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Abstract: Over the past two decades there has been an abundance of research demonstrating 
the utility of airborne light detection and ranging (LiDAR) for predicting forest 
biophysical/inventory variables at the plot and stand levels. However, to date there has been 
little effort to develop a set of protocols for data acquisition and processing that would move 
governments or the forest industry towards cost-effective implementation of this technology 
for strategic and tactical (i.e., operational) forest resource inventories. The goal of this paper 
is to initiate this process by examining the significance of LiDAR data acquisition (i.e., point 
density) for modeling forest inventory variables for the range of species and stand conditions 
representing much of Ontario, Canada. Field data for approximately 200 plots, sampling a 
broad range of forest types and conditions across Ontario, were collected for three study 
sites. Airborne LiDAR data, characterized by a mean density of 3.2 pulses m−2 were 
systematically decimated to produce additional datasets with densities of approximately 1.6 
and 0.5 pulses m−2. Stepwise regression models, incorporating LiDAR height and density 
metrics, were developed for each of the three LiDAR datasets across a range of forest types 
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to estimate the following forest inventory variables: (1) average height (R2(adj) = 0.75–0.95); 
(2) top height (R2(adj) = 0.74–0.98); (3) quadratic mean diameter (R2(adj) = 0.55–0.85); 
(4) basal area (R2(adj) = 0.22–0.93); (5) gross total volume (R2(adj) = 0.42–0.94); (6) gross 
merchantable volume (R2(adj) = 0.35–0.93); (7) total aboveground biomass (R2(adj) =  
0.23–0.93); and (8) stem density (R2(adj) = 0.17–0.86). Aside from a few cases (i.e., average 
height and density for some stand types), no decimation effect was observed with respect to 
the precision of the prediction of the majority of forest variables, which suggests that a 
mean density of 0.5 pulses m−2 is sufficient for plot and stand level modeling under these 
diverse forest conditions across Ontario. 

Keywords: light detection and ranging; LiDAR; airborne laser scanning; ALS; laser pulse 
density; forest resource inventory; remote sensing; forestry 

 

1. Introduction 

There has been a rapid growth in the application of airborne light detection and ranging (LiDAR) data 
for forestry, especially with respect to the potential production of enhanced forest resource inventories 
(eFRI) and much improved land base feature delineation. Numerous studies have demonstrated 
that forest inventory variables can be measured and modeled accurately (and precisely) from LiDAR 
height and density metrics [1–3]. These include critical parameters, such as species identification [4], 
mean diameter at breast height (DBH) [5,6], stand and canopy structural complexity [7,8], forest 
succession [8], fractional cover [9], leaf area index (LAI) [9,10], crown closure [11], timber 
volume [6,12,13] and biomass [14–17]. Estimation of many forest inventory variables using LiDAR 
data is now moving beyond the research realm and into the operational forum [18–22].  

However, standards for the acquisition, processing and application of LiDAR data for forestry and 
natural resources inventory and management are not well defined, nor are they likely to be 
standardized across all inventory variables or forest types. For example, data acquisition standards that 
determine the optimal acquisition of LiDAR data for forestry (in terms of forest variable estimation 
and cost efficiency) have not been universally defined, nor is there documentation of expert knowledge 
defining suitable acquisition criteria (i.e., survey design) for estimating forest variables. These 
standards are required for the forest industry to gain the best possible return from the technology 
across a range of forest conditions and for specific operational requirements, as well as to maintain 
consistency across surveys within regions. This deficiency must be addressed to provide the forest 
sector, both in industry and government, with a distinct competitive advantage in achieving truly 
sustainable forest management that encompasses economic, ecological, and social values. 

The overall goal of our research has been to examine acquisition standards for collecting, 
processing and analyzing LiDAR data to derive forest inventory attributes that lead to the production 
of an eFRI for Ontario forests. A number of researchers have examined the impacts of different sensor 
and survey parameters on estimating forest inventory variables [23–33]. It has been shown that the 
plot-level vertical distribution of LiDAR pulse returns remains relatively consistent with flying 
altitude, albeit with some subtle differences [27,28]. Næsset [32] also examined the effects of different 
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sensors, flying altitudes and pulse repetition frequencies on LiDAR-derived metrics for estimating 
mean tree height and timber volume for Norway Spruce (Picea abies (L.) Karst) and Scots Pine (Pinus 
sylvestris L.). Results revealed minor differences in precision for the various acquisition parameters 
and systematic differences between acquisitions of up to 2.5% for mean tree height and 10.7% for 
timber volume. However, it is not clear as to what impact pulse repetition frequency has on these 
estimates, since this variable could not be isolated between acquisitions, due to integrated effects of 
different sensors and flying heights.  

Further, it has been demonstrated that pulse power has significant impacts on canopy attribute 
characterization, a variable that will vary with sensor pulse repetition frequency and flying altitude [26]. 
The minimum distance between first and last returns also appears to increase with increasing flying 
altitude, potentially altering the statistical distribution of LiDAR returns within a forest canopy [31]. 
However, Lim et al. [34] examined the statistical nature of 23 LiDAR-derived height and density 
metrics for two LiDAR sampling densities (data acquired on separate acquisitions at different 
altitudes). Only a very small number of metrics corresponding to the tails of the distribution of the 
laser canopy heights differed between the two surveys, indicating that plot-level data characterized by 
higher laser sampling densities do not necessarily result in richer data for biophysical variable 
estimation. Similarly, Bater et al. [33] also observed that most LiDAR first return vegetation height 
metrics did not differ between flight lines of identical sensor and survey parameters, but with differing 
point densities in areas of overlap. The authors concluded that when sensor setting and data acquisition 
parameters are held constant, and time dependent forest dynamics have not changed, LiDAR data are 
suitable for forest monitoring.  

