPD values for all Japanese sites were less than 2 kPa (Figure 5(f)). Therefore, daytime GPP 
(PAR > 0) and VPD < 2 kPa (VPD threshold) were applied as GPPcapacity selection criteria for each 
study site. 

3.3. Canopy and Satellite Scales: Results for Broadleaf Deciduous Temperate Trees at JP-TKY  

3.3.1. Pmax_capacity of the Light-Response Curve from EC Flux Data 

To determine Pmax_capacity and αslope, the relationships between GPPcapacity and PAR were examined 
for broadleaf deciduous temperate trees at JP-TKY in 2003 and 2004, as shown in Figure 6, which 
illustrates the light-response curve of GPPcapacity. The lines represent the fitting curves of each 16-day 
period with αslope averaged over the growing season. In many cases, the fitted Pmax_capacity saturated in 
regions of unrealistically high PAR, such as 2,500 μmol·m−2·s−1. Thus, we fixed maximum PAR at 2,000 
μmol·m−2·s−1  and defined the maximum GPPcapacity when PAR = 2,000 μmol·m−2·s−1 as Pmax_capacity2000. 

Figure 6. Light-response curve of low-stress GPP (GPPcapacity) and PAR in broadleaf 
deciduous temperate trees (JP-TKY) in (a) 2003 and (b) 2004. Lines represent the  
least-squares fitting curve for each 16-day period. Dots in different colors indicate  
half-hourly data (no average) of each 16-day period of GPPcapacity. 

 

3.3.2. Relationship of VIs and Pmax_capacity2000 

The relationships between the five candidate VIs (CIgreen, EVI, NDVI, GNDVI, and SR) and 
Pmax_capacity2000 at the canopy scale are shown in Figure 7. All five indices exhibited strong correlations 

(a) JP-TKY 2003 (b) JP-TKY 2004 
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JP-Mase, and TH-SKR sites in 2002 and the JP-TKY and JP-FJY sites in 2004. Comparisons of 
estimated Pmax_capacity2000 and observed Pmax_capacity2000 with standard error bars are shown in Figure 11. 
Estimated Pmax_capacity2000 was obtained from the empirical equations in Table 4, and observed 
Pmax_capacity2000 was calculated from the flux data. Standard errors of estimated Pmax_capacity2000 were 
calculated from standard-error propagation of empirical relationships between CIgreen and 
Pmax_capacity2000. Standard errors of observed Pmax_capacity2000 were calculated from standard-error 
propagation of least-square fitting of the light-response curves. The standard errors of the estimated 
Pmax_capacity2000 from linear regression were larger than those of observed Pmax_capacity2000. Figure 11 
shows that the observed Pmax_capacity2000 values for all plant functional types were within the standard 
error of the estimated Pmax_capacity2000, especially in spring, when most of the plant functional types 
showed better matching. These results indicate that the CIgreen and empirical equations successfully 
estimated Pmax_capacity2000 for all plant functional types. For TH-SKR, only five periods are shown 
because most CIgreen data were affected by clouds. 

4. Discussion 

At the leaf scale, the results show that CIgreen has a strong correlation with variation in leaf 
chlorophyll content from a wide range of species and leaf development stages (Figure 4). This result 
agrees with that of Gitelson et al. [50], who demonstrated a wide range of leaf greenness and found 
that the maximum sensitivity of the reflectance coincides with green absorption. The green wavelength 
range was also reported to be superior for determining chlorophyll content in eight crops [69]. VI 
based on red reflectance (680 nm) was largely insensitive to variation in chlorophyll content. For most 
leaves, when light enters the upper surface of a leaf, blue light and red light are absorbed by 
chloroplasts near the irradiated surface, owing to strong absorption bands of chlorophyll in the blue 
and red regions of the spectrum. Because blue overlaps with the absorption of carotenoids, it is not 
generally used for estimation of chlorophyll content [57]. The green band wavelength of SGLI ranges 
from 520 to 540 nm, and the spectral reflectance around 520 nm is determined not only by 
chlorophyll-a and chlorophyll-b absorption, but also by carotenoid absorption [24]. However, the 
pigments contributing most to light absorption in the PAR region are those that are intimately involved 
in photosynthesis, namely, chlorophyll a and b and carotenoids [70]. Moreover, during the growing 
season as the chlorophyll content in leaves increases, the spectral features of carotenoids diminish 
owing to the strong and overlapping absorption by chlorophyll [71]. Therefore, the green band of SGLI 
can serve as a good representative wavelength for estimating leaf chlorophyll content. 

