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Abstract: Canopy height data collected with an airborne laser scanner (ALS) flown across 

unmanaged parts of Canada’s boreal forest in the summer of 2010 were used—as  

stand-alone data—to derive a least-squares polynomial (LSPOL) between presumed  

post-fire recovered canopy heights and duration (in years) since fire (YSF). Flight lines of 

the >25,000-km ALS survey intersected 163 historic fires with a known day of detection 

and fire perimeter. A sequential statistical testing procedure was developed to separate 

post-fire recovered canopy heights from pre-fire canopy heights. Of the 153 fires with 

>5 YSF, 121 cases (89%) could be resolved to a complete or partial post-fire canopy 

replacement. The estimated LSPOL can be used to estimate post-fire aboveground biomass 

and carbon sequestration in areas where alternative information is dated or absent. These 

LIDAR derived findings are especially useful as existing growth information is largely 

developed for higher productivity ecosystems and not applicable to these ecosystems 

subject to large wildfires.  

Keywords: airborne laser scanner; forest fire; canopy height distribution; unimodality;  

k-means clustering; aboveground biomass; carbon sequestration 

 

1. Introduction 

Forested areas in Canada’s northern regions are largely unmanaged and are not subject to resource 

surveys with the same level of detail or regularity as those in regions to the south [1–3]. Provincial 
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survey activities are typically linked to strategic planning over managed forest areas where forest 

harvesting is practiced. Canada’s northern forested areas are generally low-productivity environments 

that are also distant from populations and markets. In the absence of harvesting, wildfire is the key 

agent of disturbance, and fire suppression is commonly not pursued. In an effort to augment 

monitoring and inventory activities in Canada’s northern forested regions, we carried out an airborne 

laser scanner (ALS) campaign during the summer of 2010. The objective was to obtain representative 

information about forest canopy height, model-based estimates of stem-volume, and biomass [4–6]. 

Using a discrete return scanning laser system, we flew 34 transects over a total distance of 25,000 km 

across Canada’s boreal forests [7]. Based on the flying height and scan angle, the swath width of 

transects was 400 m or greater. Several transects (25) intersected areas burned in fires with a known 

incidence date and fire perimeter, with fires dating back to 1942. The most recent fire burned in 2007. 

The 2010 canopy heights derived from the ALS data provide a basis from which to estimate the rate of 

recovery of the vegetation after a fire [8–10]. Note that, due to remoteness and logistical 

considerations, the campaign did not include co-located collection of field data or other information in 

areas disturbed by fire. 

Information on canopy recovery is important since canopy height is strongly correlated with live 

aboveground forest biomass, which, in turn, is correlated to the amount of carbon stored in 

aboveground live biomass components of a forested area [11–13]. Canopy height recovery following a 

forest fire is an important variable in the carbon balance of northern fire-driven forests [14,15]. We focus 

on years since fire rather than stand age, as there is a variable period of time during which regeneration 

initiates and local competition will regulate the return of trees to a given site [16,17].  

The use of ALS data to estimate post-fire vertical vegetation recovery rates would be 

straightforward if forest fires consumed all live vegetation within a fire perimeter. In that case, the 

height of the vegetation immediately following the fire area would be zero, and the height of 

vegetation observed in 2010 would be the result of a post-fire recovery. Yet numerous studies have 

shown that most boreal forest fires leave a mosaic of surviving and dead standing vegetation elements 

within the outer perimeter of the area affected by a forest fire [18–23]. Areas registered as burned in 

the national Forest Fire Database [24] may include a mosaic of different starting points for the post-fire 

canopy recovery process. 