The above studies provide substantial insight into the effects of sensor characteristics and survey 
designs on LiDAR data point distributions, metrics and variable estimation. However, it is difficult to 
isolate single sensor or data acquisition parameters when trying to examine their effects, due to their 
integrated nature and co-dependency. In addition, these studies also exhibit different experimental 
designs across contrasting forest environments, which make comparison difficult [32,33].  

Specifically, a key question that has yet to be isolated and fully addressed, and that the forest 
industry continues to ask as it considers operationalizing the use of LiDAR in forest resource 
inventories, is: What is the optimal point density for predicting forest inventory variables? It is still not 
clear how LiDAR data collected at different point densities impacts the estimation of a full range of 
forest biophysical variables for forest ecosystems across Ontario. Point density is a function of flight 
and sensor parameters which continue to evolve with the development of new sensor technologies. 
These developments will continue to impact data acquisition costs. This research focuses specifically 
on sampling density in order to determine the impacts of LiDAR point density on the prediction of 
forest inventory variables, independent of sensor or flight parameters. It is assumed that lower LiDAR 
point densities will translate into reduced data acquisition costs, always a consideration when 
conducting forest resource inventories. To investigate this question, we examined the impact of three 
point densities (3.2, 1.6, and 0.5 pulses m−2) derived from the same LiDAR data acquisition on the 
prediction of several forest inventory variables for forest types common across Ontario. In this manner, 
we were able to isolate the effect of sampling density on the estimation of forest biophysical variables 
for a range of forest ecosystems. 
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2. Methodology 

2.1. Study Areas 

The three study areas were chosen to exemplify the majority of Ontario’s commercial forest 
landbase. These included the Swan Lake Research Forest (SLRF), Petawawa Research Forest (PRF) 
and Romeo Malette Forest (RMF) (Figure 1). 

Figure 1. Locations of the three study sites in Ontario, Canada. 

 
2.1.1. Swan Lake Research Forest 

The SLRF is a 2000 ha forest located 250 km north of Toronto within the Algonquin Provincial 
Park (45°28′N, 78°45′W) (Figure 1). Elevation at the site ranges from 412 to 587 m above sea level 
(a.s.l.). The site lies on the Precambrian Shield and is characterized by rolling hills and high rocky ridges 
that are separated by valleys, scoured by glaciation. Outwash flats, ablation moraines, and drumlinoid 
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deposits provide soil deposits ranging from coarse to medium texture [21]. The Algonquin Dome, due to 
its elevation, has a climate that is generally more cool and wet than its surrounding areas [35]. Based on 
climate normals from the climate station at Huntsville, Ontario, the SLRF has a mean annual temperature 
of 5.5 °C (January mean (−10.2 °C); July mean (19.4 °C)). The average annual precipitation is 1,032 mm 
with 746 mm falling as rain whereas the average annual snowfall is 286 cm [36]. The SLRF is situated 
within the Great Lakes–St. Lawrence Forest region and comprises mature stands of shade– and  
mid–tolerant hardwoods (sugar maple [Acer saccharum Marsh.], American beech [Fagus grandifolia 
Ehrh.], soft maple [Acer rubrum L.], yellow birch [Betula alleghaniensis Britt.], ironwood [Ostrya 
virginiana (Mill.) K. Koch]), conifers (eastern hemlock [Tsuga canadensis (L.) Carrière], eastern white 
pine [Pinus strobus L.], white spruce [Picea glauca (Moench) Voss], red spruce [Picea rubens Sarg.], 
eastern larch [Larix laricina (Du ROI) K. Koch], eastern white cedar [Thuja occidentalis L.], balsam 
fir [Abies balsamea (L.) Mill.]), and minor proportions of mid–tolerant and intolerant hardwoods (i.e., 
white birch [Betula papyrifera Marsh.], black cherry [Prunus serotina Ehrh.], white ash [Fraxinus 
americana L.], black ash [Fraxinus nigra Marsh.], and trembling aspen [Populus tremuloides 
Michx.]). 

2.1.2. Petawawa Research Forest 

The PRF is located approximately 200 km west of Ottawa and 180 km east of North Bay, just east 
of Chalk River, Ontario (Figure 1). Climate normals for PRF include a mean annual temperature of  
4.3 °C (January mean (−13.0 °C); July mean (19.2 °C)). The average annual precipitation is 853 mm 
with 651 mm falling as rain. Average annual snowfall is 204 cm [36]. PRF lies on the southern edge of 
the Precambrian Shield with its topography strongly influenced by glaciation and post-glacial 
outwashing. The terrain is dominated by: (i) extensive sand plains of mostly deltaic origin; 
(2) imposing hills, shallow, sandy soils, and bedrock outcrops; and (3) gently rolling hills with 
moderately deep, loamy sand containing numerous boulders [21]. Elevations in the area range from 
140 to 280 m a.s.l. The research forest encompasses 10,000 ha of mixed mature natural and plantation 
forest that is representative of the Great Lakes–St. Lawrence Forest and is characterized by eastern 
white pine, red pine (Pinus resinosa Ait.), trembling aspen, and white birch. Red oak (Quercus rubra 
L.) dominates poor, dry soils in the area. Boreal forest species from the north and shade-tolerant 
hardwoods from the south exist on suitable sites. 