Because leaf chlorophyll content increases toward the middle of a leaf [48] and because green light 
penetrates deeper into the leaf, green reflected light is decreased by chlorophyll content absorption. 
Thus, green reflected light is very effective for detecting chlorophyll content and can represent leaf 
photosynthesis. To select an appropriate VI for estimating chlorophyll content, we chose CIgreen 
because NIR is insensitive to chlorophyll content and the ratio between the insensitive and sensitive 
bands can minimize the variations in leaf-scattering properties [72]. Furthermore, the reflectance of 
NIR and green wavelengths has a strong linear correlation with chlorophyll content [72‒74]. 
Therefore, CIgreen is suitable for estimating leaf chlorophyll content. 
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Yoder and Waring [75] found that the chlorophyll concentration of sun-exposed canopy was closely 
related to both leaf and canopy photosynthetic capacity in a Douglas fir canopy in a controlled 
environment. The correlation coefficient for sun-exposed canopy was higher than that for shaded 
canopy. Moreover, the NDVI calculated using a narrow green band (565–575 nm) was best correlated 
with photosynthesis potential under sunlight. Thus, it is possible to estimate the photosynthetic 
capacity of a sun-exposed canopy by integrating the leaf photosynthetic capacity. 

At the canopy and satellite scales, Pmax_capacity2000 was used instead of the canopy chlorophyll content 
because chlorophyll content within a vegetation canopy is positively related to the productivity of that 
vegetation [31]. To obtain Pmax_capacity from the light-response curve, some researchers have applied a 
non-rectangular hyperbolic equation [46,76–78] with three main parameters: initial slope, Pmax, and 
convexity. A non-rectangular hyperbola yielded a better fit than a rectangular hyperbola equation with 
only two parameters (initial slope and Pmax). However, we chose to use a rectangular hyperbola 
(Equation (1)) to obtain Pmax_capacity with constant αslope to simplify the methodology and minimize the 
number of parameters [79–82]. Our results demonstrate the applicability of the rectangular hyperbola 
using constant αslope for calculating Pmax_capacity2000 for each plant functional type.  

To estimate GPP at the global scale, we prefer the VI which has linear relation with chlorophyll 
content and Pmax_capacity2000. If we use the VI which has exponential relation with chlorophyll content 
and Pmax_capacity2000, it may cause big error in high chlorophyll content or Pmax_capacity2000 region. In big 
VI region, and with exponential form VI, small error of VI makes big error of chlorophyll content and 
Pmax_capacity2000. Therefore, we selected VIs that had linear correlations with Pmax_capacity2000. The CIgreen 
showed a strong linear correlation (R2 > 0.67) with Pmax_capacity2000 for each of the plant functional types 
and did not have saturation problems in various plant-canopy structures. Linear correlations between 
remote sensing-obtained VI values and GPP from local flux measurements were found in North 
American vegetation [83], evergreen needle leaf forests [84], deciduous broadleaf forests [85], and 
Amazon rainforests [86]. However, these studies did not use GPP in low-stress conditions and the 
linear regressions showed some scattered data [51]. 

