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Abstract: Recent climatic patterns indicate that extreme weather events will increase in 
frequency and magnitude. Remote sensing offers unique advantages for large-scale 
monitoring. In this research, Landsat 5 remotely sensed imagery was used to assess 
flooding caused by Hurricane Katrina, one of the worst natural disasters in the US over the 
past decades. The objective of our work is to assess whether decisions associated with the 
classification process, such as location of reference data and algorithm choice, affected 
flooding results and subsequent analysis using census data. Maximum Likelihood (ML) 
and Back Propagation Neural Network (NN) were the tested algorithms, the former 
reflecting a simple and popular classifier, and the latter an advanced but complex method. 
Flooding estimations were almost identical within the reference sample area, 124.4 km2 for 
the ML classifier and 123.7 km2 for the NN classifier. However, large discrepancies were 
found outside the reference sample area with the ML predicting 462.5 km2 and the NN 
identifying 797.2 km2 as flooded, almost twice the amount. Further investigation took 
place to evaluate the influence of the classification method to a social study, namely the 
racial characteristics of flooded areas. Using Census 2000 data, our study area was 
segmented in census tracts. Results indicated a strong positive correlation between 
concentration of African Americans and proportional residential flooding. Pairwise T-Tests 
also verified that flooding among different African American concentrations was 
statistically different. There were no significant differences between the ML and NN 
methods in the results interpretation, which is mostly attributed to the significant 
geographic overlap between reference sample area and the examined census tracts. This 
study suggests that emergency responders should exercise significant caution in their 
decision making when using classification products from undersampled geographic areas 
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in terms of classification reference data.  

Keywords: classification process; change detection; flooding assessment; Hurricane 
Katrina; racial distribution 

 

1. Introduction 

Remote sensing data are valuable sources for environmental monitoring. They can be utilized in 
various phases of an environmental hazard from prediction and early monitoring [1,2], to management 
and damage assessment [3,4]. From the numerous advantages that remote sensing techniques offer for 
dealing with natural phenomena, the ability to analyze large geographic areas in a short period of time 
is especially appealing. In order to have a better perception of natural phenomena and make correct 
management decisions, it is vital to detect changes accurately and in a timely fashion [5]. In contrast, 
fieldwork requires significant effort and time and, in cases of extreme environmental events, it may not 
be feasible (e.g., limited accessibility or hazardous conditions).  

In the United States, one of most destructive natural phenomena in the last decade was Hurricane 
Katrina (23–30 August 2005), with most of the damage concentrated in New Orleans, LA, USA. 
Katrina was a strong tropical hurricane, with category 5 intensity over the central Gulf of Mexico [6]. 
Wind speed reached 350 km/h when Katrina attained its peak on 28 August [7]. Katrina caused 1,118 
fatalities in Louisiana [7] and, according to Knabb et al. [6], was the costliest and one of the five 
deadliest hurricanes ever to strike the United States. It was responsible for at least $108 billion of 
property damage [8]. The majority of the problems were in New Orleans, where storm surges of up to 
19 ft caused levee failure and substantial flooding. Figure 1 shows two high resolution aerial images of 
the Fair Grounds Race Course and Slots and its vicinity before (a) and after (b) the hurricane.  

Figure 1. Flooding in New Orleans (a) before Katrina, Digital Orthophoto Quarter 
Quadrangle 2004 image (CIR) and (b) after Katrina, National Oceanic and Atmospheric 
Administration image (RGB). 
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Several works have revealed that African Americans were affected by hurricane Katrina more than 
whites in New Orleans [9,10]. Sharkey [11] shows that the elderly population and African Americans 
felt the impact of the storm more than other races and classes. This research reports that Katrina took 
its largest toll and had the highest number of missing people in African American communities. 
Fussell et al. [12] claims that African Americans delayed to return to the city because they lived in 
areas that experienced more housing damage due to more severe flooding. Moreover, White et al. [13] 
took advantage of public polls to illustrate that African Americans experienced feelings of anger and 
depression related to the hurricane more than whites did. The objective of this paper is to investigate 
the effect of decisions associated with the image classification process, such as location of reference 
samples and selection of classification algorithm, in the flooding estimation and subsequent social 
analysis, such as the disproportional African-American hardship. 

