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Abstract: The devastating series of fire events that occurred during the summers of 2007 
and 2009 in Greece made evident the need for an operational mechanism to map burned 
areas in an accurate and timely fashion to be developed. In this work, Système pour 
l’Observation de la Terre (SPOT)-4 HRVIR images are introduced in an object-based 
classification environment in order to develop a classification procedure for burned area 
mapping. The development of the procedure was based on two images and then tested for 
its transferability to other burned areas. Results from the SPOT-4 HRVIR burned area 
mapping showed very high classification accuracies (~0.86 kappa coefficient), while the 
object-based classification procedure that was developed proved to be transferable when 
applied to other study areas.  

Keywords: burned area mapping; SPOT-4 HRVIR; object-based image analysis (OBIA) 
 

1. Introduction 

Accurate information relating to the impact of fire on the environment is a key factor in the 
following activities: quantifying the impact of fires on landscapes [1]; selecting and prioritizing 
treatments applied on site [2]; planning and monitoring restoration and recovery activities [3,4]; and 
providing baseline information for future monitoring [5]. Given the extremely broad spatial expanse 
and often limited accessibility of the areas affected by forest fire, satellite remote sensing is an 
essential technology for gathering post-fire-related information in a cost-effective and time-saving 
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manner [2,3,6,7]. In recent years, an increase in the number of extreme fires has been observed in the 
European Mediterranean region; this is attributed to: (a) land-use changes; and (b) climatic warming [8]. 
The increasing trend in the occurrence of fire events has underlined the need for the development of a 
reliable procedure in order to map burned areas accurately and rapidly. The ability of such a procedure 
to assess the impact of fire on the environment in a timely and accurate fashion would make it applicable 
in other areas, such as the United Nations’ Reducing Emissions from Deforestation and Degradation 
(UN-REDD) collaborative program initiative. UN-REDD requires an understanding of the process of fire 
in forest systems and the calculation of greenhouse gas emissions due to vegetation fires [9].  

Optical satellite data have been used extensively for many years in the detection and mapping of 
fire-affected areas [6,10–12]. This mapping has been based on the use of: (a) low-resolution data, such 
as Advanced Very High Resolution Radiometer (AVHRR) imagery from the National Oceanic and 
Atmospheric Administration (NOAA) satellite series [13–16], SPOT VEGETATION [17,18], and the 
Along Track Scanning Radiometer (ATSR) imagery [19]; (b) medium resolution data such as the 
Moderate Resolution Imaging Spectroradiometer (MODIS) [11,20], the Argentinian Satellite for 
Scientific Applications-C/Multispectral Medium Resolution Scanner (SAC-C/MMRS) [21], and the 
Medium Resolution Imaging Spectrometer (MERIS) imagery [22]; (c) high-resolution data such as the 
Landsat Thematic Mapper (TM) imagery [23,24]; and (d) very high-resolution data such as Ikonos 
imagery [25]. 

Mapping burned areas has been an important subject of research in remote sensing in the last 
decades. The most common image analysis techniques employed so far are: the principal component 
analysis [26,27], the spectral mixture analysis [28], logistic regression modeling [24,29], supervised 
classification [6], multitemporal image compositing algorithms [30,31], and spectral indices 
thresholding [32]. Recently, the support vector machines technique for burned area mapping was 
introduced for burned area mapping [33]. Although many different techniques have been used, 
however, the results of the application of the aforementioned methodologies have been reported to 
create various types of confusion between burned areas and other land cover types, such as water 
bodies and shadows, as well as confusion between slightly burned areas and unburned vegetation, 
which can affect the accuracy of mapping [24,32,34]. 

OBIA was recently introduced to the field of burned area mapping and has already showed promising 
results when using different types of satellite imagery, such as the Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) [35], NOAA/AVHRR [36], and Landsat-TM [12].  

According to Blaschke [37] OBIA has been used in a wide array of environmental application areas: 
(1) land-cover/land-use mapping, (2) forest, vegetation and urban structure mapping, (3) mapping of 
habitats, (4) land cover change detection, (5) identification of urban features, and (6) detection of 
damaged areas. The basic processing units of object-based image analysis are image objects and not 
single pixels. According to Benz et al [38], the advantages of OBIA are: an increased uncorrelated 
feature space using shape (e.g., length, number of edges, etc.), topological features (e.g., neighbor, 
super-object, etc.), and the close relationship between real-world objects and image objects. This 
relationship has been reported to improve classification results [38].  