2.1.3. Romeo Malette Forest 

The RMF is located in the northeast portion of Ontario’s Boreal Forest near Timmins, Ontario 
(Figure 1). It has a relatively cool climate with a mean annual temperature of 1.3 °C (January mean 
(−17.5 °C); July mean (17.4 °C)). The average annual precipitation is 831 mm with 558 mm falling as 
rain. Average annual snowfall is 313 cm [36]. It is an active forest management unit with 
approximately 532,000 productive forest hectares. The forest is characterized by extensive coniferous 
stands on poorly drained lowlands and gently rising uplands. The northern portion of the study area 
(approximately 40% of the forest area) is located on clay sites, best described as relatively flat to 
gently rolling, interspersed with depressions and eskers [37]. The elevation in the north has a narrow 
range (i.e., from 305 to 320 m), resulting in a high water table and poor drainage across extensive clay 
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deposits [37]. In the southern area (i.e., approximately 60% of the study area), the forest consists of 
glacial deposits of boulder sand till overlying bedrock with elevation ranging from 305 to 381 m a.s.l. 
Topography is typically rolling with the soils exhibiting good drainage [37]. The dominant species are 
black spruce [Picea mariana (Mill) B.S.P.], white birch, trembling aspen, jack pine [Pinus banksiana 
Lamb.], eastern white cedar, white spruce, eastern larch, and balsam fir. Species occurring less 
frequently include black ash, yellow birch, soft maple and red and white pine. 

2.2. LiDAR Data 

Airborne LiDAR data were collected in August 2007 for each of the study areas on a strip basis 
using an Optech ALTM 3100 mounted in a Cessna Grand Caravan aircraft. The base mission was 
flown at 1,000 m altitude with a 20° field of view (½ angle), scan rate of 54 Hz, and a maximum pulse 
repetition frequency of 100,000 Hz. This configuration resulted in a cross-track spacing of 0.499 m, an 
along track spacing of 0.572 m, an average pulse density of 3.2 pulses m−2, and a swath width of 
approximately 475 m. The LiDAR data were classified as ground or non-ground returns by the vendor 
using the TerraScan software and proprietary algorithms. 

2.3. Ground Reference Data 

The forest types sampled were: (i) tolerant hardwoods (i.e., sugar maple, beech, yellow birch)  
(Tol-Hwd); (ii) Great Lakes–St. Lawrence pine communities (i.e., white pine, red pine, jack pine) 
(GrtLks-Pine); (iii) Boreal black spruce (Boreal-SB); (iv) Boreal jack pine (Boreal-PJ); (v) Boreal 
intolerant hardwoods (i.e., white birch, trembling aspen) (Boreal-IH); and (vi) Boreal mixed woods 
(Boreal-MW). Ground reference data were collected for the three study areas during the periods of 
November–December 2007 and May–October 2008. A circular, fixed area plot of 400 m2 (11.28 m 
radius) was used for sampling all forest types except the tolerant hardwood group, where a 1,000 m2 
(17.84 m radius) plot size was used to better represent the uneven-aged size class structures present. 
The centre of each circular plot was geo-referenced with a Trimble Pro XT™ kinematic GPS unit 
connected to a Hurricane™ antenna, mounted on a tripod. A minimum of 300 GPS points were 
collected for each post position and later post-processed against a base station to achieve sub-meter 
accuracy.  

Each plot had all trees larger than or equal to 10.0 cm measured for DBH with a diameter tape. Each 
tree was assessed for species, status (i.e., live or dead), crown class (i.e., dominant, co-dominant, etc.) 
and visual quality. A Vertex™ hypsometer was used to measure tree height for each tree in the plot. 
Heights of deciduous species were measured during leaf-off conditions to obtain the most accurate 
height measurements possible. The forest variables included in the analysis are presented in Table 1.  

A total of 32 plots were established in the SLRF and assigned to the Tol-Hwd forest type. Similarly, 
35 plots were established in the PRF and assigned to the GrtLks-Pine forest type while 136 plots were 
established in the RMF, with each plot assigned to one of four forest types (i.e., Boreal-IH,  
Boreal-MW, Boreal-PJ and Boreal-SB). A summary of the field data for each study site and based on 
forest type are presented in Table 2.  
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Table 1. The forest variables considered for this analysis. 

Variable Alias 
Basal Area (m2) 

SUMBA = ∑ ××
n

i ha
mDBH

04.0
1

40000
)( 2

2 π
 

Value obtained by summing the squared DBH of each tree in a 0.04-ha plot and converting this sum to area 

measure in m2  

SUMBA 

Gross Total Volume (m3 ha−1) [38] 

SUMGTV = b1 * DBH2*(1 − 0.04365* b2)2/( b3 + (0.3048 * b4/Ht)) 
where b1..4 are regression coefficients that vary by species, and Ht is tree height in m. Per hectare value is 

obtained by summing the volume of each tree and dividing by the plot area (ha). 