A direct consequence of the potential of an incomplete fire consumption is that canopy heights 

estimated from the 2010 ALS data collected over formerly burned areas could be a mixture of heights 

from older surviving vegetation and younger post-fire regeneration [25–27]. With coincident and 

concurrent field data, or high spatial resolution satellite imagery, a separation could be supported using 

image-based change detection or interpretation [28,29]. This study demonstrates a procedure for the 

separation, when the only source of information comes from ALS data and publicly available archived 

Landsat images. Combined with estimates of canopy closure the results from this study will improve 

our estimates of carbon sequestration in areas where basic information about forest conditions and 

growth is limited in amount and distribution.   
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2. Material and Methods 

2.1. ALS Data Acquisition 

We acquired surface elevation data (latitude, longitude, elevation) in 34 individual survey flights 

between 14 June and 20 August 2010 with an Optech Airborne Laser terrain Mapper (ALTM) 3100 

mounted in a twin engine PA31 Piper Navajo. The flight lines were situated between 56°W 

(Newfoundland) and 138°W (Yukon), and between latitudes 43°N and 65°N. Nominal acquisition 

parameters were: (a) a flying altitude of 1,200 m a.g.l.; (b) a velocity of 150 knots; (c) a pulse 

repetition frequency (PRF) of 70 kHz; and (d) a scan angle of ±15°. These parameters give a nominal 

multiple return density of ~2.82 pts/m
2
, fully sufficient for the task at hand [30,31] The laser pulse 

footprint diameter in the standard narrow-beam divergence mode of 0.3 mRad is approximately 0.3 m at 

1,200 m a.g.l. To reduce limitations to data collection, the acquisition plan we developed was flexible, 

allowing for flying around adverse weather, high relief, excessive fire and smoke activity, and 

restricted airspace, among other things. In so doing, we maximized flying and acquisition time by 

avoiding an overly prescribed flight plan that would have necessitated waiting out adverse conditions. 

2.2. ALS Data Processing 

We processed these strips of ALS data by integrating GPS and IMU (Inertial Measurement Unit) 

data with the laser range and scanner data to generate binary data files containing the laser point 

position, intensity, and scan angle information. We classified returns as first, intermediate, last, or 

single. Additional processing by the Applied Geomatics Research Group (http://agrg.cogs.nscc.ca/, 

accessed 7 December 2011) created a ground return point dataset used to produce a 1-m DEM raster of 

ground elevation [32]. We overlaid the ALS “all-returns” point data onto this grid and subtracted the 

ground elevations to generate a canopy point data set. The accuracy of the DEM is expected to be 

around 0.3 m [33]. However, we acknowledge that in complex terrain or short-statured open scattered 

forests of the north with slow decaying woody-debris, hummocks of sphagnum, and dense shrubs, the 

accuracy can be lower (0.5–1.5 m) [34–36]. 

We then processed ALS data into a suite of plot-level canopy metrics, whereby returns from 2 m or 

more above the ground DEM elevation were classified to non-ground surface returns [37]. An ALS 

plot is a 25 × 25 m square, indexed to a 1:50,000-scale NTS sheet and located within 200 m from 

either side of a transect flight line. We consider these 25 × 25 m cells as LIDAR-plots, relating  

plot-like information for remote locations. We used the freely available FUSION software [38] to 

create a suite of distributional metrics for each LIDAR-plot. For this study we used the average canopy 

height, the standard deviation of canopy heights, and height-weighted mean canopy height (LHT): The 

first two were used to screen forested “plots” from non-forested plots. If the mean canopy height was 

greater than 2.0 m and the standard deviation above 1.0 m, we assumed the plot was a treed plot and 

we considered it for analysis. We considered values of LHT as proxies for Lorey’s height [39]. 

We also classified the land cover in each plot according to the classification system of the Earth 

Observation for Sustainable Development of forests (EOSD) project [40]. We restricted plots with  

pre-1990 fires to EOSD classes 200 and higher (“Forest/Trees”). As expected from knowledge of 
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previous wildfire locations and trends [41,42], about 70% of the intersected burned areas were, in 

2010, dominated by open or dense conifers.  

2.3. Fire Data 

We searched the national Large Fire (≥200 ha) Database [42] with geo-referenced centroid and 

perimeter (extent at time of extinction) of burned areas for intersections with the ALS flight lines. We 

found a total of 163 historic fires that intersect with the LIDAR transect flight lines. Of these 

intersected wildfires, nine were less than five years old at the time of over-flight in 2010 and were 

discarded because we cannot discriminate between shrubs and young trees at this early stage [43]. For 

each intersected fire, we had data on the years since fire (YSF), spatial data relating perimeter (fire 

boundary), and area (fire size). Fire sizes varied from 344 to 51,322 ha (mean = 2,778 ha), and the year 

of burning ranged from 1942 to 2007 with a median of 1990. 

