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Abstract: In this paper, the three-component power decomposition for polarimetric SAR 

(PolSAR) data with an adaptive volume scattering model is proposed. The volume 

scattering model is assumed to be reflection-symmetric but parameterized. For each image 

pixel, the decomposition first starts with determining the adaptive parameter based on 

matrix similarity metric. Then, a respective scattering power component is retrieved with 

the established procedure. It has been shown that the proposed method leads to complete 

elimination of negative powers as the result of the adaptive volume scattering model. 

Experiments with the PolSAR data from both the NASA/JPL (National Aeronautics and 

Space Administration/Jet Propulsion Laboratory) Airborne SAR (AIRSAR) and the JAXA 

(Japan Aerospace Exploration Agency) ALOS-PALSAR also demonstrate that the 

proposed method not only obtains similar/better results in vegetated areas as compared to 

the existing Freeman-Durden decomposition but helps to improve discrimination of the 

urban regions. 
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1. Introduction 

The polarimetric synthetic aperture radar (PolSAR) data have never been so widely available to  

the remote sensing community as it is today, thanks to the launch of recent systems such as  

ALOS-PALSAR, RADARSAT-2, TerraSAR-X, etc. Effective and efficient interpretation of such mass 

amount of data thus meets its urgent need. Among the many analyzing tools, polarimetric scattering 

power decomposition methods [1–9] have become a popular choice because of their clear physical 

explanation, convenient implementation, and easy visual interpretation. 

The original three-component decomposition proposed by Freeman and Durden [1] models the 

volume scattering as a cloud of uniformed distributed dipoles, and this leads to the use of a fixed 

coherency matrix. However, a practical issue associated with a fixed volume scattering model is that 

negative powers which are physically unacceptable may arise for the extracted surface and  

double-bounce scattering. Attempts have been made to correct such a problem as in [2,3]. In a more 

recent paper, a non-negative eigen-value constraint has been added [4]. The volume scattering power  

is obtained as the maximum value retaining the positive-definiteness of the remaining covariance 

matrix. The surface scattering and double-bounce scattering powers are thus derived through  

eigen-decomposition. Such treatment also produces a fourth component, called the remainder, which 

may not necessarily represent any known scattering mechanism. Arii et al. [5] take a further step in 

this framework by introducing an adaptive volume scattering model. The adaptive parameters are 

determined by minimizing the power in the covariance matrix after the volume scattering is subtracted. 

This method generally takes longer to process because numerical searching in the parameter space  

is needed. 

In this paper, we modify the three-component scattering power decomposition method with an 

adaptive volume scattering model. The adaptive volume scattering model is proposed with three 

purposes. Firstly, it is to render a mathematically rigorous treatment for eliminating negative powers; 

secondly, it will not drastically deviate from existing physically-based models (e.g., cloud of dipoles) 

in vegetated areas; last, it remains easy and fast given the large dimensions of remotely sensed data. 

The paper is organized as follows. In Section 2, double transformation of the coherency matrix is 

introduced as a preprocessing step. In Section 3, the adaptive volume model is proposed together with 

the associated decomposition algorithm. In Section 4, experimental results with PolSAR data are 

presented. Finally Section 5 gives some discussion and concludes the paper.  

2. Double Transformation of Coherency Matrix 

In this section, we adopt the method of [6] to perform a double transformation on the coherency 

matrix as a preprocessing of the PolSAR data. It has been shown that this procedure helps discriminate 

oblique urban areas from vegetation and consequently gives a more accurate result [3,6,7]. In the 

following, we describe the transformation method in order to be self-contained. Some important 

properties of the transformed coherency matrix are also pointed out which accounts for the success of 

the proposed decomposition as will be explained in Section 4. 
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2.1. Orthogonal Transformation (Rotation) of Coherency Matrix  

In this paper, the data format of the coherency matrix is dealt with. It should be noted that in the 

original paper by Freeman and Durden, a covariance matrix is decomposed [1]. Coherency matrix and 

covariance matrix are in fact equivalent to each other in the sense of linear transformation. However, 

the coherency matrix represents a clearer physical explanation in terms of surface and double bounce 

scattering. It also renders a simpler formula for orientation angle compensation as will be seen later. 