Mitri and Gitas [12] developed a semi-automated object-based classification model to accurately 
map burned areas (∼96% overall accuracy) using Landsat images. The authors concluded that the 
accurate results obtained by object-based classification are mainly due to the ability of context-based 
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classification to reduce the speckle in the classification. Moreover, Polychronaki and Gitas [35],  
Gitas et al [36] and Mitri and Gitas [12] concluded that the combination of object features, such as 
spectral values together with contextual information, made it possible to avoid confusion in the 
classification between burned areas and other land cover types.  

Given the promising results of the aforementioned works, an investigation on the performance of 
the application of object-based classification applied to SPOT-4 HRVIR images in order to map 
burned areas is of high interest for the following reasons:  

• SPOT data are easy to access through the European Space Agency (ESA). In 2006, ESA and 
SPOT Image signed a multiyear agreement permitting ESA-accepted Category-1 projects to 
order more than 10,000 images per year from the SPOT-1, 2, 3, and 4 satellites [39]. 
Investigators have since had the opportunity to acquire archived as well as new SPOT images 
with no or little cost for research and application development. Hence, the development of an 
operational classification methodology, such as the one aimed at in this work, could be 
employed to generate an historical fire-perimeter database using the extensive available archive 
of SPOT-4 images; 

• Given the forthcoming launch of the Sentinel-2 mission, which is designed for the data 
continuity of SPOT-type missions [40], an investigation on the use of SPOT-4 HRVIR images 
for burned area mapping could indicate the potential of the Sentinel-2 data in this field. The 
spectral and spatial resolution of the two satellite products are similar [40], and it is estimated 
that a classification method for burned areas mapping, developed using SPOT-4 HRVIR 
images, could possibly be used with Sentinel-2 images.  

The points mentioned above provide the motivation for this work, wherein a procedure is developed 
to map burned areas using object-based classification and SPOT-4 HRVIR. The specific objectives of 
this work are as follows: 

• To develop an object-based classification procedure to map the burned areas of two regions in 
Greece by employing SPOT-4 HRVIR images;  

• To test the transferability of the developed classification procedure to map the burned areas of 
two different regions in Greece. 

2. Study Area and Datasets 

This work investigates the fires that occurred during the summers of 2007 and 2009 in the Greek 
regions of the Peloponnese, East Attica, Pelion and Parnitha, (Figure 1). The area of the Peloponnese 
under investigation is covered mainly with maquis and agricultural areas, while the forested areas are 
mainly covered by black pine (Pinus nigra) and oak (Quercus sp). The area of East Attica, which is 
located north-east of Athens, is mainly covered by Aleppo pines (Pinus halepensis) and comprises 
agricultural and residential areas. Mount Pelion is located near the city of Volos, in central Greece. A 
large part of the area is forested, mainly with beech (Fagus sylvatica), and it is surrounded by maquis 
and agricultural areas. Mount Parnitha is situated in the north-western part of Athens and is covered 
with forests of Greek fir (Abies cephalonica) and Aleppo pine (Pinus halepensis); part of the mountain 
is designated as a national park. 
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During the summer of 2007, Greece faced the worst natural disaster recorded in recent decades in 
terms of human losses, the number of fire outbreaks, and the extent of the estimated burned area (more 
than 12% of the total forested areas in Greece) [41]. The first serious fire occurred at Mount Parnitha, 
where significant forested parts of Parnitha National Park were damaged. At the beginning of July 
2007, a forested part of Mount Pelion was also affected by fires. Until early September 2007, the fires 
mainly affected large areas of western and southern Peloponnese. In the summer of 2009, a series of 
large wildfires also broke out; these mostly affected the area of East Attica. As a result, the pine forests 
and residential houses in the area were damaged.  

Figure 1. Location of the four study areas, extent of each image (orange boxes) and 
corresponding available SPOT-4 HRVIR images: (1) Peloponnese, (2) East Attica, 
(3) Parnitha, and (4) Pelion. 

 

Four SPOT-4 HRVIR (four bands: green, red, near-infrared (NIR) and short-wave-infrared (SWIR)) 
images were acquired very soon after the fire events that occurred in the four study areas (Table 1). In 
addition, due to the absence of official fire perimeters, three very high-resolution images (VHR), 
namely two SPOT-5 and one Ikonos pan-sharpened image, were acquired and were used to assess the 
classification accuracies of the burned areas.  
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Table 1. List of available data. Data highlighted in grey are used for the accuracy assessment. 