2.4. Estimating Post-Fire Tree Canopy Recovery 

Without field data or high spatial resolution satellite imagery to support a partitioning of observed 

canopy heights to a pre-fire residual canopy or a post-fire regenerated canopy assumption, our starting 

point for the analysis was an assumption of approximately equal pre-fire canopy height distributions 

inside and outside of intersected fire perimeters. For large fires in the boreal forest, this is a reasonable 

working hypothesis since most unattended fires are extinguished by fire-stopping events, for example 

rain [44,45]. Fires also stop at natural boundaries (e.g., lakes, rivers, rock outcrops). With ALS-data 

and archived Landsat imagery we were able to identify and account for natural boundaries. “Outside” 

is defined here as the area covered by the LIDAR swath (200 m wide) and within a distance of 200 m 

from the fire perimeter. The 200 m width restriction is argued on the basis of the average spatial 

autocorrelation of 0.34 in mean height. In a 200 m long strip of 8 LIDAR plots, the average plot-to-

plot correlation is approximately 0.05 and found significant at the 5% level. A wider buffer would 

yield a non-significant average correlation. A variogram-based analysis would result in a very similar 

choice of buffer width. We labeled LHT data from inside and outside a burned area as LHTin and 

LHTout respectively, and discarded data from a strip approximately 50 m wide centered on the fire 

boundary. Results with a discard within a 100 m separation belt were practically identical. Google 

Earth™ images from 2010–2011 were used as ancillary classification information and to improve 

interpretation of the LHT data (http://www.google.com/earth/index.html, accessed 22 December 2011). 

A pictorial example illustrating the LIDAR transects, a Landsat TM image of a partially burned area, 

and a pseudo 3-D rendition of the corresponding LIDAR canopy heights are in Figure 1. 

The task of apportioning a part or all of the LHTin observations to a post-fire canopy recovery was 

facilitated by first classifying the empirical distributions of LHTin and LHTout as either unimodal or 

multi-modal [46]. An important indicator for the classification of canopy heights to a pre-fire remnant 

canopy or a post-fire regenerated canopy was the apparent mean canopy height growth rate per year 

since the recorded fire, i.e., . As a visual aide to our analyses, we also computed 

smoothed probability density functions of canopy heights  and , i = 1,…,154. A  

bi-weight kernel with a bandwidth of 1 m was used for this purpose [47]. 
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Figure 1. Context and example of a LIDAR transect at the boundary of a burned area. A. 

Overview of entire 2010 LIDAR campaign over the Canadian Boreal forest denoted in red. 

B. Sub-scene from Landsat-5 Path 38 Row 22 October 2003 RGB image of bands (5,4,3) 

with generalized LIDAR transect outline in yellow and the 2002 wildfire scar identified by 

the pixels with shades of pink. C. Three dimensional surface view of a 0.5 m LIDAR 

Canopy Height Model with the wildfire impact illustrated, boundary evident and unburned 

islands also evident. The sub-scene is located in Saskatchewan and is centered at 

54°50′30″N, 107°7′0″W.  

 

To determine whether a calculated height growth rate was commensurate with the hypothesis of a 

post-fire recovery, we established an upper bound for 1LHT YSF . An apparent growth rate larger 

than this upper limit suggests that the current canopy predates the fire event. We determined the upper 

limit via a piecewise linear quantile regression [48] from a set of 1810 provincial, territorial, national 

and research (flux-tower) plots [3,49]  located in the Boreal, the Taiga Shield, and the Taiga Cordillera 

ecozones (http://sis.agr.gc.ca/cansis/nsdb/ecostrat/intro.html, accessed 22 December 2011). Since the 

plot(s) used to establish the upper limit were located further to the south, and since a majority of the 

plots were established in stand types with a commercial value, we assumed that the average height 

growth rate of intersected post-fire regeneration should fall below the 95th percentile regression line. 