2. Study Area and Datasets 

The study area included the city of New Orleans and the surrounding area of Lake Pontchartrain 
(Figure 2). New Orleans is located in the state of Louisiana, approximately 90 km north of the Gulf of 
Mexico and right below Lake Pontchartrain. The Mississippi River crosses the city before reaching 
Gulf of Mexico and the Atlantic Ocean. The area of the city and its suburbs is approximately 350 
square miles and, according to census data of the National Historical Geographic Information System 
(NHGIS), approximately 1,000,000 people used to live in this area in 2000.  

Figure 2. Study area in New Orleans, LA, USA. 

 

Landsat images are frequently used for land cover change detection (e.g., [14,15]). Two Landsat 5 
images were used to investigate flooding effects over the study area. One from 22 August 2005 and 
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4.1.1. Individual Map Assessment 

For each of the two classifiers two classification maps were produced using the before and after 
Katrina Landsat imagery. Tables 1 to 4 show the error matrices for the four classified maps. The 
results indicate that the Neural Network classifier resulted in higher classification accuracy than the 
Maximum Likelihood classifier, an expected result due to its advanced modeling capabilities. It should 
be noted though that for the water class, the class of primary interest for this study, the producer’s and 
user’s accuracy were similar among the NN and the ML classifiers. 

Table 1. Error matrix for before-Katrina classification, Maximum Likelihood classifier. 

Reference 
Map 

Vegetation Water Soil Urban User’s Accuracy 

Vegetation 107 5 68 23 52.7% 
Water 0 89 0 1 98.9% 

Soil 4 0 22 3 75.9% 
Urban 11 6 11 149 84.2% 

Producer’s Accuracy 85.7% 89.0% 21.8% 84.7% Overall Accuracy = 73.5% 

Table 2. Error matrix for before-Katrina classification, Neural Network classifier. 

Reference 
Map 

Vegetation Water Soil Urban User’s Accuracy 

Vegetation 99 4 12 15 76.2% 
Water 0 93 2 4 93.9% 

Soil 12 1 78 5 81.3% 
Urban 11 2 9 152 87.4% 

Producer’s Accuracy 81.2% 93.0% 77.2% 86.4% Overall Accuracy = 84.6% 

Table 3. Error matrix for after-Katrina classification, Maximum Likelihood classifier. 

Reference 
Map 

Vegetation Water Soil Urban User’s Accuracy 

Vegetation 83 14 52 14 50.9% 
Water 5 184 0 4 95.3% 

Soil 6 0 39 15 65.0% 
Urban 6 1 9 67 80.7% 

Producer’s Accuracy 83.0% 92.5% 39.0% 67.0% Overall Accuracy = 74.7% 

Table 4. Error matrix for after-Katrina classification, Neural Network classifier. 

Reference 
Map 

Vegetation Water Soil Urban User’s Accuracy 

Vegetation 63 5 13 3 75.0% 
Water 13 186 0 2 92.5% 

Soil 11 0 76 0 87.4% 
Urban 13 8 11 95 74.8% 

Producer’s Accuracy 63.0% 93.5% 76.0% 95.0% Overall Accuracy = 84.2% 
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4.1.2. Change Map Assessment 

Change products were created for each of the two classifiers. The individual time maps had four 
classes, so an exhaustive combination of classes would have led to 16 cases for the change maps. Since 
our primary interest is water changes, the produced change maps were limited to five classes of 
interest: the three flooding cases (Soil/Agriculture to Water, Vegetation to Water, and Urban to 
Water), the unchanged Water class, and the remaining combinations in a separate class (Other). 

In order to evaluate the accuracy of the two classifiers in detecting flooded areas, the same 
validation dataset that was used for accuracy assessment of individual maps was incorporated by 
creating two change classes: “Changed to Water” and “Not Changed to Water.” Tables 5 and 6 show 
error matrices for Maximum Likelihood and Neural Network classifiers binary maps, respectively.  

Table 5. Change detection error matrix, Maximum Likelihood classifier. 

Reference 
Map 

Changed Not Changed User’s Accuracy 

Changed 94 11 89.5% 

Not Changed 5 389 98.7% 
Producer’s Accuracy 94.9% 97.3% Overall Accuracy =  96.8% 

Table 6. Change detection error matrix, Neural Network classifier. 

