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Abstract: Maximal light use efficiency (LUE) is an important ecological index of a 
vegetation essential attribute, and a key parameter of the LUE-based model for estimating 
large-scale vegetation productivity by remote sensing technology. However, although 
currently used in different models there still exists extensive controversy. This paper takes 
the Zoige Plateau in China as a case area to develop a new approach for estimating the 
maximal LUEs for different vegetation. Based on an existing land cover map and MODIS 
NDVI product, the linear unmixing method with a moving window was adopted to 
estimate the time-series NDVI for different end members in a MODIS NDVI pixel; then 
Particle Swarm Optimizer (PSO) was applied to search for the optimization of LUE 
retrievals through the CASA (Carnegie-Ames-Stanford Approach) model combined with 
time-series NDVI and ground measurements. The derived maximal LUEs present 
significant differences among various vegetation types. These are 0.669 gC·MJ−1,  
0.450 gC·MJ−1 and 0.126 gC·MJ−1 for the xerophilous grasslands with high, moderate and 
low vegetation fraction respectively, 0.192 gC·MJ−1 for the hygrophilous grasslands, and 
0.125 gC·MJ−1 for the helobious grasslands. The field validation shows that the estimated 
net primary productivity (NPP) by the derived maximal LUE is closely related to the 
ground references, with R2 of 0.8698 and root-mean-square error (RMSE) of  
59.37 gC·m−2·a−1. This indicates that the default set in the CASA model is not suitable for 
NPP estimation for the regional mountain area. The derived maximal LUEs can 
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significantly improve the capability of NPP mapping, and open up the perspective for  
long-term monitoring of vegetation ecological health and ecosystem productivity by 
combining the LUE-based model with remote sensing observations. 

Keywords: remote sensing; light use efficiency; CASA model; Zoige Plateau  
 

1. Introduction 

Light use efficiency (LUE) is an index that describes the efficiency of vegetation for fixing solar 
energy [1]. It is a key parameter of LUE-based models for modeling the vegetation productivity at 
regional to global scales [2–5], and is considered a constant, rather than a variable for certain 
vegetation types or even entire eco-regions. However, the maximal LUE currently used in these 
models still gives rise to extensive controversy [6], especially in the mountain area which is normally 
covered by high heterogeneous vegetation. Estimating the maximal LUE of vegetation is of great 
significance for mapping the NPP and diagnosing the long-time vegetation health conditions, and to 
further assist both relevant management and policy-making for protecting the ecological environment. 

Maximal LUE is an essential attribute of plants [7], however, at different scales, the comprehensive 
influences of plant physiological factors, species composition, climate and environment factors, may 
cause the LUE to show obvious spatial heterogeneity [8]. The maximal LUE of vegetation is mainly 
related to the chlorophyll content, species, leaf age, light intensity, and growth stages at the leaf scale. 
While at the canopy scale, many factors such as leaf area index (LAI), leaf inclination angle, solar zenith 
angle, observation angle and canopy structure may influence the LUE [9]. When applying  
remote-sensed data to estimate NPP at the regional scale, the differences of LUEs among dissimilar 
vegetation types cannot be ignored [10,11]. Similarly, at the global scale, according to the modeling 
results by coupling atmospheric CO2 observation, satellite remote-sensing and atmospheric radiation 
transfer models, it has been observed that with the maximal LUE of vegetation there also exists 
obvious geographical differences [12]. Methods of acquiring maximal LUE include the biomass survey 
method [13], the light quantum efficiency reckoning method [14], the eddy covariance technology 
reckoning method [15], and the productivity model inversion method [16], etc. A lot of previous 
research studied LUE difference through site-based measurements [17–19]. While in-situ 
measurements, especially on complex terrain surface, introduced significant bias when scaling up to a 
large spatial size [6,20]. In recent years, some progress has been made using the photochemical 
reflectance index [21–24]. However, the high sensitivity of this index to various extraneous effects such 
as canopy structure and view observer geometry has so far prevented its use at landscape scales [24].  

Deriving the maximal LUE through LUE-based models is an effective alternative, and has been 
extensively applied because of its simple mechanism, fewer required physiological and ecological 
parameters, and easy combination with the remote-sensing data [10,11]. The satellite remotely sensed 
data has a relatively continuous sequence in time and space, and the Normalized Difference Vegetation 
Index (NDVI), a spectral index linearly related to the fraction of the photosynthetically active radiation 
(400–700 nm) intercepted by the canopy [25], has proven to be a proxy for the status of the 
aboveground biomass at the landscape level. It is usually applied as the key input parameter for driving 
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the LUE model, such as the CASA model, in which NDVI is used to compute the light absorption 
proportion of vegetation [26]. However, when retrieving the LUE through the CASA model, the effect 
of the pixels mixed by different vegetation types increases the uncertainty [27], and it is most 
obviously shown in moderate- and low-resolution spatial resolution images, such as the time-series 
NDVI products of MODIS [28].  