The 95% confidence band for the plot-based estimates of height growth rates are in Figure 2. Thus, to 

be accepted as a post-fire regenerated canopy, the mean annual height growth 1LHT YSF  should be 
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less than LĤTQ95 × YSF
−1

. To accommodate the uncertainty in the quantile regressions (approximate 

standard error was 20 cm × year
−1

), we allowed an excess of up to 10%.  

Figure 2. Expected 95%-tile (full line) and 5%-tile (dashed) of average annual growth rate 

in mean canopy height (LHT m × year
−1

) in 1920 field plots in the Boreal, Taiga Shield, 

and Taiga Cordillera ecozones located to the south of the studied historic fires. 

 

The stepwise screening of the 135 sets of twinned unimodal distributions of LHT and associated 

decision rules for deciding on the height of the post-fire recovered canopy is outlined in Table 1. The 

classification rules for the remaining 19 cases with a unimodal (inside and outside of a fire perimeter) 

distribution of LHT are in Table 2. Note, for the sake of brevity, only tests with a minimum of one 

positive outcome are listed. 

Table 1. Classification of 135 (out of 153) unimodal distributions of LHTin to pre- and 

post-fire canopy heights when the empirical distribution of LHTout also passed the test of a 

single mode. See text for a definition of 
.1in

LHT . 

Step Classification Rule (Test) 
Classification of 

LHTin 
Cases 

Avg. Post-Fire 

Height Growth 

m × year
−1

 

1 
95

ˆ25 and LHT 1.1

and LHT  -LHT 1.2m

in Q

in out

YSF LHT 


  Post-fire canopy 34 inLHT

YSF
 

2 95
ˆ1.2 and 1.1in out in QLHT LHT m LHT LHT    

Partial post-fire 

canopy 
85 .1in

LHT

YSF
 

3 95
ˆ1.1in QLHT LHT

 
Pre-fire canopy 16 95

ˆ
0.5

QLHT

YSF  
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Table 2. Classification of 19 (out of 154) distributions of LHTin to pre- and post-fire 

canopy heights when either LHTin, or LHTout or both failed the diptest of a single mode. 

Step Classification Rule (Test) 
Classification of 

LHTin 
Cases 

Avg. Post-Fire 

Height Growth  

m × year
-1 

Step 1 
.1 .1 .2 .2

.1 95 .2 95

and

垐 and

in out in out

in Q in Q

LHT LHT LHT LHT

LHT LHT LHT LHT

 

 

 

.1 .1 .2 .2

.1 95 .2 95

and

垐 and

in out in out

in Q in Q

LHT LHT LHT LHT

LHT LHT LHT LHT

 

 

.1 .1 .2 .2

.1 95

and

ˆ

in out in out

in Q

LHT LHT LHT LHT

LHT LHT

 



.1 .1 .2 .2

.1 95 .2 95

and

垐 and

in out in out

in Q in Q

LHT LHT LHT LHT

LHT LHT LHT LHT

 

 

.1 .1 .2 .2

.1 95

and

ˆ

in out in out

in Q

LHT LHT LHT LHT

LHT LHT

 


 

Post-fire canopy 1 inLHT

YSF
 

Step 2 
.1 .1 .2 .2

.1 95

and

ˆ

in out in out

in Q

LHT LHT LHT LHT

LHT LHT

 


 

Partial post-fire 

canopy 
2 .1inLHT

YSF
 

Step 3 .1 95
ˆ

in QLHT LHT  Pre-fire canopy 16 95

ˆ

0.5
Q

LHT

YSF
 

All tests listed in Tables 1 and 2 were one-sided bootstrap t-tests [50] at the 5% level of significance 

and 600 replications. The sample size was, in all cases,  min 50, / [ ] , { , }side siden Sqrt VIF side in out , 

where VIF is the variance inflation factor [51] due to spatial autocorrelation in LHT (Pearson’s product 

moment correlation of LHT values in adjoining plots was 0.34). This choice of sample size ensured 

that differences in LHT larger than or equal to 1.2 m would be declared significant at the 5% level of 

significance at a rate of approximately 0.95 [52]. 