In Figure 10, linear correlations were observed at every site except US-Dk1 and TH-SKR. US-Dk1 
has a spatial resolution problem with MOD09. US-Dk1 covers approximately 480 × 305 m, which is 
less than the MOD09 1-km spatial resolution [87]. Furthermore, the CIgreen range of 3.5–6.5 is 
relatively high for grassland, suggesting contamination by light reflected from surrounding evergreen 
and deciduous forests. Similarly, linear correlations were not found at TH-SKR, where CIgreen and 
large photosynthetic capacity changed less year-round. These results indicate that when canopy 
greenness is stable, other meteorological factors will play limiting roles for GPP [42]. The maximum 
and minimum of Pmax_capacity2000 at TH-SKR in 2003 were 1.37 and 0.94 mg·CO2·m−2·s−1, respectively. 
These results are consistent with those of Aguilos et al. [88], who reported that maximum and 
minimum values of the saturation point of photosynthesis (GPPmax) at TH-SKR in 2003 were 1.54 and 
0.82 mg·CO2·m−2·s−1, respectively. Tropical forests have the least seasonality in terms of carbon 
absorption, emission, and greenness [89]. JP-FJY is generally classified as a needleleaf evergreen 
forest, but seasonal changes in leaves occur. Our results agree with those of Ohtani et al. [90], who 
found that the seasonal change in LAI at JP-FJY ranged from 3 to 5. Needle-fall and expansion mainly 
occurred in November and May, respectively. The LAI increased rapidly in early May, reached a 
maximum in midsummer, and then decreased from September to November. Moreover, for further 
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global GPP estimation, we may use the same empirical linear equation for evergreen forest sites JP-
FJY and TH-SKR (Pmax_capacity2000 = 0.001 × CIgreen + 0.006; R2 = 0.44, P<0.01). 

Pmax_capacity2000 can be converted to the maximum incident LUE (GPP/PAR) as shown in Figure 10. 
Observed CI represents different growth states and is related to seasonal changes of incident LUE in a 
similar manner as for wheat [38]. This method has good potential for estimating seasonal changes of 
maximum incident LUE from CIgreen.  

Our Pmax_capacity2000 estimation concept is more similar to the greenness and radiation (GR) 
model [37,39,42] than to the LUE model. However, the framework for the estimation of GPPcapacity 
differs from those of both the GR and LUE models. The GR and LUE models assume a linear 
relationship between GPP and incident PAR or PAR during an integral time such as 1 day or 1 month. 
Our GPP capacity estimation framework introduced a non-linear relationship between photosynthesis 
velocity and PAR. Pmax_capacity was the parameter of the photosynthesis response curve (Equation (1)) 
and was estimated from CIgreen. Using this parameter, the photosynthesis response curve was 
determined. Using the response curve and PAR data, the velocity of GPPcapacity was estimated. For 
calculation of GPP during a particular time frame, integration of the velocity of GPPcapacity is required. 
Our GPPcapacity estimation framework is the differential form. 

Moreover, our approach coincides with that of Gitelson et al. [41], who discussed that uncertainty 
in their crop GPP estimation model (GPP ן VI × PARpotential) arose because of its failure to detect 
variation in GPP related to short-term (minutes to hours) changes in controlling factors that do not 
immediately affect crop chlorophyll content. And Hashimoto et al. [91] discussed that although annual 
mean LAI correlates well with annual GPP, seasonal LAI correlates poorly with seasonal GPP because 
it does not respond to short term stresses such as anomalous heat waves. Therefore, our approach using 
a VI to estimate GPP under the low-stress condition (GPPcapacity) is quite efficient. 

In the present study, we applied a VI to estimate canopy chlorophyll content of the effective leaf area 
exposed to light. The next step is to refine the effective leaf area by incorporating plant structural 
characteristics, such as leaf angle orientation and sunlit/shaded leaf and foliar clumping, which are 
important to GPP estimation because they affect light interception by leaves and light penetration into the 
canopy [16,17,92] and produce bidirectional reflectance effects in the canopy. In future studies, variation 
in the slope of the linear correlation between CIgreen and Pmax_capacity2000 for each plant functional type 
should be compared with results from a radiative transfer model that can predict the radiative transfer of 
solar energy or changes in leaf physiology as canopy profiles adapt to sunlight [75].  