Over years, researchers have explored the spectral imaging mechanisms and the spectral mixing 
process, and have developed various unmixing methods such as the linear unmixing method [29], the 
probability unmixing method [30], the geometric optics unmixing method [29], and the random 
geometric unmixing method [29], etc. However, unmixing of mixed pixels in previous works is mostly 
based on the spectral reflectivity of various bands of multi-spectral images, and the number of bands is 
generally required to be more than the number of endmember components. Such methods are normally 
faced with the limitation for determining endmembers. The time-series NDVI unmixing is a method 
for decreasing the spatial dimension with temporal information. The main idea of it is to unmix the 
time-series NDVI of mixed pixels into the time-series NDVI of some specific land-cover 
components [31], which can integrate the time phase information of multi-temporal images to derive 
the time-series NDVI of different endmember components, and finally reduce spectral information 
variation brought about by mixed pixels. 

In this paper, taking the grassland-wetland ecosystems on the Zoige Plateau in China as a case, we 
attempt to propose an approach for directly estimating the maximal LUE for different vegetation types 
based on the CASA model through spectral unmixing analysis of time-series NDVI combined with 
ground measurements. The specific objectives of this paper are to (1) explore whether unmixing of 
time-series NDVI can improve the accuracy of maximal LUE inversion and (2) identify whether there 
is significant difference among the maximal LUE of different vegetation types at the landscape level.  

2. Material and Methods 

2.1. Study Area  

The Zoige Plateau is located at the eastern edge of the Tibetan Plateau in China, with typical 
character of both mountain and plateau. It is the largest alpine peat swamp area in the world [32,33], and 
also a water conservation area of the upper reaches of the Yangtze River and the Yellow River  
(Figure 1). Several national natural reserves have been established in this area to serve as functions for 
ecological conservation [34]. This paper takes the administrative Zoige county as a case area which is 
a core and typical region on the Zoige Plateau (Figure 1). The study area is mainly covered by 
herbaceous vegetation including alpine meadow and aquatic plants with obvious ecological 
vulnerability. In recent years, the desertification of grasslands and the shrinking of wetlands have 
become more and more serious, directly due to the influence of human activities such as excessive 
grazing, and land reclamation through digging drainage for the  wetlands [35]. 

Weather in the Zoige Plateau is cold and relatively wet, with an annual mean temperature of 0.7 °C 
to 3.3 °C [32]. Due to good atmospheric transparency, radiation on the Plateau is very strong, and the 
diurnal range of air temperature is large, with a range of 15 °C to 16 °C. The phenophase of 
hrebaceous plants in this area varies significantly for different vegetation types. The growing period is 
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roughly divided into five sections: turning green (26 March to 16 April), leaf expansion (2–16 May), 
stem extension (30 June to 16 July), blossom (14 July to 27 July), grain filling and maturation  
(8–24 August) [36]. Because of the complex vegetation community on the Zoige Plateau, it is 
representative and suitable for the study of LUE spatial variability at the landscape scale. 

Figure 1. Location of study area, and the spatial distribution of field sample plots.  

 

2.2. Data and Processing  

2.2.1. Remote Sensing Data 

This study applies the MODIS MOD13Q1 NDVI product with a spatial resolution of 250 m as the basic 
remote sensing data. It is derived by the 16-day Maximum Value Composite (MVC) method [37], and thus 
contains 23 temporal NDVI images in a year. The product in 2009 is collected from the data access 
URL: https://lpdaac.usgs.gov/lpdaac/products/modis_products_table. Because the study area is located 
at the Plateau which is characterized by a lot of cloud, ice or snow cover, the time-series NDVI 
product is reconstructed by the Savitzky-Golay filter to reduce noise and improve data quality for 
subsequent analysis. For the data process method refer to our previous publications [38–40]. One scene 
of a Landsat-5 image acquired in a clear sky condition on 28 July 2009 (path/row: 130/37) was 
collected from the International Scientific Data Service Platform (http://datamirror.csdb.cn/). It was 
applied as the reference for validating the unmixing results of MODIS time-series NDVI. The 
acquisition date is around the blossom period of grasses on the Zoige Plateau. The preprocess software 
developed by the LEDAPS program [41] was adopted to acquire the surface reflectance, which is then 
used to calculate the NDVI of TM.  