SUMGTV 

Gross Merchantable Volume (m3 ha−1) [38] 

SUMGMV = SUMGTV * (b1 + b2(X) + b(X2)) 

where b1..3 are regression coefficients that vary by species, and  

 X = [(1+Hs/Ht)(Dtop2/DBH2)];  

 Hs = Stump Height (0.2 m); 

 Ht = Total Tree Height (m);  

 Dtop = Minimum Top Diameter (inside bark) (10 cm). 

Per hectare value is obtained by summing the volume of each tree and dividing by the plot area (ha). 

SUMGMV 

Density (stems ha−1) 

Number of live trees 10.0 cm DBH and larger, expressed per hectare. 

DENSITY 

Quadratic Mean DBH (cm) 

⎥
⎦

⎤
⎢
⎣

⎡∑ nDBH
n

i

2 , where n is stems per plot. 

QMDBH 

Average Height (m) 

The average height of all trees 10.0 cm DBH and larger. 

AVGHT 

Top Height (m) 

The average height of the 100 stems per hectare of largest DBH. 

TOPHT 

Aboveground Biomass (kg ha−1) [39] 

SUMBIO = b1 * DBHb2 

where b1..2 are regression coefficients that vary by species. Per hectare value is obtained by summing the 

biomass of each tree and dividing by the plot area (ha). 

SUMBIO 
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Table 2. Field data statistics for each study site and forest type. 

Variable 

Tolerant  

Hardwoods  

(n = 32) 

Great Lakes  

Pine (n = 35) 

Boreal Black  

Spruce (n = 34) 

Boreal Jack  

Pine (n = 35) 

Boreal Intolerant  

Hardwoods  

(n = 33) 

Boreal  

Mixed woods  

(n = 34) 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

AVGHT  

(m) 
18.9 1.5 22.9 5.3 12.9 2.2 16.1 2.1 16.7 2.0 15.6 2.0 

TOPHT  

(m) 
24.9 1.7 28.5 5.4 16.7 2.5 20.2 3.1 22.6 3.6 22.3 3.8 

QMDBH  

(cm) 
28.5 3.7 31.8 10.4 14.2 2.0 17.0 2.8 18.2 3.7 19.4 2.7 

SUMBA  

(m2·ha−1) 
25.9 3.8 37.1 13.8 25.8 10.5 21.2 9.6 31.4 10.8 32.7 10.5 

SUMGTV  

(m3·ha−1) 
232.8 40.2 434.5 209.3 162.7 79.4 248.8 94.1 266.5 119.9 265.1 117.0 

SUMGMV  

(m3·ha−1) 
201.9 37.2 404.0 206.7 109.0 62.6 105.4 88.7 216.2 116.7 223.1 108.1 

BIOMASS  

(kg·ha−1) 
203,514 34,132 147,058 56,780 100,833 42,733 127,458 45,404 128,732 55,040 138,493 45,676 

DENSITY  

(stems·ha−1) 
421.0 107.8 607.6 393.8 1643.0 691.0 1414.5 470.5 1198.5 307.8 1102.2 334.2 

2.4. Data Processing 

All LiDAR returns were normalized against a triangulated irregular network (TIN) that was 
developed using the LiDAR returns that were classified as ground. The process involved subtracting 
from the original z-value of a return the z-value on the TIN matching its x-y coordinates. No height 
threshold (e.g., 2 m; [40]) was used to filter the LiDAR data. Preliminary tests indicated that 
application of a height threshold did not improve model performance.  

LiDAR data were decimated according to the methodology described by Raber et al. [41]. A 
decimation level 0 (D0) represented the original dataset characterized by a point density of 
approximately 3.2 pulses m−2. The decimation level 1 (D1) LiDAR dataset was derived by taking 
alternating pulses along each scan line with each scan line retained, thereby increasing the cross track 
spacing by a factor of two. For the decimation level 2 (D2) LiDAR dataset, every fourth point along 
each scan line was retained, thereby increasing the cross track spacing by a factor of 4, and every other 
scan line was retained, resulting in an increase in the along-track spacing by a factor of 2. The 
systematic decimation resulted in the D1 and D2 LiDAR datasets possessing point densities of 
approximately 1.6 and 0.5 pulses m−2, respectively (Figure 2). 

Predictor variables were derived statistics from the normalized LiDAR data. In each case, “all” 
returns were used, and height thresholds were not used to filter point data. Potential predictors included 
basic statistics of mean height (mean), standard deviation (std_dev), and absolute deviation around the 
mean height (abs_dev), as well as deciles of LiDAR canopy height (i.e., p10…p90) and the maximum 
(max) LiDAR height. For each plot, the range of LiDAR height measurements was divided into 10 



Remote Sens. 2012, 4                            
 

838

equal intervals and the cumulative proportion of LiDAR returns found in the first nine 
intervals provided as many additional predictors (i.e., d1…d9). The final two predictors were calculated 
as the number of first returns divided by all returns intersecting a sample plot (Da), and the number of 
first and only returns divided by all returns intersecting a sample plot (Db). The entire RMF was 
then subdivided into contiguous 400 m2 (20 m × 20 m) tiles or prediction units (PUs) and the above 
suite of predictor variables calculated for each, creating a 20 m × 20 m raster surface populated with 
LiDAR predictors. In this manner, model prediction surfaces are generated for the entire LiDAR 
coverage (Figure 3). 

