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Abstract: Accurate estimation of aboveground biomass and carbon stock has gained 
importance in the context of the United Nations Framework Convention on Climate Change 
(UNFCCC) and the Kyoto Protocol. In order to develop improved forest stratum–specific 
aboveground biomass and carbon estimation models for humid rainforest in northeast 
Madagascar, this study analyzed texture measures derived from WorldView-2 satellite data. 
A forest inventory was conducted to develop stratum-specific allometric equations for dry 
biomass. On this basis, carbon was calculated by applying a conversion factor. 
After satellite data preprocessing, vegetation indices, principal components, and texture 
measures were calculated. The strength of their relationships with the stratum-specific plot 
data was analyzed using Pearson’s correlation. Biomass and carbon estimation models 
were developed by performing stepwise multiple linear regression. 
Pearson’s correlation coefficients revealed that (a) texture measures correlated more with 
biomass and carbon than spectral parameters, and (b) correlations were stronger for 
degraded forest than for non-degraded forest. For degraded forest, the texture measures of 
Correlation, Angular Second Moment, and Contrast, derived from the red band, 
contributed to the best estimation model, which explained 84% of the variability in the 
field data (relative RMSE = 6.8%). For non-degraded forest, the vegetation index EVI and 
the texture measures of Variance, Mean, and Correlation, derived from the newly 
introduced coastal blue band, both NIR bands, and the red band, contributed to the best 
model, which explained 81% of the variability in the field data (relative RMSE = 11.8%). 
These results indicate that estimation of tropical rainforest biomass/carbon, based on very 
high resolution satellite data, can be improved by (a) developing and applying forest 
stratum–specific models, and (b) including textural information in addition to spectral 
information. 
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1. Introduction 

The Bali Action Plan, adopted by UNFCCC at the 13th session of its Conference of the Parties 
(COP-13), held in Bali in December 2007, mandates Parties to negotiate a post-2012 instrument, 
including possible financial incentives for forest-based climate change mitigation actions in developing 
countries [1]. COP-13 also adopted a decision on “Reducing emissions from deforestation in 
developing countries (also known as REDD): approaches to stimulate action”. In 2010, the policy and 
mechanisms for implementing REDD were further specified and agreed in a process of long-term 
collaborative action [2]. UNFCCC [3] stated that REDD should be implemented by establishing 
monitoring systems that use an appropriate combination of remote sensing and ground-based forest 
carbon inventory approaches, with a focus on estimating anthropogenic forest-related greenhouse gas 
(GHG) emissions by sources and removals by sinks, forest carbon stocks, and forest area changes. All 
estimates should be transparent, consistent, as accurate as possible, and should reduce uncertainties, as 
far as national capabilities and capacities permit.  

Forests, particularly humid tropical forests, provide a number of benefits to society. They are 
extremely rich in biodiversity and provide important ecosystem services, such as food, fiber, and water 
regulation. In addition to its role in reducing greenhouse gas emissions, REDD provides an opportunity 
to value and safeguard these services [4]. 

Satellite data make it possible to monitor and map tropical forest deforestation and degradation and 
thus also allow tracing changes in forest biomass and carbon stock. With multispectral medium 
resolution and very high resolution (VHR) sensors so far in orbit, the achieved results were biased by 
limited spectral resolutions or limited geometric resolutions of the sensors. This limited the automatic 
distinction between different forest succession stages; consequently, the established relationships 
between non-stratified ground measurements and remotely sensed data were weak. Since the launch of 
WorldView-2 in October 2009, a satellite sensor has been in orbit that acquires data of a high spatial as 
well as a higher spectral resolution, compared to previously launched VHR sensors, hopefully offering 
the opportunity to overcome these limitations.  

There are numerous approaches to estimating aboveground dry biomass (hereafter referred to as 
biomass) from satellite data [5]. Regression analysis is the most common modeling approach [6–8], with 
most studies relating vegetation indices based on red and near-infrared (NIR) wavelengths with their 
field measurements. However, apart from the enhanced vegetation index (EVI), which proved to be 
sensitive to canopy variations in the tropics, vegetation indices have achieved moderate success in 
tropical and subtropical regions, where biomass levels are high and forest canopy is closed, with multiple 
layers, and where there is a great diversity of species [7,9]. Recent promising results have been achieved 
using texture measurement for biomass estimation, for example by Sarker et al. [8], Fuchs et al. [10], and 
Lu [7]. It is expected that texture measures derived from higher resolution satellite data will correlate 
even better with field data, since they allow for a finer distinction of structural detail [11,12]. 
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The objective of this study, therefore, was to link biomass and carbon inventory data to WorldView-2 
data and to analyze their relationships and the potential of WorldView-2 data for biomass and carbon 
estimation for two important strata of tropical rainforest that differ substantially in stored biomass and 
carbon. The goal is to develop improved biomass and carbon estimation models, evaluating both 
spectral and textural information. 