An existing land cover map with the spatial resolution of 30 m (Figure 2) is also used to calculate 
the fractional cover of each endmember in the pixels of MODIS NDVI. It is derived from TM images 
and auxiliary data such as DEM and time-series NDVI by the matter-element fuzzy decision-making 
classifier, with an overall precision of 89.89% [42]. The grassland vegetation is classified into five 
cover types including hygrophilous grass, helobious grass, high-coverage xerophilous grass,  
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middle-coverage xerophilous grass, and low-coverage xerophilous grass. Helobious grasslands are 
located in shallow water or moisture saturated soil, where dominant plant communities include marsh 
plants and aquatic plants such as Carex-like plants, Potamogeton-like plants, Utricularia-like plants, 
Phragmites, etc. Hygrophilous grasslands are distributed widely on the Zoige plateau, and grow 
mainly in moist soil conditions. Their dominant plant communities include Kobresia-like plants, 
Carex-like plants, Parnassia-like plants, Poa pratensis-like plants, etc., with a relatively low 
fragmentation (Figure 2). Xerophilous grasslands are the widest distributed grass cover in this area. 
Their dominant plant communities include Kobresia-like plants, Potentilla-like plants, Elymus-like 
plants, Deyeuxia-like plants, Festuca-like plants, Leontopodium-like plants, Ranunculus-like plants 
and so on [43]. Low-, middle- and high coverage defined here is coverage of 5–20 percent,  
20–50 percent and more than 50 percent respectively. 

Figure 2. Land cover map of the Zoige County. The left part is the overall map and its 
legend, and the right part is an enlarged map in the black box of the left part, reflecting the 
detailed vegetation cover of the wetland transition zone.  

 

2.2.2. The Meteorological Observations 

The meteorological data used here include precipitation, average air velocity, average atmospheric 
pressure, average temperature, relative humidity, minimum temperature, maximum temperature, 
sunshine hours, and solar radiation, which are provided by the Meteorological Information Center of 
the China Meteorological Administration. These observations need to be rescaled to the 16-day 
composited data from daily observations, so as to match the temporal scale of MODIS NDVI. There 
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are more than 700 meteorological observation stations in China, while just 122 of them supply solar 
radiation data, and there is no radiation station located inside the study area. Zhang [44] once pointed 
out that the downward radiation of a ground-based observation can just represent the area of no more 
than 10 km2 in the plain area. Using site-based observations to substitute or interpolate contiguous 
surface radiation l causes great errors. In this paper, combining the meteorological observation station 
network with DEM data, we applied an optimized Ångström-Prescott model [45,46] to model the 
global solar radiation at the rugged area. The derived contiguous global solar radiation on the Zoige 
Plateau was validated by situ-measurement, and the accuracy reached 81.66 percent (Figure 3).  
The relevant study will be reported in another paper. 

Figure 3. The validation of the estimated global surface radiation (GSR) by station-based 
observation.  

 

2.2.3. The Ground Measurements 

The growing season of plants on the Zoige Plateau lasts from May to August. The grasses usually 
accumulate the maximum biomass and then wither around mid-September. The field sampling 
measurements were conducted in September 2009. A total of 56 sample plots (with an approximate 
sampling distance more than 1,000 m) were harvested according to the regional random sampling 
theory [47] and the stratified sampling method. The size of a sample plot is designed as 100 m × 100 m. 
Most sample plots are located at a relative flat surface covered with a single vegetation type with an 
area more than 500 × 500 m2. Such sampling design can ensure a sample plot to cover at least one 
complete MODIS pixel. The spatial distribution of the sample plots is shown in Figure 1. In each 
sample plot, we randomly selected six quadrats with a size of 1 × 1 m2, and harvested the aboveground 
grass in the quadrats. The harvest biomass is first dried and then converted into NPP by an empirical 
coefficient of 0.475 [48,49], which means about 47.5 percent NPP will be sequestrated into the 
aboveground biomass. The average value of the six quadrats is assigned to the sample plot. The 
statistics of field-measured NPPs are listed in Table 1.  
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Table 1. The statistics of field-measured net primary productivity (NPP) (gC·m−2·a−1) for 
different vegetation covers in the Zoige Plateau wetlands (N: the number of field plots). 