Figure 2. Lidar point clouds for a boreal mixed wood plot (top) at the three scanning 
densities: D0: 3.2 pulses m−2 (left); D1: 1.6 pulses m−2 (middle); and D2: 0.5 pulses m−2 
(right). 
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Figure 3. Sample model predicted surface generated from LiDAR height and density 
metrics (i.e., Gross Merchantable Volume (GMV)) for the Romeo Malette Forest (RMF). 

 
2.5. Statistical Analyses 

Multiple stepwise regressions with a significance level of 0.05 were used for constructing models 
for predicting forest inventory variables. A diagnosis of each model was performed to determine if 
parametric statistical assumptions were satisfied. The Shapiro-Wilk Test was used to determine if 
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residuals were normally distributed and the Brown-Forsythe Test was used to check for the presence of 
heteroscedasticity (i.e., unequal error variance). As LiDAR predictors have been reported to be highly 
correlated, the variance inflation factors (VIFs) for the predictors used in each model were examined. 
Candidate models where predictors exhibited VIFs greater than 10 were discarded, as these would 
suggest the presence of multi-collinearity in the predictor data [42].  

Effect of Decimation Treatments 

For each forest variable, predictions from the models constructed for the different decimation levels 
were compared to respective observed values to create a multivariate response vector of absolute 
prediction errors for each plot: 

ei(j) = [e0i(j), e1i(j), e2i(j)] (1) 

where, e0i(j) is the absolute error associated with the undecimated prediction for plot j within each 
forest/type i (Tol-Hwd, GrtLks-Pine, Boreal-PJ, Boreal-SB, Boreal-IH and Boreal-MW): 

)()()( 0ˆ0 jijiji yye −= , (2) 

and e1i(j) and e2i(j) denote similar errors for the decimated predictions, 1.6 and 0.5 pulses m−2, 
respectively. 

Prediction errors were then subjected to repeated measures analyses of variance (RMANOVA), 
treating the different forests/types as fixed effects, and making comparisons of the different decimation 
levels (within-subject effects) with multivariate tests (Wilks’ lambda). RMANOVA is used when all 
members of a sample are measured repeatedly under a number of different conditions. Within the 
context of this study, it was a particular forest variable for a plot that was repeatedly predicted using 
LiDAR data of three varying point densities. Given repeated measurements, the use of a standard 
ANOVA is not appropriate [43]. We contrasted the different decimation levels to test for increases in 
prediction error that were proportional and disproportional to the decimation levels applied (i.e., linear 
and quadratic contrasts, respectively, associated with increasing decimation). With this approach, the 
following null hypothesis was tested for each forest variable: 

H0:  Decimation of the LiDAR point cloud from 3.2 to 1.6 and 0.5 pulses m−2 does not reduce 
prediction precision; versus 

Ha1:  Decimation of the LiDAR point cloud reduces prediction precision proportional to decimation 
level; or 

Ha2: Decimation of the LiDAR point cloud reduces prediction precision disproportional to 
decimation level.  

In cases where a decimation × forest/type interaction was indicated, similar analyses by forest/type 
were used to reveal the source of interaction.  

3. Results and Discussion 

For illustration purposes, the models developed for each variable for Boreal-SB and Boreal-IH plot 
data are presented in Tables 3 and 4. For black spruce, the models typically exhibit very high 
coefficients of determination (i.e., R2 and R2(adj)) with RMSEs, expressed as a percentage of the 



Remote Sens. 2012, 4                            
 

841

predicted means, ranging from approximately 4–19%, typically with only one or two input variables 
(Table 3). Models developed for variables based on intolerant hardwood plots in the RMF also 
exhibited high adjusted coefficients of determination (i.e., R2(adj) = 0.201–0.939) with RMSEs ranging 
from 4 to 23%. Variable-by-stand type results indicate that height-related models (i.e., AVGHT; 
TOPHT; QMDBH) tended to perform well (i.e., RMSEs < 10%) and volume/biomass-related models 
(i.e., SUMBA; SUMGTV, SUMGMV, SUMBIO) performed moderately well (RMSEs typically  
10–20%). Density models tended to exhibit the highest RMSEs (Table 5).  

For all forest variables tested, overall model prediction precision varied strongly with forest/type  
(p ≤ 0.02; Table 6). Boreal-SB variables tended to be predicted with the greatest precision (lowest 
mean absolute errors) and GrtLks-Pine variables with the least precision. The Boreal-SB stands were 
quite similar in that the majority were upland sites with mature black spruce of natural origin, whereas 
the GrtLks-Pine communities were more diverse in terms of species, management, and origin. The 
range of conditions sampled included unmanaged white pine, shelterwood white and red pine, thinned 
and unmanaged red pine plantations, as well as some natural jack pine stands. In future work, this 
group will be subdivided further to better consider the volume/height relationships for these species 
and management conditions.  

With the exception of 2 of the 8 forest variables tested, we generally found little evidence to reject 
the null hypothesis that decimation of the LiDAR point cloud has no affect on model precision  
(p > 0.10; Table 6). In overall analyses, mean prediction errors tended to increase with decimation for 
the variables DENSITY and AVGHT (p ≤ 0.02), but there was evidence to suggest that this situation 
was not consistent across all forest/types studied (p ≤ 0.10). More specifically, DENSITY prediction 
errors for Boreal-PJ increased from 226 stems ha−1 at 3.2 pulses m−2, to 299 and 324 stems ha−1 
through decimation to 1.6 and 0.5 pulses m−2 respectively (decimation linear, p < 0.01).  