Reference 
Map Changed Not Changed User’s Accuracy 

Changed 89 12 88.1% 

Not Changed 10 388 97.5% 

Producer’s Accuracy 89.9% 97.0% Overall Accuracy =  95.6% 

4.2. Flooding Estimation Comparisons 

Figure 5 illustrates the change maps generated from the Maximum Likelihood (ML) classifier (a) and 
from the Neural Network (NN) classifier (b). A significant part of the city and its suburbs is flooded, 
especially parts close to the levee failure. Comparing the two change maps, a significantly larger amount 
of “Vegetation to Water” pixels can be identified in the north-west and north-east of Lake Pontchartrain 
in NN (b) than ML (a) classifiers. Minor differences exist in the “Urban to Water” class.  

To investigate further the effects of the classification design to the quantity of flooding, the two 
classification algorithms were compared inside and outside the reference sample area (see Figure 4 for 
area outline). Figure 6 depicts the total “Change to Water” estimation for the two classifiers. There is a 
clear agreement inside the reference sample area, with the ML classifier estimating 124.4 km2 and the 
NN classifier 123.7 km2. Outside the reference sample area, however, there are significant differences 
with the ML predicting 462.5 km2 and the NN identifying 797.2 km2 as flooded, almost twice the 
amount. To put the estimation variability in perspective, the Manhattan land area in New York is 
approximately 60 km2. This is an important finding as it suggests that reference data collection in 
conjunction with algorithmic selection could introduce a strong bias in the obtained results. It is also a 
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surprising (and potentially problematic) result as the high change accuracy (95–96%) for both methods 
would suggest an expectation for similar results.  

Figure 5. The change maps, (a) Maximum Likelihood and (b) Neural Network classification. 
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Figure 6. Flooding estimation from the two classifiers, inside and outside the reference 
sample area. 

 

5. Algorithmic Effect on Racial Distribution of Urban Flooding 

Flooding estimations from hurricane Katrina were incorporated in a wide range of applications, 
from emergency responders to social scientists. In our work, we considered the previously studied 
disproportionate effect of Katrina on African Americans and investigated whether image classification 
decisions could potentially alter the results of these social studies. 

Demographic data from the year 2000 at the census tract geographic level were utilized. The extent 
of study area for racial effects was limited to the metropolitan area of New Orleans city that was 
smaller than that of change detection analysis. Figure 6 represents the population density map. It is 
important to note that only populated tracts contributed to racial analysis using a threshold of 1,000 
people per square mile [26]. Tracts in gray color in Figure 7 were below the density threshold and 
were not included in the racial analysis. The percent of urban loss (pixels switching from the urban to 
the water class) for each tract was calculated using the classified maps of before and after Katrina for 
each tract. In addition, the percent of African-American residents of each tract was extracted from the 
demographic dataset. Figure 8 depicts the spatial relationship between percent urban loss and percent 
of African-American residents using the NN classifier result. There is a positive spatial correlation 
between tracts of high urban loss and African Americans, especially at the upper right and center of the 
map. On the other hand, many highly populated tracts (see Figure 7) at the upper left side of the map 
with low percentage of African Americans were not significantly flooded.  
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Figure 7. Population density. 

 
(a) 

 
(b) 

To investigate further, Figure 8 illustrates the relationship between urban loss and percent of 
African-American residents. In this chart, tracts are grouped into different bins based on 25% quartiles 
of African Americans. Bars represent mean value of urban loss for each bin. Moreover, standard 
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deviation of tracts’ urban loss for each bin is depicted. The ML method estimates higher urban loss but 
the strong positive correlation between percent of African Americans and urban loss is evident for both 
classifiers. The similarities between both classifiers could probably be attributed to the significant 
geographic overlap between the reference sample area and the selected tracts. 

Figure 8. Relationship between percentage of African-American residents and urban loss. 