2. Study Area 

The study area is situated in the northeast of Madagascar, 200 km northwest of Toamasina, in the 
Soanierana Ivongo District of Analanjirofo Region (16°39′59″S/49°35′00″E). Topographically the area 
is characterized by a hilly landscape. Rainfall is very abundant, occurring on average on 224 days a 
year, and totaling up to 3,677 mm annually. Humidity generally reaches 75%, and the average 
temperature in the area is 23.7 °C. The location of the study area is illustrated in Figure 1, with a forest 
type classification and the location of the forest inventory plots shown in the close-up. 

Figure 1. Overview and zoom map of the study area. The zoom map shows a forest 
classification, which was derived during an earlier study [13] from a SPOT 5 satellite image, 
acquired in 2009. The coverage of the WorldView-2 dataset coincides with the zoom map. 
The classification was not repeated based on the WorldView-2 satellite image. Additionally, 
as well as existing paths, the forest inventory also plots and indicates waterways and villages.  
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This forest area is part of an important ecological corridor situated between three protected forest 
areas: (a) Mananara Nord in the northeast, (b) Ambatovaky in the southwest, and (c) Pointe Larrée in 
the southeast. 

The primary vegetation of this region is included in the “lowland rainforest” categories [14] in the 
Anthostema and MYRISTICACEAE class [15]. It is characterized in particular by dense evergreen 
trees with a canopy exceeding 30 m in height. The main threat to the lowland rainforest is from 
subsistence agriculture—through slash-and-burn activities, locally called “tavy”—and from illegal 
logging, which are the main causes of deforestation and degradation of the primary vegetation [16–20]. 
Consequently, the forests can be categorized into three forest degradation and disturbance classes as 
well as a fourth class consisting of other formations and non-forest as described in Table 1. 

Table 1. Characterization of forest degradation types present in the lowland rainforest in 
the study area. 

Class Characterization Photo 
Non-degraded 

forest 
Non-degraded forest with a very low level of 

disturbance. Contains a high carbon stock, close to a 
climax situation. Dense and closed canopy cover 

representing all types of typical plants (trees, palm 
trees, ferns). 

Degraded 
forest 

Degraded forest with a higher level of disturbance, 
but still with a high diversity and quantity of plants. 

Reduced carbon stock. Canopy cover is open. 

Secondary 
formations 

Vegetation regrowth after several disturbances of 
high intensity (generally regrowth after  

slash-and-burn activities) 

Other 
formations and 

non-forest 

Other formations, generally very highly degraded, 
with species such as Asplenium spp. indicating 
extreme degradation. A condition reached after 
frequent heavy disturbances of high intensity.  
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3. Materials and Methods 

2.1. Field Data 

Field data were collected in early 2009. All plots were selected randomly for the two forest strata. 
Their location was measured by a handheld GPS device. GPS data were post-processed, resulting in a 
horizontal accuracy of 10–15 m. In order to minimize erroneous effects on the results due to 
positioning errors, the 10 m × 50 m plots were selected based on the criterion that the surrounding 
forest vegetation within at least 10 m distance from the plot was the same as within the plot.  

Aboveground biomass data were collected and obtained by applying stratified random sampling, 
followed by the calculation of allometric equations based on sample extraction calculation from the 
field. In this way, wood density was derived from branch density extrapolation using randomized 
branch sampling [21,22]. Wood density and the weight of the leaves were measured after drying at 
70 °C until the weight no longer changed. Biomass was calculated using the forest type (model II) 
developed by Chave et al. [23]. In addition, the biomass values were validated using the international 
equations developed by Brown [24], adapted for humid areas (1,500 mm < P < 4,000 mm). 

The biomass inventory was carried out for a total of 96 plots, including 48 plots of non-degraded 
forest and 48 plots of degraded forest. Each plot (10 m × 50 m) consisted of five subplots  
(10 m × 10 m). Each of these was subdivided into three compartments of different sizes, in which trees of 
different diameters were inventoried [25]. In compartment A (10 m × 10 m) all trees with dA > 20 cm 
were inventoried, in compartment B (5 m × 5 m) all trees with 5 cm < dB < 20 cm, and in compartment 
C (2.5 m × 2.5 m) all trees with dC < 5 cm. The dendrometric characteristics of each tree were recorded 
as: total height ht, bole height hB, length of the crown lc, diameter at 1.30 m height d1.30, and basal 
diameter for small trees db. 

In order to generate regressions for the allometric equations, biomass samples for the two strata 
were collected. For this purpose, two macroplots of 100 m × 100 m were randomly selected in the 
study area, and samples were measured within subplots of 10 m × 10 m situated in each corner of  
each macroplot.  

To ensure representativeness, 128 trees were randomly chosen in each subplot for the biomass 
modeling: 64 trees each for the two stratification classes (degraded forest and low-degraded 
forest). These trees were measured and then subdivided into four diameter size classes as follows:  
(1) d1.30 ≤ 10 cm; (2) 10 cm < d1.30 ≤ 20 cm; (3) 20 cm < d1.30 ≤ 30 cm); and (4) d1.30 > 30 cm. 
Additionally, for every tree, three biomass subpools—branch, bole, and crown—were considered for 
the volume calculation: 

- for the bole :  ܸܤ ൌ ቀπସቁ כ  ݀ଵ,ଷ଴ଶ כ  ݄஻ 

- for the branch :  ܸܾ ൌ ቀ πଵଶቁ כ  ݀௕ଶ כ  ௕ܮ 

- for the crown :  ܸܿ ൌ ቀସπଷ ቁ כ ௛௖ଶ כ   ሾሺܮ௖ ൅ ݈௖ሻ/4ሿଶ 

where:  
VB: volume of bole 

 d1.30 : diameter at 1.30 m height (diameter at breast height, DBH) 
 hB : height of bole 
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 Vb : volume of branch 
 db : diameter of branch 
 Lb : length of branch 
 Vc : volume of crown 
 hc : height of crown 
 Lc : length of crown 
 lc : width of crown [26,27]. 