To a lesser extent, prediction errors for GrtLks-Pine increased from 171 stems ha−1 at 3.2 pulses m−2, 
to 211 and 192 stems ha−1 through decimation to 1.6 and 0.5 pulses m−2 respectively (decimation 
quadratic, p = 0.09). Thinning treatments had been applied to these forests/types potentially giving rise 
to increased error as a function of insufficient sample size to account for a suitable range of density 
conditions. 

Similarly, AVGHT prediction errors for Boreal-MW and GrtLks-Pine tended to increase sharply 
(30 to 40%) with the highest level of decimation (i.e., 0.5 pulses m−2) (decimation quadratic, p ≤ 0.10). 
However, these examples appear rare in the context of the overall data set and one may argue that with 
a significance level of 10%, we might expect to observe trends that suggest rejection of H0 up to 10% 
of the time simply through random chance alone. Thus, we feel that it is reasonable to conclude that 
decimation of the LiDAR point cloud from 3.2 to 1.6 and 0.5 pulses m−2 did not reduce the prediction 
precision of the forest variables tested. 

The ability to significantly reduce LiDAR pulse density for forest inventory modeling without 
affecting prediction accuracy or precision provides significant financial savings in data acquisition and 
processing. Although not tested in this study, it is anticipated that accurate and precise digital elevation 
models (DEMs) of a finer scale than possible in the past can also be derived from low density LiDAR 
data, even in leaf-on conditions. 
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Table 3. Models (and associated statistical descriptors) developed for variables, based on black spruce plots in the RMF. Models are presented 
for each of the decimation levels (i.e., D0 ~3.2 pulses m−2; D1 ~1.6 pulses m−2; D2 ~0.5 pulses m−2). Similar sets of models were developed 
for SLRF (Tol-Hwd), PRF (GrtLks-Pine), and RMF (Boreal-PJ, Boreal-SB, Boreal-IH and Boreal-MW). 

Variable Decimation 
Level 

Equation R2 R2 
(Adj) 

RMSE RMSE 
(%) 

AVGHT D0 2.41 + 0.948 p90 + 2.80 d1 − 0.0821 Da 0.951 0.946 0.49 3.81 
(m) D1 1.73 + 0.836 p90 + 2.99 d2 0.941 0.938 0.53 4.16 
 D2 2.34 + 0.802 p90 + 2.26 d3 0.936 0.932 0.56 4.34 
TOPHT D0 2.32 + 0.547 max + 0.436 p90 0.923 0.918 0.69 4.10 
(m) D1 2.10 + 0.578 max + 0.429 p90 0.927 0.922 0.66 3.98 
 D2 3.79 + 0.577 max + 0.326 p90 0.903 0.897 0.77 4.58 
QMDBH D0 8.03 + 1.18 p90 − 0.327 Da − 0.138 p40 0.838 0.822 0.82 5.80 
(cm) D1 8.58 + 1.07 p90 − 0.308 Da 0.783 0.769 0.95 6.72 
 D2 2.44 + 1.12 p90 − 0.234 Da + 5.33 d6 0.863 0.850 0.76 5.34 
SUMBA 
(m2·ha−1) 

D0 58.9 - 20.2 d5 + 1.58 p50 − 0.379 Db 0.918 0.909 3.01 11.68 
D1 −0.91 + 2.23 p50 + 0.622 Da 0.910 0.904 3.15 12.22 
D2 48.6 + 1.26 p60 + 1.27 p40 − 0.478 Db 0.935 0.929 2.66 10.33 

SUMGTV 
(m3·ha−1) 

D0 −702 + 32.1 mean − 210 d6 + 873 d9 − 110 p20 0.949 0.942 17.96 11.04 
D1 −66.3 + 42.2 mean − 5.59 p30 0.927 0.922 21.52 13.23 
D2 268 + 23.5 mean − 3.30 Db + 4.95 p40 0.942 0.936 19.14 11.77 

SUMGMV 
(m3·ha−1) 

D0 −114 + 5.63 p40 + 17.4 p90 0.916 0.910 18.19 16.69 
D1 −182 + 20.1 p80 + 7.02 p40 + 113 d4 0.915 0.907 18.25 16.74 
D2 −195 + 41.5 mean + 164 d3 − 282 p10 0.939 0.933 15.46 14.18 

SUMBIO D0 −321894 + 15682 mean − 114298 d6 + 427669 d9 0.925 0.918 11 673 11.58 
(kg·ha−1) D1 −17265 + 21243 mean 0.905 0.902 13 199 13.09 
 D2 157912 + 11931 mean − 1752 Db + 3131 p40 0.932 0.925 11 143 11.05 
DENSITY 
(stems·ha−1) 

D0 −112 − 4076 d3 + 3254 p10 − 159 p30 − 180 p80 − 56.4 Db + 106 p40 + 9705 d9 0.888 0.857 231.84 14.11 
D1 5380 − 4678 d4 + 5580 p10 − 134 p30 − 95.9 p90 0.794 0.766 313.83 19.10 
D2 11212 − 2363 d4 − 204 p90 − 80.4 Db + 70.5 p40 0.861 0.842 257.74 15.69 
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Table 4. Models (and associated statistical descriptors) developed for variables, based on intolerant hardwood plots in the RMF. Models are 
presented for each of the decimation levels (i.e., D0 ~3.2 pulses m−2; D1 ~1.6 pulses m−2; D2 ~0.5 pulses m−2). Similar sets of models were 
developed for SLRF (Tol-Hwd), PRF (GrtLks-Pine), and RMF (Boreal-PJ, Boreal-SB, Boreal-IH and Boreal-MW). 