Study Area EO Data (Spatial Resolution) Acquisition Date Date of Fire Event 
Parnitha SPOT-4 HRVIR 2 (20 m) 2007-08-03 2007-06-28 
Parnitha IKONOS PAN/MSI (1 m) 2007-07-08 2007-06-28 
East Attica SPOT-4 HRVIR 1 (20 m) 2009-08-27 2009-08-24 
Peloponnese SPOT-4 HRVIR 2 (20 m) 2007-09-09 2007-08-30 
Peloponnese SPOT-5 HRG 1 (10 m) 2007-09-02 2007-08-30 
Pelion SPOT-4 HRVIR 1 (20 m) 2007-07-29 2007-07-07 
Pelion SPOT-5 HRG 2 (2.5 m) 2007-07-23 2007-07-07 

3. Methodology 

The methodology involved pre-processing of the SPOT-4 HRVIR images, development of the 
object-based classification procedure, and subsequently, examination of the transferability of the 
developed procedure. The different steps included in the method are discussed in detail below. 

3.1. Dataset Pre-Processing 

Pre-processing of the data involved the atmospheric correction of the four SPOT-4 HRVIR images. 
Atmospheric correction was applied to enhance the classification result and was considered essential 
given that the developed classification procedure would be implemented using different images 
acquired under different atmospheric conditions [42]. To convert the raw digital numbers (DN) to 
reflectance values, the Cosine of Solar Zenith Angle Correction (COST) method [43] was used. The 
images were later rescaled to 8-bit in order to make the classification procedure more computationally 
efficient. 

The following step in the data pre-processing included the image-to-image geometric correction of 
the SPOT images employing the VHR images as reference images and using bilinear interpolation. 
The total RMS errors associated with the GCPs used to geometrically correct the SPOT-4 HRVIR 
images did not exceed 0.5 pixels. 

Finally, reference burned area maps were generated from photointerpretation and digitization of the 
available VHR images. More specifically, polygons were created based on the photointerpretation of 
the VHR images. It has to be noted that for the East Attica study area no reference map was produced 
due to the unavailability of a VHR image. 

3.2. Development of the Object-Based Classification Procedure 

In order to build the object-based classification procedure two SPOT-4 HRVIR images were 
initially employed: one (image from the Peloponnese) for developing and the other (image from East 
Attica) for calibrating the classification procedure. The remaining two images (images from Pelion and 
Parnitha) were later used in the methodology to assess the transferability of the classification 
procedure. The basic actions carried out for the development of the procedure are discussed in the 
following paragraphs and depicted in the following flowchart (Figure 2). The eCognition Developer 
8.0 software was used in this work. 



Remote Sens. 2012, 4                            
 

 

429

Figure 2. Flowchart of the methodology followed during the development of the 
classification procedure. 

 

The first action carried out was the segmentation of the image into objects. The resulting objects 
served as information carriers and building blocks for further classification and subsequent 
segmentation processes [38]. In order to determine the size of the objects, several parameters were 
defined, such as the scale parameter (unit less), the single layer weights, and the homogeneity criterion. 
The scale is an abstract term which determines the upper limit for a permitted change of heterogeneity 
throughout the segmentation process (the smaller the value the smaller the object’s size). Layer 
weights determined the degree to which information provided by each layer was used during the 
process of the object generation (values ranged from 0 to 1). The homogeneity criterion was used to 
determine which heterogeneity attributes of image objects were to be minimized as a result of a 
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segmentation run. The homogeneity criterion is a combination of color (digital value of the resulting 
objects) and shape (defines the textural homogeneity of the resulting objects) criteria.  

An image object is regarded as a ‘peer-reviewed’ image region refereed by a human expert [44]. To 
generate the appropriate size of the image objects a trial-and-error procedure was followed in order to 
choose the parameters for the segmentation: the green, red, and NIR bands were given layer weight 
one, while the SWIR band was given weight zero; the scale was 15, and the color criterion was given 
the maximum weight.  

The next step involved the classification of the resulting image objects into two classes: “burned” 
and “water”. The image objects classified as “burned” at this stage represented seed objects (reliable 
burned objects) that would later be used for the final classification of the burned areas. The reason for 
creating the “water” class was that this class assisted in overcoming the confusion involved in 
detecting burned areas and water bodies in a subsequent step. 