Total biomass for each tree was calculated by summarizing all subpool volumes multiplied with 
their specific subpool mean density (for the bole: 0.60 t/m3, for the branch: 0.58 t/m3, and for the 
crown: 0.000346 t/m3). The resulting biomass values for each tree were then correlated with its 
measured DBH and height values in order to develop regression models with strong relationships. The 
highest R2 (0.978) was obtained with the following allometric equation: ܻ ൌ 0.0061 כ ݀ଵ.ଷ଴ଶ.଻ଵଽ 
where: 

Y: biomass of a tree [kg] 
d1.30: diameter at 1.30 m height [cm] 

This formula was used to calculate biomass. For the calculation of carbon, biomass was multiplied 
with a conversion factor of 0.5, which is the default factor recommended by the International Panel on 
Climate Change (IPCC) [28]. 

The statistics of both parameters are listed in Table 2. More details on the species composition in 
the sample plots, the determination of biomass and carbon, and the corresponding statistical analysis 
can be found in Rakotondrasoa [26]. 

Table 2. Statistical overview of the used field plots in [t/ha]. 

Parameter & Forest Stratum No. Min. Max. Mean S.D. 
Biomass, non-degraded 20 323.304 1048.085 575.853 162.757 

Biomass, degraded 22 217.165 572.223 359.572 79.727 
Carbon, non-degraded 20 161.652 524.043 287.926 81.378 

Carbon, degraded 22 108.583 286.112 179.786 39.863 

Due to a partial cloud and thick haze cover in the WorldView-2 satellite data, only a reduced 
sample size of 42 plots was available for this study. Of these plots, 25 are situated on flat areas and 
gently inclined slopes up to 6°, 14 are on slopes between 6° and 10°, and three are on steep slopes of 
around 20°. 

2.2. Satellite Data and Preprocessing 

The optical satellite sensor WorldView-2 was launched in October 2009. The sensor provides 
panchromatic data at a geometric resolution of 0.5 m, as well as multispectral data divided into eight 
spectral bands at a geometric resolution of 0.2 m. The spectral ranges of the eight bands are 0.40–0.45 μm 
(band 1-coastal blue), 0.45–0.51 μm (band 2-blue), 0.51–0.58 μm (band 3-green), 0.585–0.625 μm 
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(band 4-yellow), 0.63–0.69 μm (band 5-red), 0.705–0.745 μm (band 6-red edge), 0.77–0.895 μm 
(band 7-near-infrared1), and 0.86–1.04 μm (band 8-near-infrared2).  

The satellite data were delivered in product level LV3D, meaning that the data had been  
sensor-corrected, radiometrically corrected, and orthorectified. It was acquired with a mean in-track 
and cross-track viewing angle of 7.3° and 17.1° respectively, and a sun azimuth and sun elevation 
angle of 111.1° and 66.8°. 

According to DigitalGlobe [29], the geolocation accuracy of the delivered image data ranges from 
4.6 m to 10.7 m (CE90). This was checked by comparing the data to a georeferenced SPOT 5 dataset 
with a geometric resolution and accuracy of 5 m. The two datasets are in good agreement. 
Consequently, the horizontal accuracy of the WorldView-2 dataset is about 5 m–10 m. 

Digital numbers were converted to top-of-atmosphere reflectance using the absolute radiometric 
calibration factors and effective bandwidths for each band, according to the formulas and directions 
provided by the satellite data provider DigitalGlobe [30]. The WorldView-2 data were then 
atmospherically corrected in order to reduce haze as well as other atmospheric and solar illumination 
influences. This was done using ATCOR 2, a procedure developed by Richter [31], which is capable of 
handling horizontally varying optical depths and contains a statistical haze removal algorithm. A 
radiative transfer code is required to compute the atmospheric transmittance, direct and diffuse solar 
flux, and path radiance. These quantities are summarized as atmospheric correction functions and had 
been previously calculated using the MODTRAN 4 code for several sensors, including WorldView-2. 

Topographic correction was tested with the only available digital surface model (DSM) for the 
area, the Shuttle Radar Topography Mission (SRTM) DSM. It has a horizontal resolution of 90 m, 
which is insufficient for correcting topography of a WorldView-2 dataset with a horizontal resolution 
of 2 m. Nevertheless, the SRTM DSM was re-sampled step by step from 90 m to 45 m, from 45 m to 
30 m, from 30 m to 15 m, from 15 m to 5 m, and from 5 m to the required resolution of 2 m. Besides 
the coarse resolution, a slight positional shift between the SRTM DSM and the WorldView-2 dataset 
was observed. After topographic correction, the consequences of this shift, combined with the coarse 
resolution, led to a chessboard pattern as well as a slightly shifted correction near ridges and summits. 
Differences between topographically corrected and uncorrected single band and vegetation index 
values for each plot were analyzed but proved to be very small. For this reason, it was decided to 
neglect topographic correction in order not to introduce an additional error to the reflectance values. 