 

Statistical tests are also conducted to see if differences among the mean value of urban loss of 
categories in Figure 8 are significant. A pairwise t-test is selected over conducting analysis of variance 
(ANOVA) because the percent of African Americans is an observation and not a treatment factor 
which is categorized arbitrarily. Table 7 presents p-values of two tailed t-tests for all combinations of 
the four groupings for African-American concentration. The null hypothesis is equality of mean urban 
loss, and alternative hypothesis is inequality of them. Values above and below the main diagonal 
represent p-values for ML and NN classification outputs, respectively. Results verify that the 
differences in urban loss due to flooding are statistically different among different African-American 
concentration groupings. They also show that both algorithms would lead to similar statistical 
conclusions. 

Table 7. P-values of pairwise T-Tests of urban loss within different African American 
groups (ML in upper triangle, NN at lower). 

African American Concentration Grouping 0%–25% 25%–50% 50%–75% 75%–100% 

0%–25% - 0.554 0.005 <0.001 

25%–50% 0.551 - 0.008 <0.001 

50%–75% 0.004 0.008 - <0.001 

75%–100% <0.001 <0.001 <0.001 - 
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6. Discussion 

An important question related to environmental disasters is quantity, spatial extent, and internal 
spatial distribution of their impacts. In some cases, a timely response is critical, which in combination 
with accessibility issues on the ground, propel remote sensing as an efficient, if not the only, 
monitoring method. This paper adds to the already wide collection of remote sensing applications with 
the addition of presenting linkages to classification setup decisions. 

In terms of remote sensing techniques, numerous classifiers can be used to create land cover and 
land use maps. The discrepancies among various classifiers can be significant based on research 
question types and accuracy expectations. Furthermore, user expertise and software availability may 
differ, suggesting that advanced classification methods may not always be implementable. In this 
research, a simple classifier (Maximum Likelihood) and a fairly complex classifier (Neural Network) 
are incorporated to obtain an estimate on the impact of the classification algorithm on results. Despite 
substantial accuracy differences between ML and NN on single image classification, both classifiers 
were considered statistically accurate for the specific task, water detection. Racial analysis on the 
change products also suggested high consistency between the two classifiers, mostly attributed to the 
high overlap between the reference data locations and the census tracts. 

However, caution should be exercised for parts of the imagery that are not well represented in the 
reference dataset. As our experiments have shown, large discrepancies may appear despite reassuring 
statistical evaluations in the training/validation process. For example, the ML classifier significantly 
underestimated flooding in the entire study area compared to the NN method, yet for the racial study, 
the ML method provided higher flooding than the NN. In cases where reference data may be acquired 
over the entire study area, it is suggested that a geographically stratified sampling scheme is 
implemented. There are, however, cases where reference data may not be available or will be too time 
consuming to acquire due to the urgency of product delivery. In those cases, a potential solution would 
be the implementation of multiple classifiers to ensure no major differentiation in obtained results. Users 
should also evaluate algorithmic complexity with respect to the training sample size. A well-known 
limitation of machine learning algorithms is that as algorithmic complexity increases, so does the 
tendency to overgeneralize (i.e., identify patterns where they may not exist). A cross-validation 
experimental design becomes essential to limit (or at least warn) of potential overfitting issues.  

Furthermore, this study focused on a relatively easy classification; water extraction is not as 
challenging when multispectral information is available. The value proposition of a complex classifier 
may have been different if similar analysis was conducted with high resolution aerial photography, 
where spectral separability may not be sufficiently high thus advanced modeling methods would 
be advisable. 

7. Conclusion 

Remote sensing data and methods can significantly assist in environmental monitoring tasks. In this 
research we have demonstrated their utility in Hurricane Katrina flooding assessment. More specifically, 
we examined the relationship of algorithmic reference data and methods to the obtained flooding 
estimates. In this site, a Maximum Likelihood and Back Propagation Neural Network classifiers were 
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tested estimating flooding very closely within the reference sample area (124.4 km2 for the ML classifier 
and 123.7 km2 for the NN classifier) but with significant variability at other parts of the image 
(462.5 km2 for the ML and 797.2 km2 for the NN). Furthermore, post-evaluation using Census 2000 data 
indicated a disproportional urban loss due to flooding among African Americans. Classification 
algorithmic decisions did not indicate significant differences, a result attributed to the significant 
geographic overlap between reference data locations and the examined census tracts. Moving forward, it 
is suggested that users should exercise caution in any post-analysis in areas with limited or no reference 
data when the spectral complexity is high, especially in urban/semi-urban areas.  
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