For each class a rule was defined. Such a rule can have one single object feature or can consist of a 
combination of several features that have to be fulfilled for an object to be assigned to a class. In this 
case it was found that applying thresholds to each of the selected features was adequate; fuzzy logic 
was not applied as was seen in previous works [12,35,36]. 

The optimum classification result was achieved when the rule of the class “burned” consisted of a 
combination of four object features, which are described in the following:  

• The maximum difference, which is defined as the maximum difference between the mean 
values of each object for all bands (values for this feature are between 0 and 1);  

• The mean value of the NIR band, which is defined as the mean intensity (pixel values) of all 
pixels of the NIR band forming an object (feature values for the 8-bit images used are between 
0 and 255); 

• The mean value of the SWIR band, which is defined as the mean intensity of all pixels of 
SWIR band forming an object (feature values for the 8-bit images used are between 0 and 255); 
and 

• The normalized burn ratio (NBR) [24], which was found to be very useful in detecting the 
burned areas. The NBR is defined as follows: ܴܰܤ ൌ ேூோିௌௐூோேூோାௌௐூோ        (1) 

The combination of the aforementioned features was able to overcome the inability of the single use 
of the NBR to distinguish burned areas from other land cover types such as water bodies and shadows. 
The threshold values that were used for each feature for the “burned” class were: maximum difference 
≥ 0.4, mean value of NIR ≤ 60, mean value of SWIR ≥ 71, and mean value of NBR ≤ −0.2. In addition, 
the feature used to define the class “water” was the mean value of the SWIR band and the threshold 
value set for this feature was: mean value of SWIR ≤ 54. 
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Figure 3. (a) Detail of the SPOT-4 HRVIR image depicting the East Attica fire (R: NIR 
band, G: red band, B: green band), (b) classification of the seed burned area objects (in 
yellow) and water bodies (in blue), (c) refinement of the classification using the grow region 
algorithm. Unclassified objects with a mean value of NBR less than −0.15 were finally 
merged with objects classified as “burned”, (d) final classification of the burned areas. 

 

The subsequent steps involved the refinement of the initial classification. This action was 
considered necessary because some objects located at the coastline were erroneously classified as 
“burned”. Therefore, all objects classified as “water” were first merged together in order to apply the 
procedure in a more computationally efficient manner, and then a grow region algorithm was 
employed. Under certain conditions, the algorithm extends all image objects with neighboring image 
objects of defined candidate classes-in this case objects classified as “burned”. The algorithm works in 
sweeps, which means that at each execution of the algorithm, it merges all direct neighboring image 
objects according to conditions applied [45]. For merging the objects, the condition applied was: 
“burned” objects with relative border to the “water” objects higher than 0.3, were merged with the 
“water” objects. The feature “relative border to” describes the ratio of the shared border length of 
“water” objects with neighboring “burned” objects to their total border length. In general, if the 
relative border of an image object to the image objects of a certain class is 1, the image object is totally 
embedded in this certain class [45]. 

Next, only the unclassified image objects were re-segmented. The purpose of this action was to 
generate objects of a smaller size, in order to classify smaller patches of burned areas that were not 
categorized in the previous classification step. A scale of 5 was used, while the other criteria were the 
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same, as those mentioned earlier. In order to make the procedure computationally efficient for an 
operational application the re-segmentation was not executed for all unclassified objects of the scene 
but only for those which had a distance of 100 pixels from objects classified as “burned”. At this stage 
of the analysis it was found that an additional class, namely “bare land”, needed to be determined due 
to the confusion detected in the final classification between slightly burned areas and bare land. The 
feature “mean value of the red band” was found to be the most appropriate to map the bare land and 
the condition that was set for this feature was: mean value of red ≥ 200. Following the classification of 
the “bare land”, the grow region algorithm was used again. In this case, unclassified re-segmented 
objects were merged with the “burned” objects if their “mean value of NBR” was less than −0.15 
(Figure 3).  

The last step of the methodology involved the application of the developed object-based 
classification procedure described above to the remaining two SPOT-4 HRVIR images of the Pelion 
and Parnitha in order to test its transferability to map burned areas. The procedure exhibited 
satisfactory performance when applied to the two study areas, since no additional adjustments or 
modifications in the production line were necessary.  

4. Results  

4.1. Results of the Developed Object-Based Classification Procedure  

To assess the ability of the developed object-based classification procedure to map burned areas 
accurately, the agreement between the burned area resulted from the developed classification 
procedure and the reference map, for the study area of Peloponnese, was estimated. Table 2 shows the 
results generated from the confusion matrix and Table 3 shows the results of the comparison between 
the burned area with the reference map in terms of spatial overlay and size. 