2.3. Simple Reflectance, Vegetation Indices, and Grey-level Co-occurrence (GLCM) Texture Measures 

Preprocessing of a set of band ratios was followed by the calculation of vegetation indices, texture 
measures, and principal components. They were selected, based on previous research dealing with 
biomass and carbon estimations from optical satellite data [8,10,32,33]. GLCM texture measures were 
calculated for five different window sizes ranging from 15 × 15 to 23 × 23 pixels. The window sizes 
were determined after initial correlation tests on a small subset area. Considering the pixel size of 
2.0 m, average window sizes were selected. In this way, shadow structures caused by trees are 
retained; ideally, these shadow structures differ between the two forest strata due to their specific 
characteristics, as described in Table 1.  
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WorldView-2 provides two bands in the near-infrared range of the electromagnetic spectrum: bands 
7 and 8. Vegetation indices and ratios were calculated using each of the two near-infrared bands. For 
example, NDVI1 refers to NDVI, calculated using band 7 (NIR1), and NDVI2 refers to NDVI, 
calculated using band 8 (NIR2).  

The mean value of all calculated parameters based on WorldView-2 data was derived for each of 
the 42 plots sized 10 m × 50 m. All derived parameters that were related to the field plot data are listed 
in Table 3. 

Table 3. Selected spectral parameters and GLCM texture measures. 

Parameter Formula References 

Single bands   

WorldView-2 bands 1–8   

Vegetation indices   

ARVI (NIR − 2 × RED + BLUE)/(NIR + 2 × RED − BLUE) [34] 

EVI G × ((NIR − RED)/(NIR +C1 × RED − C2xBLUE + L)) [35] 

IPVI NIR/(NIR + RED) [36] 

NDVI (NIR − RED)/(NIR + RED) [37] 

OSAVI (NIR − RED)/(NIR + RED + Y) [38] 

Image transform   
Principal components 1–8  

(PC1–PC8) 
 [39] 

Simple ratios   

RVI NIR/RED [40] 

NIR/GREEN NIR/GREEN  

GRVI GREEN/RED [41] 
GLCM texture measures (window sizes: 15 × 15 − 23 × 23 pixels) 

 [42] 
Mean  

Variance  

Homogeneity 

Contrast 

Dissimilarity 

Entropy 

Angular Second Moment 
Correlation 

ARVI: atmospherically resistant vegetation index; EVI: enhanced vegetation index, with G = 2.5, C1 = 6, C2 = 
7.5, L = 1; IPVI: infrared percentage vegetation index; NDVI: normalized difference vegetation index; OSAVI: 
optimized soil-adjusted vegetation index, with Y = 0.16; RVI: ratio vegetation index; GRVI: green ratio 
vegetation index; NIR: near-infrared; NIR1: band 7; NIR2: band 8; BLUE: visible blue band; RED: visible red 
band; GREEN: visible green band. 

2.4. Statistical Analysis 

The relationships between biomass, carbon, and the computed mean value of each parameter per 
plot were analyzed using Pearson’s correlation, as well as stepwise multiple linear regression. The 
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analysis included the available 20 plots representing the non-degraded forest stratum and 22 plots 
representing the degraded forest stratum. Bootstrap sampling was performed in order to account for the 
rather small sample sizes (see Tables A1–A8 of supplementary). The statistical parameters: R2, 
adjusted R2, p-level for the model, and root mean square error (RMSE) were calculated to ensure that 
the analysis would yield the best-fitting models for the two forest strata. Multicollinearity and 
overfitting indicators, Tolerance and Variance Inflation Factor (VIF), were taken into account as well. 

3. Results 

Since carbon was derived from the biomass data by multiplying it by a conversion factor of 0.5, all 
subsequent correlation and R2 results apply to both biomass and carbon. 

3.1. Relationships between Biomass/Carbon and Parameters Derived from WorldView-2 Data 

For the non-degraded forest stratum, Pearson’s correlation between biomass/carbon and parameters 
derived from WorldView-2 data resulted in one parameter with a significant coefficient: EVI2, with  
R2 = 0.413 (p = 0.01). Moderate correlations (p = 0.05) resulted for EVI1, band 6 (red edge),  
band 7 (NIR1), and band 8 (NIR2), as well as PC1 and PC2, and the textural measure Correlation of 
band 2 (blue) with a window size of 23 × 23 pixels.  

For the degraded forest stratum, several texture measures correlated significantly: Correlation of 
band 5 (red), Mean of band 3 (green), Mean of band 4 (yellow), and particularly Mean of band 6 (red 
edge), Mean of band 7 (NIR1), and Mean of band 8 (NIR2). The smallest selected window size of 
15 × 15 pixels achieved highest correlation coefficients, and correlations weakened with increasing 
window sizes. Pearson’s correlation coefficients between biomass/carbon and the spectral and textural 
parameters are listed in Table 4.  