As a second order statistic of the polarimetric information, the coherency matrix is formed by 

ensemble averaging the outer-product of the Pauli vector, i.e.,  

    

         

   
       

   
    

    

       
   (1)  

where the superscripts * and 
H
 denote the complex conjugate and the conjugate transpose, respectively; 

   
 

  
                      

  is the Pauli vector. Rotation of T by the orthogonal 

transformation is defined as [7]: 

             
      

                  
   

                
   

       
          

  (2)  

where       is an orthogonal matrix given by: 

       
   
           
            

  (3)  

The rotation angle    is derived by minimizing the        term. Specifically, according to 

Equations (2) and (3),        becomes: 

       
 

 
          

 

 
                               (4)  

Equating the derivative of        to zero yields: 

      
        

       
 (5)  

From Equation (5) we have                         . By substituting         into  

Equation (4), and after some necessary simplification,        can be rewritten as: 

       
 

 
           

       

     
  (6)  

For minimizing       , it follows from Equation (6) that         and       should be of the 

same sign. Then according to Equation (5), we have: 

   
 

 
       

        

       
      (7)  

where     if          ; and     if          . 
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It is worth noting that rotating the coherency matrix by the orthogonal transformation leads to two 

important properties for     . Firstly,        is always larger than       , i.e.,              ; 

second,        becomes purely imaginary and                . As will be shown in Section 3,  

the former property is a necessary condition that guarantees non-negative powers in the  

decomposition results. 

2.2. Unitary Transformation of Coherency Matrix  

In [6], it is proposed that the matrix      is further processed by a unitary transformation, that is: 

      

                  
   

                
   

       
          

             
     (8)  

where       is a unitary matrix given by 

       

   
            
            

  (9)  

The rotation angle    is also derived by minimizing        and by a similar reasoning. It is: 

   
 

 
      

           

             
  (10)  

Note that in Equation (10)              , as the result of the orthogonal transformation by      , 

so that no ambiguity correction is needed as in Equation (7). 

In the transformed coherency matrix     , the inequality               still holds because of 

the minimization of       ; in addition, it can be easily proved that the element        is forced to be 

completely zero, i.e.,         . 

It is interesting to point out that the orthogonal transformation       and the unitary transformation 

      are related to the normalized circular-pol correlation coefficients proposed by Ainsworth et al. [8] 

which are used to characterize man-made structures in urban areas. Here the transformation angle   

and   respectively account for the orientation angle and helicity in their paper. This again explains that 

distinction of man-made structures can be improved by such a double transformation. 

One last comment on the orthogonal/unitary transformation is that they do not change the 

coherency matrix of the volume scattering as long as it is modeled as a diagonal matrix with equal 

second and third diagonal elements as is shown in Equation (12) in the next section. This legitimates 

estimating the volume scattering power from the transformed matrix if reflection symmetry and 

uniformly distributed random scatterers are assumed. For simplicity, we denote         which will 

be hereafter used for power decomposition. 

3. Adaptive Volume Scattering Model and Power Decomposition  

The volume scattering is originally modeled by a cloud of uniformly distributed dipoles [1] whose 

coherency matrix is given by: 
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   (11)  

However, it has been observed that this model sometimes leads to over-estimation of the volume 

scattering power and consequently generates a negative power in the derived surface and  

double-bounce scattering [3]. This phenomenon happens whenever    
      

  in the transformed 

coherency matrix. In order to prevent such a problem, we relax the volume scattering model  

as follows: 

       
   
   
   

         (12)  

Equation (12) is able to represent a range of existing volume scattering models by introducing the 

adaptive parameter  . For example, when    , then it denotes a cloud of dipoles [1]; when    , 

then it is the maximum randomness model proposed by An et al. [3]; when    , it becomes  

the extended volume scattering model for urban areas [9] (except for a different scatterer  

orientation distribution). 

The parameter   can be adaptively determined by choosing the best fit of the volume scattering to 

the observed data. Specifically, we employ the concept of a similarity parameter proposed in [10]. 

Mathematically the optimization problem is modeled as: 

         
     

 
            

           
   (13)  

The reason why the similarity parameter is chosen is that it offers the most natural way to compare 

two matrices. In fact, it represents the inner product of the vector space spanned by 3 × 3 Hermitian 

matrices. If we define the inner product of two Hermitian matrices   and   as         where       

denotes the trace, then it is easy to derive the solution of Equation (13) as follows: 

   
     

     
     

    
 

   
     

   (14a)  

   
     

     
        (14b)  

After    has been determined, the remaining procedure is the same to that of the Freeman-Durden 

decomposition [1]. However, it can be shown that as a consequence of the adaptive volume model 

Equation (14), the negative power problem will be completely avoided. After subtracting the volume 

scattering from   , the remaining coherency matrix becomes: 

          
     

    
   

       
    

  
    

      
     

  
   

   (15)  