Variable Decimation Level Equation R2 R2(Adj) RMSE RMSE (%) 

AVGHT 
(m) 

D0 8.01 + 0.498 p80 0.767 0.750 1.00 6.02 
D1 7.99 + 0.499 p80 0.764 0.756 1.01 6.05 
D2 8.03 + 0.496 p80 0.773 0.766 0.99 5.93 

TOPHT 
(m) 

D0 3.04 + 0.628 p90 + 0.356 max 0.941 0.937 0.89 3.95 
D1 3.03 + 0.627 p90 + 0.359 max 0.939 0.935 0.90 4.01 
D2 3.29 + 0.629 p90 + 0.351 max 0.943 0.939 0.87 3.87 

QMDBH 
(cm) 

D0 1.06 + 0.925 p90 0.842 0.837 1.50 8.21 
D1 1.05 + 0.925 p90 0.843 0.838 1.50 8.20 
D2 0.93 + 0.932 p90 0.840 0.834 1.51 8.28 

SUMBA 
(m2·ha−1) 

D0 −16.1 + 4.16 mean 0.837 0.831 4.45 14.12 
D1 −16.1 + 4.15 mean 0.833 0.827 4.50 14.29 
D2 −15.8 + 4.12 mean 0.823 0.817 4.62 14.68 

SUMGTV 
(m3·ha−1) 

D0 −175 + 30.0 p80 − 331 d2 0.880 0.872 42.17 15.76 
D1 −261 + 45.6 p80 − 38.9 stddev 0.877 0.868 42.70 15.96 
D2 −267 + 30.7 p80 0.860 0.855 45.52 17.01 

SUMGMV 
(m3·ha−1) 

D0 −310 + 30.3 p80 0.873 0.869 42.14 19.40 
D1 −312 + 30.3 p80 0.871 0.867 42.55 19.59 
D2 −308 + 30.1 p80 0.877 0.873 41.56 19.13 

SUMBIO 
(kg·ha−1) 

D0 −103147 + 20390 mean 0.788 0.781 25,562 19.68 
D1 −103157 + 20351 mean 0.784 0.777 25,789 19.85 
D2 −101819 + 20193 mean 0.775 0.767 26,332 20.27 

DENSITY D0 1875 − 2465 d3 0.239 0.214 272.68 22.78 
(stems·ha−1) D1 1853 − 2413 d3 0.227 0.201 274.84 22.96 

 D2 1867 − 2486 d3 0.248 0.223 271.06 22.65 
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Table 5. Root Mean Square Errors (RMSEs) for model developed for variables, based on forest inventory plots in the Romeo Malette Forest, 
Swan Lake Research Forest and Petawawa Research Forest. RMSEs are presented for each of the decimation levels (i.e., D0 ~3.2 pulses m−2; 
D1 ~1.6 pulses m−2; D2 ~0.5 pulses m−2). Percent RMSEs are presented in brackets. 

Variable Romeo Malette Forest 
Swan Lake Research 

Forest 
Petawawa Research 

Forest 

 Jack Pine Black Spruce Intolerant Hardwoods Mixed Woods Tolerant Hardwoods Great Lakes Pine 

 D0 D1 D2 D0 D1 D2 D0 D1 D2 D0 D1 D2 D0 D1 D2 D0 D1 D2 

AVGHT 
(m) 

0.79 
(4.9) 

0.81 
(5.0) 

0.83 
(5.2) 

0.49 
 (3.8) 

0.53 
 (4.2) 

0.56 
 (4.3) 

1.00 
 (6.0) 

1.01 
 (6.1) 

1.00 
 (5.9) 

0.73 
 (4.6) 

0.84 
 (5.3) 

0.93 
 (6.0) 

0.62 
 (3.4) 

0.62 
 (3.4) 

0.59 
 (3.2) 

1.5 
 (6.6) 

1.5 
 (6.7) 

2.0 
 (9.2) 

TOPHT 
(m) 

0.42 
 (2.1) 

0.50 
 (2.5) 

0.56 
 (2.8) 

0.69 
 (4.1) 

0.66 
 (4.0) 

0.77 
 (4.6) 

0.89 
(4.0) 

0.90 
 (4.0) 

0.87 
 (3.9) 

0.55 
 (2.5) 

0.63 
 (2.8) 

0.61 
 (2.8) 

0.83 
 (3.5) 

0.84 
 (3.5) 

0.86 
 (3.5) 

1.2 
 (4.4) 

1.3 
 (4.6) 

1.3 
 (4.7) 

QMDBH 
(cm) 

1.5 
 (8.7) 

1.4 
 (8.4) 

1.6 
 (9.3) 

0.82 
 (5.8) 

0.95 
 (6.7) 

0.76 
 (5.3) 

1.50 
 (8.2) 

1.50 
 (8.2) 

1.51 
 (8.3) 

1.61 
 (8.3) 

1.63 
 (8.4) 

1.65 
 (8.5) 

2.3 
 (8.4) 

2.0 
 (7.2) 

2.0 
 (7.1) 

5.4 
 (17.5) 