Vegetation Cover Type Mean Std.error Maximum Minimum N 

High-coverage xerophilous grassland 497.80 30.14 532.00 416.10 12 
Middle-coverage xerophilous grassland  314.16 48.76 378.10 220.00 8 

Low-coverage xerophilous grassland 87.95 41.15 134.90 23.75 12 
Hygrophilous grassland 140.36 70.78 233.22 33.25 16 

Helobious grassland 86.62 43.17 152.00 28.50 8 

2.3. Model Development  

The overall approach is algorithmically divided into two parts: the time-series NDVI unmixing and 
the LUE inversion. The overall flowchart is designed as shown in Figure 4. Combining with an 
existing land cover map with a 30 m spatial resolution (Figure 2), we adopt a time-series unmixing 
method with a moving window to reconstruct the time-series NDVI of each endmember. The LUE 
inversion models are then established to invert the maximal LUEs for different vegetation types. The 
process includes deriving the input parameters of the CASA model and setting an objective function 
for the LUE inversion. The Particle Swarm Optimization (PSO) method is used to search for the 
optimum solution until the objective function meets the convergence conditions.  

Figure 4. Overall flowchart of the approach development.  
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2.3.1. The Time-Series NDVI Unmixing 

In some earlier studies e.g., [50,51], it was supposed that the time-series NDVI of a mixed pixel 
was the linear combination of different vegetation components in that pixel. Combined with a given 



Remote Sens. 2012, 4 3864 
 

 

land cover map, the NDVI of each endmember can be estimated by the linear unmixing method. The 
time-series NDVI of a mixed pixel can be expressed as follows [28]:  

1
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where NDVI(i,t) is the NDVI value at time t of the ith pixel, fc(i,c) is the area ratio of the cth 
vegetation in the ith pixel, NDVI ( , )i c t  is the NDVI mean value at time t of vegetation cover c in the ith 

pixel, k  is the number of vegetation types in the ith pixel and e(i,t) is the residual error of NDVI linear 
combination of pixel i.  

The linear unmixing method needs to meet the assumption that spectral properties of a land cover 
type do not show great variations [52]. Therefore, this study uses a moving window in the time-series 
NDVI unmixing. The window size should satisfy two conditions: (1) the window size should be small 
enough to meet the above assumption and (2) the window should contain sufficient mixed pixels to 
construct an over determined linear function. Based on the heterogeneity of land cover types, the 
window with size of 5 × 5 pixels is determined. The unmixing of time-series NDVI of N pixels in a 
moving window then can be expressed in the following linear equation set:  
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where NDVI(i,t) is the NDVI value at time t of the ith MODIS pixel within the 5 × 5 window, N is 
equal to 25, fc(i,c) is the area ratio of the cth vegetation in the ith pixel, which is aggregated from the  
land-cover map with a resolution of 30 m into 250 m. The other parameters are the same as the ones in 
Equation (1). 

2.3.2. Derivation of the Input Parameters for the CASA Model 

The CASA model is a typical light use efficiency model that integrates the vegetation intrinsic 
attributes with the environmental conditions [26,53]. In this model, NPP can be expressed as a function 
of the absorbed photosynthetically active radiation (APAR) by vegetation and actual LUE (ε) [26]:  

( , ) ( , ) ( , )NPP x t APAR x t x tε= ×  (4)

And, the APAR (x, t) can be calculated by:  

( , ) ( , ) ( , ) 0.5APAR x t SOL x t FPAR x t= × ×  (5)

where SOL(x,t) refers to the global solar radiation of pixel x during the time t, and FPAR(x,t) is the 
fraction of Photosynthetically Active Radiation (PAR) absorbed by the plant canopy. Within a certain 
range, linear relations exist between FPAR and NDVI, which can be determined by the maximum and 
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minimum values of NDVI of certain vegetation types together with the corresponding maximum and 
minimum values of FRAR:  

,min
max min min

,max ,min

( ( , ) )
( , ) ( )
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i i

NDVI x t NDVI
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−
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where NDVIi,max and NDVIi,min correspond respectively to the maximum and minimum values of NDVI 
of the ith vegetation cover. The input data NDVI(x,t) in Equation (6) is the output result of the  
time-series NDVI unmixing.  

In ideal conditions, vegetation has the maximal LUE. However, the LUE under real conditions is 
always influenced by temperature and moisture. Their relationship can be expressed as: 

( , ) ( , ) ( , ) ( , )1 2 maxx t T x t T x t W x tε εε ε ε= × × ×  (7)

where εmax is the maximal LUE, and the default set of εmax in the CASA model (ε0) is assigned to a 
constant value of 0.389 gC·MJ−1, Tε1(x,t) and Tε2(x,t) represent the stress effects of temperature upon the 
LUE, and Wε(x,t) is the water stress influence coefficient. For the detailed equations and models for 
calculating the parameters of temperature and moisture stress refer to the relevant literature [26,54,55]. 