Note, in Equation (15)    
     

    always holds as a result of the double transformation introduced 

in Section 2. It is also easy to verify that    
       

    as a result of Equation (14). In other words, 

both diagonal elements remain positive, which prevents any possible negative solutions. 
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Still, positivity in the diagonal elements does not always guarantee a solution when equating the 

remaining coherency matrix to the weighted sum of surface and double-bounce models, that is: 

                 
   

       
   

     
      
    
   

               (16)  

where   ,   ,  , and   are unknowns to be determined. According to Equations (15) and (16), one 

needs to solve the following equations: 

             
       

   (17a)  

             
     

   (17b)  

           
   (17c)  

Whether a solution exists to Equation (17) depends on the relationship between     
       

   

    
     

   and     
  

 
. If     

       
      

     
       

  
 
, then at least one physically meaningful 

(non-negative power) solution exists to Equation (17). In fact, the common treatment by assuming 

there is a dominant scattering mechanism [1] gives one a reasonable result. Another solution can be 

also derived by the eigen-decomposition approach [4]. 

However, if     
       

      
     

       
  

 
, it can be proved that no solution to Equation (17) 

exists (Appendix 1). In this case,   ,   ,  , and   are found by: 

   
         

             
   

                         
       

               
     

  
 (18)  

The solution of the above problem is as follows (Appendix 1): 

   
       

     
     

        
       

          
   

     
 

   
       

 

   
 

    
  

  (19a)  

   
       

     
     

             
     

     
   

       
 

   
     

 

   
 

    
  

  (19b)  

Note that in Equation (19a) the value of   has no significance because the double-bounce scattering 

does not contribute to the total power (    ) and vice versa. 

To sum up, the entire procedure for decomposing the PolSAR data using the adaptive volume 

scattering models is illustrated by the flowchart in Figure 1. 
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Figure 1. Flowchart of three-component power decomposition with adaptive volume 

scattering model. 

 

4. Experimental Results  

A C-band PolSAR image acquired by the NASA/JPL (National Aeronautics and Space 

Administration/Jet Propulsion Laboratory) Airborne SAR (AIRSAR) is selected for testing the 

proposed method. The image is originally multi-look processed but further spatial multi-looking is 

performed by combining 2 × 2 (range × azimuth) neighboring pixels in order to suppress the speckle 

effect. The image scene is primarily covered by forested areas which can be used for validating the 

volume scattering model. Figure 2(a) displays the color-coded decomposition image with a fixed 

volume scattering model of Equation (11) and Figure 2(b) is the color-coded decomposition image 

with the adaptive volume scattering model of (12). Furthermore, Figure 2(c) shows the map of   in the 

adaptive volume scattering model for each pixel. It can be seen that in most of the forested area,   is 

equal or near to the theoretical value of 2. For example, the averaged volume scattering model within 

the selected rectangle in Figure 2(c) is: 

     
      
   
   

   (20)  
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This is very close to the original model of Equation (11) which prevents volume scattering from 

being under-estimated in vegetated areas. In order to examine the results quantitatively, the power 

distributions of Figure 2(a,b) in the same selected patches are shown in Figure 3. It can be seen that in 

the vegetated area, using the fixed volume scattering model and the adaptive scattering model produce 

very similar results. However, for man-made structures, as indicated by the arrows in Figure 2,   is 

much lower than 2, indicating the volume scattering is significantly reduced so that the surface and 

double-bounce scattering are enhanced. Moreover, while the decomposition result with the fixed 

volume scattering model produces negative powers for 18,965 pixels out of a total of 327,168 pixels, 

the proposed method gives positive solutions all over the image. 

Figure 2. (a) Original Freeman-Durden decomposition result for AIRSAR data;  

(b) Proposed adaptive decomposition result for AIRSAR data; (c) Map of  . 

 

(a) 

 

(b) 
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Figure 2. Cont. 

 

(c) 

Figure 3. (a) Power distribution of original Freeman-Durden decomposition in vegetated 

area; (b) Power distribution of proposed adaptive decomposition in vegetated area. 

  

Legend 

 

(a) (b)  

The ability of the proposed method to improve discrimination of man-made structures is more 

evident in Figure 4, where a PolSAR image acquired by ALOS-PALSAR over the Beijing suburban 

area is experimented with. Spatial multi-looking has been performed by combining 12 (azimuth)× 2 

(range) pixels so that square ground spacing is approximately achieved. Again, it can be seen from 

Figure 4(c) that in the urban area, the parameter   (and consequently the volume scattering power) is 

significantly reduced. This phenomenon can be also observed in the upper right corners of both  

Figure 4(a,b) which are correspondingly zoomed in Figure 5(a,b). Again, we draw the power 

distributions for the selected urban area and the results are shown in Figure 6. Compared to Figure 3, 

we can see that the volume scattering power is more suppressed in the urban area than in the vegetated 
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area by the proposed method. This helps to discriminate manmade structures especially oblique to the 

radar azimuth direction as in Figure 5. 