5.4 
 (17.5) 

4.3 
 (14.0) 

SUMBA 
(m2·ha−1) 

4.3 
 (13.7) 

4.5 
 (14.4) 

4.2 
 (13.5) 

3.0 
 (11.7) 

3.2 
 (12.2) 

2.7 
 (10.3) 

4.5 
 (14.1) 

4.5 
 (14.3) 

4.6 
 (14.7) 

5.4 
 (16.6) 

5.4 
 (16.4) 

5.5 
 (16.8) 

3.2 
 (12.6) 

3.1 
 (12.5) 

3.2 
 (12.8) 

5.2 
 (14.6) 

5.2 
 (14.4) 

5.4 
 (14.9) 

SUMGTV 
(m3·ha−1) 

31.1 
 (12.5) 

31.8 
 (12.8) 

31.7 
 (12.7) 

18.0 
 (11.0) 

21.5 
 (13.2) 

19.1 
 (11.8) 

42.2 
 (15.8) 

42.7 
 (16.0) 

45.5 
 (17.0) 

48.1 
 (18.2) 

47.1 
 (17.8) 

48.2 
 (18.2) 

29.2 
 (12.9) 

26.3 
 (11.7) 

28.9 
 (12.8) 

57.1 
 (13.7) 

55.7 
 (13.3) 

59.9 
 (14.4) 

SUMGMV 
(m3·ha−1) 

33.6 
 (17.2) 

31.1 
 (15.9) 

26.1 
 (13.4) 

18.2 
 (16.7) 

18.3 
 (16.7) 

15.5 
 (14.2) 

42.1 
 (19.4) 

42.6 
 (19.6) 

41.6 
 (19.1) 

42.7 
 (19.1) 

41.4 
 (18.6) 

42.9 
 (19.2) 

28.9 
 (14.8) 

28.9 
 (14.8) 

27.0 
 (13.8) 

57.5 
 (14.8) 

57.1 
 (14.7) 

56.1 
 (14.5) 

SUMBIO 
(kg·ha−1) 

17,479
 (13.7) 

17,972
 (14.1) 

17,842 
 (14.0) 

11,673
 (11.6) 

13,199
 (13.1) 

11,143
 (11.1) 

25,789
 (19.7) 

25,562
 (19.9) 

26,332
 (20.3) 

20,000 
 (14.4) 

19,469
 (14.1) 

22,510
 (16.3) 

26,884
 (13.6) 

28,532
 (14.5) 

28,966
 (14.7) 

33,135
 (23.3) 

32,250 
 (22.7) 

29,989 
 (21.1) 

Density 
(stems·ha−1) 

278.2
 (19.7) 

372.7
 (26.4) 

394.3 
 (27.9) 

231.8
 (14.1) 

313.8
 (19.1) 

257.7
 (15.7) 

272.7
 (22.8) 

274.8
 (23.0) 

271.1
 (22.7) 

312.6 
 (28.4) 

313.7
 (28.5) 

312.7
 (28.4) 

51.9 
 (12.7) 

42.1 
 (10.3) 

43.7 
 (10.7) 

226.7
 (37.8) 

265.1 
 (44.2) 

247.8 
 (41.3) 
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Table 6. Summary of mean absolute errors for the decimation levels tested and p-values 
from RMANOVA (Wilks’ lambda) testing for decimation and forest/type effects and their 
interaction. (Note: values in bold suggest a loss of precision with increasing decimation for 
some forest/types). 

 AVGHT 

m 

TOPHT 

m 

QMDBH 

cm 

SUMBA 

m2·ha−1 

SUMGTV 

m3·ha−1 

SUMGMV 

m3·ha−1 

SUMBIO 

kg·ha−1 

DENSITY 

stems·ha−1 

Overall mean absolute error:         

3.2 pulses·m−2 0.65 0.59 1.69 3.4 29.1 29.4 17,285 176 
1.6 pulses·m−2 0.68 0.59 1.69 3.3 29.1 28.5 17,631 206 
0.5 pulses·m−2 0.76 0.61 1.52 3.4 30.5 27.3 17,688 201 

         
Source of variation:         
  Decimation 0.02 0.30 0.09 0.94 0.46 0.23 0.62 <0.01 
  linear <0.01 0.14 0.05 0.86 0.25 0.10 0.56 <0.01 
  quadratic 0.17 0.57 0.08 0.82 0.29 0.64 0.80 0.07 
  Decimation  × Forest/Type 0.10 0.98 <0.01 0.96 0.72 0.87 0.32 <0.01 
  Forest/Type <0.01 <0.01 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 

4. Conclusions 

The results from this research demonstrate that a point density of 0.5 pulses·m−2 is sufficient for the 
estimation of forest inventory variables at the plot and stand levels for the different forest types 
considered in this study. In cases where a decimation effect was observed for a forest variable, the 
effect may be attributed to differences in model form, specifically as it relates to number of predictors 
used. This study provides further evidence that low-density LiDAR-based predictions offer significant 
potential for integration into tactical forest resource inventories for a range of forest ecosystems across 
Ontario. LiDAR data can provide a number of important surfaces (i.e., bare earth digital elevation 
model; forest inventory predictor surfaces) that are critical to tactical forest management and planning. 
Further research into the generation of additional surfaces related to terrain should provide more 
precise characterization of moisture and nutrient regimes for modeling of forest ecosites.  
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