Table 2. Omission (OE) and Commission (CE) errors for burned and unburned areas, 
kappa coefficients and overall agreement for the study area of the Peloponnese. 

Study Area 
OE (%) 

Burned Area 
OE (%) 

Unburned Area 
CE (%) 

Burned Area 
CE (%) 

Unburned Area 
Kappa 

Coefficient 
Overall 

Agreement (%) 

Peloponnese 10.52 1.30 12.24 1.10 0.87 97.8 

Table 3. Sizes of the burned areas and results of the spatial overlays between the reference 
map and the object-based classification result for the study area of the Peloponnese. 

Study Area 
Reference  
Map (ha) 

Object-Based  
Classification (ha) 

Common  
Area (ha) 

Burned Area Not 
Mapped by OBIA (ha) 

Burned Area Mapped 
only by OBIA ha) 

Peloponnese 52,062 53,089 46,640 (90%) 5,422 (10.4%) 6,449 (12%) 

The results show that the developed object-based classification procedure mapped the burned area 
with very high accuracy: 97.8% overall agreement with the reference map and the kappa coefficient 
was found to be 0.87. In addition, omission errors of the burned area were observed to be low 
(10.52%). Commission errors were slightly higher (12.24%), which could be attributed to the mosaic 
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of burned and unburned areas dominated the study area. Comparing with the reference map, it was 
found that 90% of the burned area (52,062 ha) was common to both maps, while 5,422 ha were 
underestimated and 6449 ha were overestimated by the procedure.  

4.2. Transferability Results 

The transferability of the developed procedure was tested by comparing the OBIA resulted burned 
areas with the reference maps of Pelion and Parnitha. Table 4 includes the results generated from the 
confusion matrices while Table 5 reports the results from the spatial comparisons, for the two 
study areas.  

Table 4. Omission (OE) and Commission (CE) errors for burned and unburned areas, 
kappa coefficients and overall agreement for the study areas of Pelion and Parnitha. 

Study 
Area 

OE (%) 
Burned Area 

OE (%) 
Unburned Area 

CE (%) 
Burned Area 

CE (%) 
Unburned Area 

Kappa 
Coefficient 

Overall 
Agreement (%) 

Pelion 14.30 0.08 9.59 0.13 0.88 99.7 
Parnitha 21.86 0.55 1.92 7.30 0.83 93.8 

Table 5. Sizes of the burned areas and results of the spatial overlays between the reference 
map and the object-based classification result for the study areas of Pelion and Parnitha. 

Study 
Area 

Reference 
Map (ha) 

Object-Based 
Classification (ha) 

Common 
Area (ha) 

Burned Area not 
Mapped by OBIA (ha)  

Burned Area Mapped 
only by OBIA (ha) 

Pelion 5372 5092 4614 (85%) 758 (14%) 478 (9.4%) 
Parnitha 4944 3939 3863 (78%) 1081 (22%) 76 (1.9%) 

Results show that the developed object-based classification procedure, when applied to both study 
areas, was able to map the burned areas with high accuracy: kappa coefficient was 0.88 and 0.83 for 
Pelion and Parnitha study areas, respectively. The classification procedure resulted in very low 
commission errors for the burned areas (9.59% and 1.92% for Pelion and Parnitha, respectively). 
Omission errors were higher, especially for Parnitha (14.30% and 21.86% for Pelion and Parnitha, 
respectively). These errors were mainly related to the misdetection of some slightly burned areas. 
Comparing with the reference maps, 758 ha and 1,081 ha were underestimated by the classification 
procedure for Pelion and Parnitha, respectively. Results indicate that the performance of the procedure 
was better at detecting the burned areas in the study area of Pelion in comparison to Parnitha. This 
could be attributed to the confusion observed between burned areas and shadowed areas located on 
high slopes in this area. 

5. Discussion 

This paper presented the development of an object-based classification procedure to map burned 
areas. The procedure was developed by using two SPOT-4 HRVIR scenes and subsequently applied to 
two additional scenes in order to investigate its transferability. Overall, the results showed that the 
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developed procedure was able to map the burned areas with high accuracy and the procedure proved to 
be transferable.  