Figure 4. (a) Original Freeman-Durden decomposition result for ALOS-PALSAR data;  

(b) Proposed adaptive decomposition result for ALOS-PALSAR data; (c) Map of  . 

 

(a) 

 

(b) 
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Figure 4. Cont. 

 

(c) 

Figure 5. (a) Zoomed result by the original Freeman-Durden decomposition; (b) Zoomed 

result by the proposed adaptive decomposition 

 

(a) (b) 

Figure 6. (a) Power distribution of original Freeman-Durden decomposition in urban area; 

(b) Power distribution of proposed adaptive decomposition in urban area. 

  

Legend 

 

(a) (b)  
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5. Discussion  

It is worth noting that the adaptive volume scattering model proposed in this paper is similar to that 

used by Freeman [11], which can be rewritten in its equivalent coherency matrix form as: 

        
   
   
   

        (21)  

By comparing Equations (12) and (21), the difference lies in the range for  . However, Equation (21) 

cannot be directly used in the three-component decomposition scheme because there exists risk in 

over-estimating the volume scattering power (note   can be arbitrarily large by definition). Instead, 

Freeman proposed to use it in a two-component scattering model for fitting the PolSAR data from 

forests. In our model, on the other hand, we specifically restrict the upper bound of  . This is validated 

by Equation (20) where the averaged volume scattering model in forested areas indeed approximates 

the maximum theoretical setting. In addition, our model tries to account for the volume scattering 

mechanism in urban areas by letting    , which equivalently indicates that the HH-VV correlation is 

out of phase, i.e.,          
    . An explanation of this phenomenon is that the volume scattering 

within urban areas can be affected by randomly orientated double-bounce scatterers. Our experiments 

showed that discrimination of urban areas is improved by such an assumption. 

6. Conclusion  

In this paper, we have proposed an adaptive three-component power decomposition method for 

PolSAR data. This method modifies the original Freeman-Durden decomposition [1] by adopting an 

adaptive volume scattering model. Although our adaptive model takes a similar form to that in [11], 

there exist significant distinctions including the range of the adaptive parameter as well as the 

decomposition methodology. In [11], the adaptive volume scattering model is fitted under a  

two-component decomposition scheme where the adaptive parameter is derived by solving established 

equations; while in our method the adaptive parameter is derived by solving an optimization problem 

thanks to the use of a similarity parameter [10]. This treatment enables us to incorporate the adaptive 

volume scattering model into the three-component decomposition scheme and the increased 

methodological complexity is negligible. 

Experimental results demonstrate that, compared with the original Freeman-Durden decomposition 

with the fixed volume scattering model, the proposed method produces similar/better decomposition 

results in vegetated areas, but on the other hand is able to improve discrimination in urban regions. In 

addition, the proposed method always produces non-negative powers and the power sum of all 

components equals the total power. This is done with mathematical rigor rather than in an ad-hoc fashion 

so that further quantitative analysis can be reliably conducted based on the decomposition result. 
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Appendix 

We first prove that if     
       

      
     

       
  

 
, then there exists no solution to 

Equation (17). Specifically, we prove that if Equations (17a) and (17b) hold, Equation (17c) will be not 

satisfied. According to Cauchy-Schwarz inequality, we have: 

                                      
       

      
     

       
    (A1)  

Equation (A1) shows that for any   ,    ,  , and  ,               
  , which contradicts 

Equation (17c). Thus no solution to Equation (17) can be found. 

Next we solve the problem of Equation (18) under     
       

      
     

       
  

 
. According 

to the triangular inequality and Equation (A1), we have: 

            
       

                 
        

       
      

     
   (A2)  

The above equality holds if and only if: 
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  (A3a)  

           (A3b)  

           (A3c)  

where       are the proportional constants. Substituting Equations (A3b) and (A3c) into the 

equation constraints of Equation (18), we have: 

  
   

       
 

   
     

  (A4)  

If    , note that      , then according to Equation (A3c)     ; on the other hand, if    , note 

that      , according to Equation (A3b)     . The rest of the procedure is straightforward and the 

final result is given in Equation (19). 
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