Table 4. Statistically significant Pearson’s correlation coefficients r and R2 for linear 
relationships between carbon/biomass and the derived spectral parameters from the 
WorldView-2 data as well as between carbon/biomass and the textural parameters. Spectral 
parameters are listed in the order of decreasing correlations; textural parameters are listed 
in the order of increasing window sizes. 

Stratum Parameter Pearson’s r R2 
Non-degraded forest (n=20) EVI 2 0.643** 0.413 
 EVI 1 0.531* 0.282 
 PC 2 0.508* 0.258 
 Band 8 0.499* 0.249 
 Band 7 0.486* 0.236 
 Band 6 0.480* 0.230 
 PC 1 0.453* 0.205 
 GLCM23 Correlation band 2 0.454* 0.206 

 

  



Remote Sens. 2012, 4                            
 

 

819

Table 4. Cont. 

Degraded forest (n=22) GLCM15 Correlation band 5 0.766** 0.587 
 GLCM15 Mean band 6 0.758** 0.575 
 GLCM15 Mean band 8 0.723** 0.523 
 GLCM15 Mean band 7 0.719** 0.517 
 GLCM15 Mean band 4 0.614** 0.377 
 GLCM15 Mean band 3 0.604** 0.365 
 GLCM17 Correlation band 5 0.718** 0.516 
 GLCM17 Mean band 6 0.754** 0.569 
 GLCM17 Mean band 8 0.718** 0.516 
 GLCM17 Mean band 7 0.714** 0.510 
 GLCM17 Mean band 4 0.611** 0.373 
 GLCM17 Mean band 3 0.601** 0.361 
 GLCM19 Correlation band 5 0.637** 0.406 
 GLCM19 Mean band 6 0.750** 0.563 
 GLCM19 Mean band 8 0.713** 0.508 
 GLCM19 Mean band 7 0.709** 0.503 
 GLCM19 Mean band 4 0.608** 0.370 
 GLCM19 Mean band 3 0.598** 0.358 
 GLCM21 Correlation band 5 0.637** 0.406 
 GLCM21 Mean band 6 0.750** 0.563 
 GLCM21 Mean Band 8 0.713** 0.508 
 GLCM21 Mean band 7 0.709** 0.503 
 GLCM21 Mean band 4 0.608** 0.370 
 GLCM21 Mean band 3 0.598** 0.358 
 GLCM23 Correlation band 5 0.543** 0.295 
 GLCM23 Mean band 6 0.746** 0.557 
 GLCM23 Mean band 8 0.709** 0.503 
 GLCM23 Mean band 7 0.705** 0.497 
 GLCM23 Mean band 4 0.606** 0.367 
 GLCM23 Mean band 3 0.596** 0.355 

** Correlation is significant at the 0.01 level. * Correlation is significant at the 0.05 level. 

3.2. Stepwise Multiple Linear Regression Modeling 

Stepwise multiple linear regression models were calculated using biomass and carbon as the 
dependent variables and all other parameters as the independent variables. The models that fulfill the 
collinearity requirements with a Tolerance value of >0.1 and a VIF value for all variables <10 [8] are 
presented in Tables 5 and 6. 
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Table 5. Generated models and statistics for biomass and carbon in “non-degraded forest”. 

Model (non-degraded 
forest) (bootstrapping No. 
of samples)  
Variables 

R2 Adj. R2 RMSE 
[t/ha] 

(Biomass) 

RMSE 
[t/ha] 

(Carbon) 

Relative RMSE 
[%] 

(Carbon/Biomass) 

Tolerance 
(>0.1) 

VIF 
(<10) 

 
1 (n = 30) 0.413 0.381 128.08 64.04 21.74     
EVI2 1.000 1.000 
2 (n = 60) 0.639 0.596 103.40 51.70 17.55     
EVI2 0.830 1.204 
GLCM23 Variance band 7 0.830 1.204 
3 (n=100) 0.746 0.699 89.30 44.65 15.16     
EVI2 0.826 1.210 
GLCM23 Variance band 7 0.824 1.213 
GLCM21 Variance band 1 0.980 1.021 
4 (n=150) 0.812 0.762 79.41 39.71 13.48     
EVI2 0.826 1.211 
GLCM23 Variance band 7 0.804 1.244 
GLCM21 Variance band 1 0.971 1.030 
GLCM23 Mean band 8 0.962 1.039 
5 (n=210) 0.865 0.816 69.77 34.89 11.84     
EVI2 0.730 1.370 
GLCM23 Variance band 7 0.742 1.349 
GLCM21 Variance band 1 0.970 1.031 
GLCM23 Mean band 8 0.782 1.279 
GLCM23 Correlation band 5 0.597 1.675 

For the non-degraded forest stratum, five models fulfill the statistical collinearity requirements. 
Using the most strongly correlating parameter, the vegetation index EVI2, a model was developed that 
explains 38% of the variability of measured biomass and carbon. It achieves a relative RMSE of 21.7% 
for both biomass and carbon, which corresponds to an absolute RMSE of 128 t/ha for biomass and  
64 t/ha of carbon. The inclusion of four additional textural parameters led to an increase in the adjusted 
R2 to 0.816. In particular, the texture measures Variance of band 7 (NIR1), Variance of band 1 (coastal 
blue), Mean of band 8 (NIR2), and Correlation of band 5 (red), all with large window sizes of 21 × 21 
as well as 23 × 23 pixels, led to a continuous improvement of the models. The absolute RMSE was 
reduced to 70 t/ha for biomass and 35 t/ha for carbon. This corresponds to a relative RMSE of 11.8%. 