2.3.3. Objective Function of the LUEs Inversion 

Combined with the CASA model, the objective function for assessing the error of model-derived 
NPP is designed as follows: 

2

1
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kn

k j j
j

E NPP NPP rε
=

= −∑  (8)

where Ek represents the squared error between the ground-measured NPP(r) and the CASA  
model-derived NPP(ε) for the kth endmember, nk represents the numbers of field sample plots of the  
kth endmember. NPP(ε) can be considered as a function of the priori maximal LUE(ε), NDVI of 
endmembers, and model-required meteorological observations (Equations (4–7)).  

When Ek reaches the minimum value, the output εk is the optimum maximal LUE of each 
endmember. The function can be express as: 

))min(E(E kk →= εε k  (9)
where the convergence conditions of Equation (9) are designed as: Ek less than 5 or the maximum 
iteration times less than 2,000.  

The Particle Swarm Optimizer (PSO) is used to search for the global optimum solution of  
Equation (9). The PSO is a population-based stochastic optimization technique developed by Kennedy and 
Eberhart [56], inspired by social behavior of bird flocking. Compared with genetic algorithms, all the 
particles tend to converge to the best solution quickly even in the local version, in most cases. 

2.3.4. Model Assessment 

The derived models are evaluated using cross-validation, a technique for deriving relatively 
independent accuracy estimates when only limited reference samples are available for model 
development [57]. A four-fold cross-validation method is used to validate the prediction of the derived 
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maximal LUE through the CASA model for “unknown data”. The NPP of field samples are divided 
into four subsets. Three of the subsets are used as training datasets to estimate the maximal LUE 
through Equation (9), and the remaining one is used to test the model-derived NPP by Equation (4) 
using the estimated maximal LUE. The testing procedure is carried out four times until every subset 
has been tested. Model performance is measured by the agreement between the modeling results and 
the actual field measurements. For each model, we calculate a R2 value and a root mean square of the 
difference (RMSE) following standard statistical textbooks.  

3. Results and Analysis  

3.1. Unmixing of the Time-Series NDVI  

The unmixing of the time-series NDVI has varying degrees of improvement for different land 
covers. In Figure 5, TM NDVI is taken as the reference to validate the unmixing results of time-series 
NDVI. Comparing to the original MODIS product, the mean NDVIs of unmixing results are closer to 
those of TM data for most land covers. This indicates that time-series unmixing can improve the NDVI 
accuracy. NDVI of helobious grassland is the lowest among the grassland covers, which indicates that 
helobious grassland has relatively low greenness. The unmixing gives NDVI of helobious grassland 
3.96 percent lower than its original value of MODIS. For hygrophilous grasslands, the difference of 
NDVI between TM and MODIS is small and the unmixing only makes the NDVI 1.6 percent lower 
than its original value of MODIS. Meanwhile, the unmixing causes 4.04 and 2.24 percent decrease of 
the original NDVI of MODIS respectively for low- and middle-coverage xerophilous grasslands.  
High-coverage xerophilous grasslands are more contiguous (Figure 2) and their high coverage can 
decrease the impact of background. As a result, the unmixing process presents no obvious 
improvement for high-coverage xerophilous grasslands. 

Figure 5. The comparison between the mean NDVI of TM, MODIS, and the unmixing 
result in 28 July 2009 for different land covers, including (a) open water, (b) urban or  
built-up land, (c) barren land, (d) peat land, (e) helobious grassland, (f) hygrophilous 
grassland, (g) low-coverage xerophilous grassland, (h) middle-coverage xerophilous 
grassland, and (i) high-coverage xerophilous grassland.  
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Among the non-vegetation covers, NDVI of open water is the lowest, and the difference between 
TM and MODIS is the largest. The mean NDVI of open water is −0.107 in TM while 0.458 in 
MODIS. The land cover map shows the open water is often mixed with the vegetation cover or peat 
land, simultaneously, the same results are also obviously found in urban or built-up land and barren 
land (Figure 2). The urban area of Zoige county is approximate 2.3 km2, which just covers about  
37 pixels in MODIS; the barren land scatters and mainly distributes in the bealock and windward 
slopes, or along the ancient riverbed. It results from grassland degeneration and desertification that is 
caused by overgrazing or marsh drainage [58]. Comparing to TM images, more pixels of MODIS 
images in urban or barren land area are combined with grasslands, and NDVI of those pixels are 
impacted by the surrounding land covers. As a result, the unmixing has improved the NDVI quality for 
barren land and building land (Figure 5). Peat land distributes widely on the Zoige Plateau. It is the 
largest concentrated area of plateau peat swamp in the world, and mainly concentrates in the river 
terrace or the surrounding of lakes or the low-lying areas (Figure 2), with the low degree of 
fragmentation [32]. As a result, there is no significant change on the NDVI unmixing for peat land.  