The developed classification procedure started with the generation of image objects of appropriate 
size and was followed by the classification of burned area seed objects. A grow region algorithm was 
applied to the seed objects at a later step in order to refine the classification. The application of the 
algorithm only to objects that were at a specific distance from the burned area seed objects resulted in 
the development of a computational efficient procedure. In comparison to the work of Mitri and 
Gitas [12], where an object-based model was developed for burned area mapping using Landsat 
images, the structure of the classification procedure presented here is much simpler and more 
computationally efficient. 

In relation to the classification accuracy assessment results, the lower commission errors observed 
in the case of Pelion and Parnitha could be attributed to the more homogeneous distribution of the 
burned area, in comparison with the case of the Peloponnese, where a mosaic of burned and unburned 
areas dominated the study area. This was also the case reported by Bastarrika et al [24]: their 
developed algorithm performed much better when the burned area was compact. The reason for the 
different distribution of the burned area could be related to differences in the type and spatial 
arrangement of the land cover types in the study areas. More specifically, the area in the Peloponnese 
is more heterogeneous and covered mainly with agricultural areas and shrublands, while the Pelion and 
Parnitha areas are characterized by more homogeneous areas of forest and shrubland. In addition, 
commission errors (12.24%) and the overestimation of the size of the burned area mapped in the case 
of the Peloponnese (6,449 ha) occurred due to the confusion between the burned area and a coal mine 
located in the study area.  

In all study areas the omission errors and the underestimation of the size of the burned areas could 
be attributed to non-mapping of slightly burned areas that were sparsely or not at all vegetated before 
the fire event. The burning of these areas exposed the underlying bright soil, increasing thus the 
surface reflectance [46] and making their mapping as burned areas very difficult when SPOT-4 images 
were used. Furthermore, in the case of Parnitha it was observed that some burned areas located on high 
slopes could not be mapped by the developed classification procedure, due to the spectral similarity of 
the aforementioned areas with shadowed areas. Thus, a further improvement of the classification 
results could involve topographic correction of the SPOT-4 HRVIR images prior to the 
implementation of the developed classification procedure presented in this work, even though Mitri 
and Gitas [12] concluded that a topographic correction increased only marginally the accuracy of 
object-based classification. In addition, the higher omission errors (21.86%) and the underestimation of 
the size of the burned area (1,081 ha) in Parnitha could be attributed to the use of VHR images as 
reference data due to their ability to discriminate better burned from non-burned areas. The same 
applies to the cases of the Peloponnese and Pelion. 

In addition, the use of spectral information (NBR index, SWIR, NIR channels) in combination with 
contextual information exhibited success in overcoming most of the confusion existing between 
burned areas and other land cover types, such as water bodies and shadows. In a recent work, 
Bastarrika et al [24] used logistic regression by employing spectral indices derived from Landsat 
images. A two-phase methodology was developed: at phase one the seed (core) burned pixels were 
detected while at phase two a region-growing algorithm was applied in order map the burned areas. 
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However, the authors reported that confusion between burned areas and arable land could not be 
diminished. In the work of Stroppiana et al [47], revised layers were input for a region-growing 
algorithm to produce a map of burned areas using spectral indices derived from Landsat images. The 
authors reported that their method was able to successfully overcome any confusion. However, their 
proposed methodology was applied to a small area and was evaluated over one Landsat scene; hence 
the preliminary results presented in their work need to be taken carefully into account. 

6. Conclusions 

The potential of SPOT-4 HRVIR imagery for burned area mapping was investigated in this work. 
Satellite imagery was introduced in an object-based classification environment in order to develop an 
appropriate classification procedure. As a result, very high classification accuracies were achieved 
(kappa coefficient ~0.85) and spatial comparisons of the resulting classification maps with reference 
maps showed very high degrees of consistency both in spatial overlap (~85%) and in total burned area. 
In addition, the object-based classification procedure proved to be transferable, since it was able to 
map the burned areas with high accuracy; this indicates its potential for use on an operational basis. 

The use of spectral information in combination with contextual information could overcome much 
of the existing confusion between burned areas and other land cover types, such as water bodies and 
shadows. Nevertheless, further investigation should include the topographic correction of the images 
prior to the implementation of the developed procedure. 

The results showed that SPOT-4 HRVIR and object-based analysis can be used for accurately 
mapping burned areas in different regions in Greece. Future work will include testing the performance 
of the developed classification procedure in other regions of the Mediterranean area and in different 
ecosystems. In addition, future investigation could include the development of a similar classification 
procedure, to the one presented in this work, to be used with the forthcoming Sentinel-2 data; in this 
way the transferability of the methodology could be further examined.  
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