Three models were developed for the degraded forest stratum. They are based on the three texture 
measures: Correlation, Angular Second Moment, and Contrast, all derived from band 5 (red). The 
model using only one parameter, Correlation, achieved a relative RMSE of 11.3% for both biomass 
and carbon, which corresponds to an absolute RMSE of 52 t/ha for biomass and 26 t/ha of carbon. Up 
to 84.3% of the field data variability can be explained with a model including two additional variables, 
Angular Second Moment and Contrast, resulting in a absolute RMSE of 32 t/ha for biomass and an 
absolute RMSE of 16 t/ha for carbon. This corresponds to a relative RMSE of 6.8%. Looking at the 
window sizes of the texture measures, the strongest correlation was found for the smallest window size 
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of 15 × 15 pixels. Parameters with larger window sizes of 21 × 21 and 23 × 23 pixels were also 
selected for the best-fitting models.  

The 1:1 relationships between observed and modeled biomass values for the two strata and all 
developed models fulfilling the statistical requirements are illustrated in Figures 2 and 3.  

Table 6. Generated models and statistics for biomass and carbon in “degraded forest”. 

Model (degraded forest) (bootstrapping 
no of samples) R2 

Adj. 
R2 

RMSE 
[t/ha] 

(Biomass)

RMSE 
[t/ha] 

(Carbon) 

Relative 
RMSE 

[%] 

Tolerance 
(>0.1) 

VIF (<10)
Variables 

1 (n=30) 0.587 0.567 52.49 26.24 11.33   
GLCM15 Correlation band 5 1.000 1.000
2 (n=60) 

0.816 0.796 36.00 18.00 7.77 
  

GLCM15 Correlation band 5 0.598 1.673
GLCM21 Angular Second Moment band 5 0.598 1.673
3 (n=100) 

0.865 0.843 31.60 15.80 6.82 

  
GLCM15 Correlation band 5 0.594 1.683
GLCM21 Angular Second Moment band 5 0.596 1.676
GLCM23 Contrast band 5 0.994 1.006

Figure 2. Measured biomass vs. modeled biomass for non-degraded forest. Models 1–5  
(a–e) were plotted indicating adjusted R2 and absolute RMSE. Each circle corresponds to a 
measurement plot. The diagonal represents the 1:1 relationship. 
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Figure 2 shows the relationships between the modeled and the observed biomass values for the  
non-degraded forest stratum. The simple linear model based on EVI modeling non-degraded forest 
biomass (Model 1) yielded moderate results, overestimating the two lowest biomass values (plots 14 
and 23). The middle-range biomass values were well-modeled, with moderate errors. The highest two 
biomass values were both underestimated (plots 2 and 38). With Model 2, adding the GLCM texture 
measure Variance of band 7 (NIR1), most plots tended to be overestimated, but with less outliers. 
Model 3, which included the additional GLCM texture measure Variance of band 1 (coastal blue), 
tended to underestimate biomass, but with a decreasing error. With Model 4 and Model 5, over- and 
under-estimations were balanced for plots with low and high biomass values.  

Figure 3. Measured biomass vs. modeled biomass for degraded forest. Models 1–3 (a–c) 
were plotted indicating adjusted R2 and absolute RMSE. Each circle corresponds to a 
measurement plot. The diagonal represents the 1:1 relationship. 

 

Figure 3 shows the relationship between the modeled and the measured biomass values 
for degraded forest. Model 1 based on the GLCM texture measure Correlation of band 5 (red) led to 
a well-balanced model with only few plots for which biomass was overestimated (plots 30, 7, 5) 
or underestimated (plots 40, 39 and 29). The GLCM texture measures Angular Second Moment 
and Contrast—both, again, derived from band 5 (red)—led to further improvements in Model 2 and 
Model 3, respectively. 

4. Discussion 

The objective of this study was to link biomass and carbon inventory data to WorldView-2 data and 
to analyze their relationships and the potential of WorldView-2 data for improved biomass and carbon 
estimation for two important strata of tropical rainforest. Models based on spectral and textural 
information were developed to estimate dry biomass and carbon. Pearson’s correlation revealed that 
(a) texture measures correlate more with biomass and carbon than spectral parameters, and  
(b) correlations are stronger for degraded forest than for non-degraded forest. The relative RMSE of 
the best models developed for each forest stratum are low, compared to results of other studies, and are 
thus promising. 
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Nevertheless, some critical points need to be addressed. The sample size of this study was limited, 
which is critical, but occurs frequently in the development of remote sensing-based biomass estimation 
models [5], particularly for areas that are difficult to access. The humid lowland rainforest with its 
dense vegetation is difficult to cross, which makes data collection extremely costly in terms of labor, 
time, and financial means. Unfortunately, the cloud cover in the satellite data further reduced the 
amount of usable samples in this study. Nevertheless, 42 sample plots were successfully linked to the 
satellite data, and the established relationships can serve as valuable information for future research on 
relating forest inventory data for humid rainforest to satellite data.  