3.2. The Derived Maximal LUEs 

According to the time-series NDVI unmixing results, FPAR and APAR of each vegetation cover 
are calculated through the Equations (5) and (6). Using the meteorological data and field 
measurements, the maximal LUEs of different vegetation are derived through CASA model combined 
with the optimizing objective Equation (8). Since the number of field sample plots is limited, a  
four-fold cross-validation is used to test the inversion results. Table 2 shows the derived maximal LUE 
of different vegetation covers without and with time-series unmixing in the study area.  

Table 2. The derived maximum light use efficiency (LUE) (gC·MJ−1) of different 
vegetation covers on the Zoige Plateau.  

Vegetation Cover 
Maximal LUE without Unmixing Maximal LUE with Unmixing 

Minimum Maximum Optimum Minimum Maximum Optimum 
High-coverage  

xerophilous grassland 
0.652 0.696 0.669 0.951 0.988 0.982 

Middle-coverage  
xerophilous grassland 

0.440 0.452 0.450 0.502 0.654 0.615 

Low-coverage 
xerophilous grassland 

0.117 0.149 0.126 0.141 0.200 0.144 

Hygrophilous grassland 0.170 0.223 0.192 0.235 0.304 0.267 
Helobious grassland 0.106 0.136 0.125 0.128 0.178 0.153 

Without the time-series unmixing, the estimated maximal LUEs of high-coverage xerophilous 
and moderate-coverage xerophilous grassland are 0.669 gC·MJ−1 with variation range of  
0.652–0.696 gC·MJ−1, and 0.450 gC·MJ−1 with variation range of 0.440–0.452 gC·MJ−1 respectively 
(Table 2). They are both higher than the original set in the CASA model (0.389 gC·MJ−1). The optimal 
estimated maximal LUE of low-coverage grassland, hygrophilous grassland and helobious grassland 
are 0.126 gC·MJ−1, 0.192 gC·MJ−1 and 0.125 gC·MJ−1 respectively (Table 2), and all lower than the 
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default in the CASA model. Simultaneously, Table 2 shows that the inversion results of LUEs from the 
NDVI unmixing of each endmember are relative higher than the results estimated by the original 
MODIS NDVI, especially for high-coverage grassland. A similar result is also found in previous 
literature [7,11], which implies that it likely be the consequence of different spatial scales. 

Peng et al. [59] and Zhu et al. [60] reported that the maximal LUE used in the CASA model might 
be different from the default set for different vegetations in China, which can also be strongly 
supported by the findings of this paper. From the results, the maximal LUEs of high-coverage and  
moderate-coverage xerophilous grassland are similar to those in the study of Running et al. [50] (the 
maximal LUE of grassland is 0.608 gC·MJ−1). The maximal LUEs of hygrophilous and helobious 
grasslands as well as their simulated NPPs are both relatively low (Table 2), which is consistent with 
the field-measured biomass. Nevertheless, researches of LUE on hygrophilous and helobious 
grasslands have not been seen so far in the literature.  

3.3. Accuracy Evaluation 

To evaluate the accuracy of the derived maximal LUE, the default set of the CASA model, the 
derived maximal LUEs with and without the time-series NDVI unmixing are separately utilized to 
estimate the NPPs for different vegetation covers. As shown in Figure 6(a), using the single default set 

of the CASA model, the simulated NPPs of sample plots differ greatly from the field measurements, 
with R2 of about 0.0014 and RMSE of 164.45 gC·m−2·a−1. The model-derived NPPs for all vegetation 
types are in the range of 418.81–550.59 gC·m−2·a−1, and cannot reflect the spatial heterogeneity of 
vegetation cover on the Zoige Plateau. However, using the optimization of maximal LUEs for different 
vegetation cover, the consistence between the model-simulated NPP and the field-measured NPP is 
improved significantly with R2 of 0.8698 and the RMSE of 59.37 gC·m−2·a−1 (Figure 6(b)). This 
indicates that the derived maximal LUEs are better than the default set in the original CASA model 
which is normally used to estimate NPP at the global scale. Although Table 2 shows that the  
time-series NDVI unmixing affects the results of LUEs inversion, the unmixing has no improvement 
for NPP estimation compared with the method without the time-series NDVI unmixing, with R2 of 
0.8255 and the RMSE of 68.73 gC·m−2·a−1 (Figure 6(c)).  