5. Conclusion 

To accurately estimate the maximum rate of low-stress GPP (called “GPPcapacity”) based on the 
light-response curve, an appropriate VI was selected. The green chlorophyll index, CIgreen (ρNIR/ρgreen-1), 
had a strong linear correlation with chlorophyll content at the leaf scale and with GPPcapacity at the 
canopy and satellite scales. We demonstrated that CIgreen could capture seasonal changes and variation 
in photosynthesis patterns in six main plant functional types. Therefore, we consider CIgreen to be 
suitable for GPPcapacity estimation globally, especially for GCOM-C/SGLI satellite data. Nevertheless, 
CIgreen should be validated further in different areas and with other plant functional types [93] to test its 
robustness and sensitivity over a global range of vegetation conditions.  
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For implementation of GPPcapacity global estimation using GCOM-C/SGLI, we should first calculate 
CIgreen from satellite data and use the empirical linear equation from Table 4 to estimate the 
Pmax_capacity2000 (the maximum GPPcapacity when PAR = 2,000 μmol·m−2·s−1). The Pmax_capacity (the 
maximum GPPcapacity under light saturation) in Equation (1) should be calculated using Pmax_capacity2000, 
PAR of 2,000 μmol·m−2·s−1 and αslope (photosynthetic quantum efficiency) in Table 3 for each plant 
functional type. Then, GPPcapacity should be estimated with the PAR obtained by satellite using 
Equation (1). 

Additionally, in the future, the global GPPcapacity can be combined with vegetation stress maps to 
estimate global GPP. Stress maps may be calculated from environmental conditions such as the vapor 
pressure deficit, leaf water potential, and soil water content. We expect that our approach will be useful 
for improving the accuracy of global GPP estimations derived from satellite data. 
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Appendix 

GPP data derived from EC flux data were used to calculate Pmax_capacity2000. If GPP data were not 
available from flux projects, we could calculate GPP using respiration data [1]. 

Respiration (Rec) Estimation for the GPP Estimation 

GPP is calculated using the NEP data plus ecosystem respiration (Rec) as  

GPP = NEP + Rec(Tair), (A1)

where Rec is the plant respiration plus soil respiration as a function of air temperature (Tair). 
We determined the nighttime Rec [2], i.e., the nighttime NEE, as an exponential function of Tair and 

applied the function to the daytime data to estimate daytime Rec using the following simple 
exponential function:  

where A and B are empirical constants to be determined by regression, B is related to the temperature 
coefficient, and A is Rec at 0 °C.  

Equation (A2) is an empirical formula expressing the relationship between the Tair and Rec at sites 
measured by the EC method under nearly neutral atmospheric stability using U* filtering to avoid the 
flux underestimation on stable nights caused by friction velocity [1]. U* threshold values are  
site-specific values and are summarized in Table 2. The threshold values are 0.1 m·s−1 for JP-Mase [2]; 
0.12 m·s−1 for JP-FJY [3]; 0.2 m·s−1 for CA-Let [76], US-Dk1 [4] and TH-SKR [89]; 0.3 m·s−1 for  
JP-TMK [5]; and 0.5 m·s−1 for JP-TKY [6]. For JP-TMK, the respiration curve used the soil 
temperature at 5 cm, instead of Tair [5]. 

Respiration Curve  

GPP was calculated using the NEP daytime and respiration estimation results. To estimate 
respiration, the NEP nighttime data were used (NEP <zero). We excluded NEP nighttime data with 
more than zero precipitation because soil water may affect the respiration rate. Figure A1(a–f) shows 
the relationship between the nighttime NEP and Tair for CA-Let, JP-TKY2004, JP-Mase, JP-FJY, and 
TH-SKR, respectively. At the JP-TMK site [Figure A1(b)], we used Tsoil instead of Tair. The value of 
Rec had a significant positive correlation with Tair. The relationships were more exponential than 
linear, as shown in Figure A1. Figure A1 shows the least-square fitting lines for Tair or Tsoil and 
nighttime NEP with an exponential equation. The lowest Rec was found at CA-Let, which is located in 
the arctic zone [Figure A1(a)]. The highest Rec was at TH-SKR, which is located in the tropical zone 
[Figure A1(f)]. The relationship for the TH-SKR site was not good because we did not apply Van 
Gorsel’s filtering instead of U* filtering to obtain a better correlation [77]. 
  

Rec = A exp(B × Tair)   (A2)
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