Linking field data to satellite data requires accurate preprocessing of all datasets. The positional 
error of the forest inventory plots and the satellite data must be minimal to ensure correspondence. 
During field work, the horizontal positioning error caused by the GPS when delineating field plots was 
kept within 10–15 m. The horizontal accuracy of the WorldView-2 data is within 5–10 m, according to 
DigitalGlobe [29]. In order to prevent errors caused by added positional errors of both datasets, only 
homogeneous forest areas of about 20 m × 60 m were considered for the establishment of the  
10 m × 50 m plots.  

Another critical point is the topographic and atmospheric correction of the dataset. An atmospheric 
correction was applied to reduce the influences of haze and illumination. However, the influence of slope 
and aspect due to changing topography might additionally affect vegetation reflectance. Almost  
two-thirds of the plots in the study area are on flat or slightly inclined slopes, whereas one third of the 
plots are on inclined or steep slopes, facing all directions. In a preliminary test, the WorldView-2 dataset 
was topographically corrected with the only available DSM, despite its coarse resolution of 90 m. The 
correlation of pre- and post-corrected data revealed only small differences for the spectral parameters. On 
this basis, it was decided to perform the analysis using the topographically uncorrected satellite data.  

Sun and sensor position at time of acquisition also has an influence on cast shadow and thus on 
image texture, and it may be argued that the relation between textural parameters and biomass might 
decrease if cast shadows are minimal due to specific viewing and illumination geometries. This should 
be considered before ordering satellite data. Further research is needed to understand the impact of 
changing viewing and illumination geometry on the analyzed relationships and forest types. 

Overall, a stronger relationship was observed for the degraded forest stratum. The two forest strata 
vary in their complexity in terms of vertical distribution of live and dead biomass, leading to different 
amounts and distributions of cast shadow. This affects the texture and reflectance response of the 
satellite data [32]. Texture measures seem to capture the varying forest canopy structures of the two 
observed forest strata much better than spectral reflectance or band ratios, due to their sensitivity to the 
spatial aspects of canopy shadow. The more heterogeneous the forest canopy structure, the stronger the 
correlation with textural parameters. This is not only confirmed by the results of this study dealing 
with very high resolution satellite data, but was also observed by Sarker et al. [8] and Lu [7] when 
analyzing high resolution ALOS data and medium resolution Landsat TM data, respectively. 
Furthermore, vegetation indices often saturate in high-biomass areas [7,43] due to high reflectance, 
and they do not always correlate strongly with biomass and carbon.  

It was also observed that if biomass of a specific forest stratum correlates with forest canopy 
structure, it also correlates strongly with spectral parameters. Conversely, if biomass does not correlate 
with forest canopy structure, its relationship with texture measures is stronger than with spectral 
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parameters. This was also noted by Fuchs et al. [10] for Siberian tundra forest, by Leboeuf et al. [44] 
for boreal black spruce stands, and by Lu et al. [32] for mature moist forest and liana forest stands in 
the Brazilian Amazon basin. Consequently, in the case of Malagasy lowland rainforest, the relationship 
between biomass and forest canopy structure is stronger for degraded forest stands than for  
non-degraded forest stands. 

The only vegetation index that had a strong relationship with biomass and carbon was EVI for  
non-degraded forest. This index was developed in particular to increase sensitivity to high-biomass 
regions [35]. The two first principal components, as well as band 6 (red edge), band 7 (NIR1), and 
band 8 (NIR2), correlated moderately with biomass and carbon for non-degraded forest stands. 
Although textural parameters did not correlate significantly with biomass and carbon, a variety of 
texture measures contributed to the estimation models developed in this study: Variance, Mean, and 
Correlation, derived from the newly-introduced coastal blue band 1, band 7 (NIR1), band 8 (NIR2), 
and band 5 (red). 

For the degraded forest stratum, the texture measures Mean derived from band 3 (green), band 4 
(yellow), band 6 (red edge), and bands 7 and 8 (both NIR bands), as well as Correlation derived from 
band 5 (red) indicate a strong relationship with biomass and carbon. Besides Correlation, Angular 
Second Moment and Contrast, both derived from band 5, also helped to improve the models. 

Unfortunately, WorldView-2 does not acquire information in the middle-infrared (MIR) wavelength 
range of the electromagnetic spectrum as it is acquired by the Landsat satellite sensors TM, ETM+, 
ASTER, or SPOT5. Several studies concluded that the relationship between the MIR wavelength range 
and vegetation properties, including biomass, is even stronger than for the NIR region [32,33,45,46]. 