On the whole, the simulated NPPs with NDVI unmixing are lower than those without NDVI 
unmixing (Figure 7(f)), although the unmixing increases the value of derived LUEs (Table 2). Figure 5 
shows that unmixing decreases the value of NDVI, and makes it closer to the NDVI of TM. Because 
FAPAR has a positive linear relationship with NDVI [61,62], FAPAR and APAR will also decrease 
along with NDVI. According to the Equations (4–6), the simulated results of NPP reflect the unmixing 
results of NDVI. This implies that the derived NPPs by the LUE-based model and remotely sensed 
NDVI are more sensitive to NDVI than to the maximal LUE. The analysis also further verifies that, as 
well as calibrating the maximal LUEs for different vegetation cover, the unmixing of time-series 
NDVI or obtaining NDVI with higher spatial resolution is very important for regional NPP mapping. 
However, the unmixing method used in this paper also shows the different consequences for NPP 
estimation for different vegetation cover. Middle-coverage xerophilous grassland (Figure 7(b)),  
Low-coverage xerophilous grassland (Figure 7(c)) and Hygrophilous grassland (Figure 7(d)) present 
similar trends to the overall regional NPP estimation (Figure 7(f)), while Helobious grassland has the 
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opposite consequence (Figure 7(e)). But for High-coverage xerophilous grassland, the simulated NPP 
with time-series NDVI unmixing has no consistence with ones without time-series NDVI unmixing 
(Figure 7(a)). This also implies that the unmixing may introduce significant error into NPP estimation, 
especially for those vegetations with homogeneous and high coverage.  

Figure 6. Comparison between the model-simulated NPP and the field-measured NPP (a), 
using the original CASA model directly with no optimization, (b) using the derived LUEs 
of different vegetation covers without time-series NDVI unmixing, and (c) using the derived 
LUEs of different vegetation cover with the time-series NDVI unmixing.  

 

Figure 7. Comparison between model-simulated NPPs without time-series NDVI 
unmixing (x axis) and ones with time-series NDVI unmixing (y axis) for different 
vegetation cover, (a) for High-coverage xerophilous grassland, (b) for Middle-coverage 
xerophilous grassland, (c) for Low-coverage xerophilous grassland, (d) for Hygrophilous 
grassland, (e) for Helobious grassland, and (f) for all vegetation cover.  

 

(a)       (b)     (c) 
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4. Discussion 

Combining remote sensing data with ground measurements, this paper proposed an approach to 
retrieve the maximal LUEs for different vegetation cover on the Zoige Plateau. The results show that 
the derived maximal LUEs for different vegetation cover differ significantly from each other at pixel 
level. The maximal LUE of high-coverage xerophilous grassland reaches almost five-fold of that of 
helobious grassland (Table 2). Even for the same vegetation cover type, the maximal LUE also 
fluctuates within a certain range (Table 2). It indicates that heterogeneity of vegetation and mixed pixel 
of remote sensing data can influence the accuracy of LUE inversion. Simultaneously, Figure 6(a) also 
illustrates that setting the maximal LUE as a single default value will cause very low R2 and high error, 
however, the accuracy is improved significantly when using the different maximal LUE for each 
vegetation type (Figure 6(b,c)). This indicates that the difference of the maximal LUE of different 
vegetation types needs be taken into consideration when using remote sensing data and LUE-based 
models to simulate NPP. The analysis also implies that the derived NPPs by LUE-based model and 
remotely sensed NDVI show more sensitivity to NDVI than to the maximal LUE, therefore, the land 
cover map with high resolution is useful for time-series NDVI unmixing and its subsequent NPP 
estimation, especially in areas covered by high heterogeneous vegetation.  

The error sources of the maximal LUEs inversion mainly derive from the remote sensing 
observations, field-measured NPP and the spatial interpolation of meteorological data. Here, the 
uncertainty of remote sensing data mainly refers to the mixing pixels. We made some efforts to unmix 
the time-series NDVI in this paper, however, the result shows that it has no significant improvement 
on the accuracy of LUE inversion (Figure 6(b,c)). As shown in the land cover map (Figure 2), the land 
covers on the Zoige Plateau are characterized by high spatial heterogeneity, especially in the transition 
zones between wetlands and grasslands. Although some researches demonstrated that the linearity 
assumption only leads to minor inaccuracies when NDVI is used instead of reflectance [28,63], because 
of the influence of adjacent targets [28], the mechanism of NDVI mixing is very complex and the 
linear unmixing assumption is probably not suitable for areas with a complex underlying  
surface [64,65]. Moreover, the error of the land cover map (about 10 percent) and image registration 
between data sources (different spatial resolution match between MODIS NDVI and TM-derived land 
cover map) can also introduce uncertainty into unmixing and subsequent LUE inversion. Besides 
remote sensing data, the input variables of the CASA model still include temperature and moisture 
stress factors that can both reduce the actual LUE. Generally, they are derived from the station-based 
meteorological observations by the spatial interpolation method. However, interpolation depends on 
experience to cause deviation in LUE inversion.  