The relative RMSE of the models developed for both strata in this study are mostly smaller than the 
relative error results obtained in other studies on biomass estimation using optical satellite data under 
comparable conditions, in terms of forest types, biomass ranges, satellite data resolution, input 
parameters, validation data, and applied methodologies. Castillo-Santiago et al. [47] estimated biomass 
of tropical rainforest in Mexico using a combination of spectral and textural parameters derived from 
SPOT5 data with a spatial resolution of 10 m and multiple linear regression modeling, obtaining a 
relative RMSE of 21.2%. Sarker et al. [8] achieved an RMSE of 46.5 t/ha for tropical forest biomass in 
Hong Kong using only textural parameters derived from ALOS data, again with a spatial resolution of 
10 m. Unfortunately, this study gives no information regarding the relative RMSE. Nonetheless, the 
RMSE obtained in Hong Kong is similar to that obtained in our study for the degraded forest stratum, 
which has comparable field plot biomass ranges.  

For carbon, the absolute RMSE for the non-degraded forest stratum is similar to the absolute RMSE 
results obtained in a study by Foster et al. [48], with absolute RMSE of 59.1 t/ha and 74.4 t/ha for two 
test areas in Amazon rainforest in Bolivia, which were derived from hyperspectral Hyperion data with 
a spatial resolution of 30 m. Again, no relative RMSE values are given. 

These first results on linking biomass and carbon inventory data for tropical humid rainforest with 
very high resolution WorldView-2 satellite data are promising. The inclusion of grey level  
co-occurrence texture measures, as well as the subdivision of the plots into successional strata, led to a 
reduction of relative RMSE and to an improvement in biomass and carbon estimation models for 
Malagasy lowland rainforest.  



Remote Sens. 2012, 4                            
 

 

825

The results confirm that EVI is particularly suitable for applications designed for mapping and 
monitoring tropical rainforest. Furthermore, the red edge and the two near-infrared spectral bands 
proved to have the strongest direct relationships with the field data. Out of the generated texture 
measures, Angular Second Moment, Contrast, Correlation, Mean, and Variance performed well. 

5. Conclusions 

This study explored the potential of WorldView-2 data for biomass and carbon estimation of 
tropical humid rainforest. Pearson’s correlation and stepwise multiple linear regression were 
performed, and models based on spectral and textural information derived from the WorldView-2 
dataset were developed. The following conclusions can be drawn: 

• Texture measures seem to capture the varying forest canopy structures of the two observed forest 
strata much better than spectral reflectance or band ratios, except for the vegetation index EVI, 
which had a strong relationship with the biomass and carbon field data for non-degraded forest. 

• A strong relationship was observed between the degraded forest stratum field data and the 
satellite data. The developed models consist of the texture measures: Correlation, Angular 
Second Moment, and Contrast, all derived from band 5. The best model for degraded forest 
achieves an adjusted R2 of 0.843 and a relative RMSE of 6.8% for biomass and carbon. 
Furthermore, the texture measures Mean derived from band 3 (green), band 4 (yellow), band 6 
(red edge), and bands 7 and 8 (both NIR bands) indicate a strong relationship with biomass and 
carbon. The best model developed for degraded forest Ydeg can be written as follows: ܻ݀݁݃ ൌ  10.899 כ െ 5ݎ݋ܥ15ܯܥܮܩ  736.22 כ 5ܯܵܣ21ܯܥܮܩ െ  131.403 כ ൅ 5݊݋ܥ23ܯܥܮܩ  456.5521 

• A slightly weaker relationship was observed between non-degraded forest stratum field data and 
the satellite data. EVI, using the second NIR band of the sensor, as well as Variance, Mean, and 
Correlation, derived from the newly-introduced coastal blue band, both NIR bands, and the red 
band, contributed to the best model (adjusted R2 = 0.816, relative RMSE = 11.8%). The best 
model developed for non-degraded forest Ylow can be written as follows: ܻ݈ݓ݋  െ 12758.555 כ െ 2ܫܸܧ  4.725 כ െ 7ݎ23ܸܽܯܥܮܩ  274.425 כ െ 1ݎ21ܸܽܯܥܮܩ כ11.07  െ  8݊ܽ݁ܯ23ܯܥܮܩ   2.776 כ െ 5ݎݎ݋ܥ23ܯܥܮܩ  4191.491 

• Estimation of tropical rainforest biomass/carbon based on very high resolution satellite data can 
be improved by (a) developing and applying forest stratum–specific models, and (b) including 
textural information in addition to spectral information. 

• WorldView-2 data are a valuable data source for biomass estimation. In this study, the main 
asset of WorldView-2 proved to be the sensor’s additional spectral bands and the spatial 
resolution of 2.0 m. The main drawback of the sensor is the lack of a middle-infrared band. The 
panchromatic band with its very high spatial resolution of 0.5 m might provide important 
information regarding other forest parameters such as crown area, crown diameter, and DBH; 
however, this question was beyond the scope of this study and will have to be examined in  
the future. 
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The next research steps will include analyzing the linkages between larger samples of tropical forest 
biomass data and satellite data with the same or similar spectral and spatial characteristics to confirm the 
present results and test the robustness of the developed models. Influences of varying acquisition and 
illumination geometries of other satellite scenes on the RMSE will have to be analyzed as well. Finally, 
future research will also focus on the assessment of carbon stock stored in secondary formations. 
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