Simultaneously, initialization of input parameters of the CASA model can also introduce bias to the 
modeling results due to their empirical characteristics. Taking the stress effects of temperature as an 
example, plant photosynthesis response to temperature condition is considered from two aspects in the 
CASA model. One is the stress of the inner chemical action of plants at high or low temperature (Tε1), 
and the other is the restriction caused by environmental temperature change (Tε2). Restriction from 
temperature is considered to be a parabolic relationship in many studies [66–68]. As shown in  
Figure 8(a), 20 °C is set as the optimum growth temperature for plants. The temperature restricts plant 
photosynthesis if it departs from 20 °C (Figure 8(b)). Obviously, the stresses of temperature on LUE 
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meet the physiological ecology of vegetation. However, the water stress factor (Wε) in the CASA 
model is modeled as the function of the potential evapotranspiration and the actual evapotranspiration, 
and varies between 0.5 and 1 [26]. Such a set of parameters may not reflect the actual water stress 
when the underlying surface is rather complex like the Zoige Plateau wetlands. Adjusting the input 
parameter of the model according to the field sampling measurements, the bias caused by the model 
parameter can be considered as the systematic error, therefore, the calibrated parameter can be applied 
for future study in this area.  

Figure 8. Curves of temperature stress on LUE in the CASA model, which is derived 
according to the equations in the literature [26,54]. (a) shows the inhibition effects of 
photosynthesis, determined by the internal biochemical actions under a certain temperature, 
in which Topt is the optimum temperature for plant growth; (b) represents the decreasing 
tendency of plant LUE when the ambient temperature changes from the optimum 
temperature Topt to a higher or lower temperature.  

 

The spatial heterogeneity of LUE is one of the major reasons that influences the estimation 
accuracy of the productivity model [20]. It is determined by the comprehensive influence of internal 
plant factors, spatial structures and climatic environments [8]. The issue on LUE of different 
vegetation cover has stimulated many researches on different aspects, such as researches on temporal 
and spatial heterogeneity [10], and on the biological and environmental control mechanism [69]. In the 
CASA model, a constant maximal LUE is assigned to all vegetation cover and the actual LUE is 
adjusted by external environmental variables. However, some researches proved that different 
vegetation cover should have different maximal LUE values [11,53]. According to the findings of this 
paper, the maximal LUEs of plants present obvious spatial heterogeneity, and vary for different 
vegetation cover types (Table 2). As for the LUE-based model, such heterogeneity shows scale effects, 
therefore, applying the LUE-based model to a regional environment of a complex underlying surface 
may lead to scale problems.  

5. Conclusions  

Taking the Zoige Plateau grassland-wetland ecosystem of China as a case, this study proposed an 
approach to estimate the maximal LUE of different vegetation cover at regional scale through the 
CASA model combined with remote sensing data and ground measurements. The CASA model 
normally applies a single default set for the maximal LUE and does not consider the difference 

(a) (b) 
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between vegetation cover types, however, the findings of this paper as well as some literature 
references show that it can cause a big error when applied to regional NPP mapping. In contrast, we 
have shown that the derived maximal LUEs vary significantly for different vegetation covers, and 
display obvious heterogeneity. The maximal LUEs of different vegetation in the Zoige Plateau 
wetlands are 0.669 gC·MJ−1, 0.450 gC·MJ−1, 0.126 gC·MJ−1, 0.192 gC·MJ−1 and 0.125 gC·MJ−1 for the 
xerophilous grass with high, moderate and low coverage, hygrophilous grass and helobious grass, 
respectively. Cross-validation shows modeled NPP using the derived maximal LUE is closely 
correlated to the ground measurements with R2 of 0.8698 and RMSE of 59.37 gC·m−2·a−1.  
The modeling error derives mainly from remote sensing observations and parameter initialization of 
the CASA model. The maximal LUE can vary with the vegetation cover and other background 
environment variables, and reflects a significant scale effect. Therefore, it is necessary to consider the 
possible spatial heterogeneity of the maximal LUE when using the LUE-based models to map NPP at 
the regional scale. The proposed approach in this paper has been shown to be a useful attempt for LUE 
inversion, and the derived maximal LUE can be used in the study area for regional long-term 
monitoring of ecosystem productivity by remote sensing technologies, which is of high interest for 
carbon accounting and ecological management in the Plateau wetland sector.  
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