When in outLHT LHT  or when one or both of the distributions of LHT inside and outside the 

intercepted fire perimeter failed the test of a single mode at the 95% level of significance, we pooled 

LHTin and LHTout data and then separated it into two clusters via a k-means procedure [53]. A visual 

inspection of the LHT distributions data rarely suggested more than two clusters. We calculated cluster 

means and standard deviations for data from the inside and the outside of a fire perimeter and labeled 

them as  . .
ˆ,andside clu side cluLHT s LHT

 
with {1,2}, { , }clu side in out  . Decision rules for classifying clustered 

canopy heights are detailed in Tables 1 and 2. 

As seen from Tables 1 and 2, in 32 cases we classified the observed distribution of LHTin to the pre-

fire canopy category. An attempt to identify patches of post-fire regeneration by comparing Google 

Earth™ imagery to spatial k-means clusters of LHTin was unsuccessful (k ≤ 6). Since we could not 

repudiate that the left tail of  ,
ˆ
in if lht

 
contains elements of a post-fire recovering canopy, we assigned 

each case a default average annual post-fire canopy height growth rate equal to 0.5LĤTQ95 × YSF
−1

.  

3. Results and Discussion 

The spatial distribution of the 163 historic fires intersected by the ALS transects is shown in 

Figure 3. Fire perimeters were located between latitudes 48°10′ and 68°35′ and between longitudes 

−134°24′ and −60°22′. Overall, the sample of burned areas appears to be a small, yet fairly 

representative of the boreal forest. 
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Figure 3. Location map of centroids of intersected fire perimeters (black dots). The 

Canadian portion of the North-American boreal forest is gray-shaded [7]. 

 

The years since fire (YSF) distribution in the study areas varied from 3 years to 68 years with a 

mean of 23 years (median 20 years) and a mode at 14 years (9%). Figure 4 illustrates the YSF 

distribution. Cases with an YSF-value of less than 5 years were not subject to analysis since the young 

age prevents us from discriminating between pre- and post-fire tree populations. Also, the distribution 

of YSF cannot be interpreted in terms of fire frequencies and fire cycles [54,55] due to incomplete 

records for fires prior to 1990 [42] generally coinciding with the advent of satellite remote sensing and 

the systematic, synoptic, mapping of large fires. 

Figure 4. Number of intersected fire perimeters by years since fire (YSF). 

 

The classification of LHTin was facilitated by the large number of unimodal distributions. In 135 

cases (88%) we accepted the null hypothesis of a unimodal distribution both inside and outside of the 

fire perimeter (diptest 5% level of significance [46]). Three randomly selected examples from the 34 

(22%) cases where  ˆ
inf LHT  was classified as the distribution of a post-fire regenerated canopy (Table 1, 

Step 1) are in Figure 5. Although the available data (YSF,  ˆ
inf LHT ,  ˆ

outf LHT , 95QLHT , and satellite 
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imagery) supported the classification, one cannot repudiate that both 95QLHT  and  ˆ
outf LHT  may include 

heights from a pre-fire canopy. 

Figure 5. Three randomly selected examples of probability distributions (34) of LHTin (full 

outline) classified as a post-fire canopy (Table 1, Step 1). The distribution of LHTout is 

indicated (dashed outline). 

 

Three randomly selected examples from the largest group of 85 cases (56%) cases where  ˆ
inf LHT  

was classified as a mixed distribution of a pre- and post-fire canopy (Table 1, Step 2) are in Figure 6. 

In these cases  ˆ
inf LHT  dominates  ˆ

outf LHT  to the left of inLHT . The assigned height to the post-fire 

canopy ََََ .1inLHT  is always smaller than the means of  ˆ
inf LHT  and  ˆ

outf LHT . The partitioning of  ˆ
inf LHT  

into a pre- and post-fire canopy distribution is, in the context of this study, a first approximation an 

attempt to fill an information gap in areas lacking basic forest inventory information. Clearly, field data, 

or high resolution imagery would have been preferred and improved the results [56]. 
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Figure 6. Three randomly selected examples of distributions (85) of LHTin (full outline) 

classified as a partial post-fire canopy (Table 1, Step 2). The estimated mean height of the 

post-fire recovered canopy is indicated. The distribution of LHTout is indicated (dashed 

outline). 

 

In 32 cases (21%) it was not possible to ascertain a post-fire regeneration of a tree canopy. 

Typically the fires were either too young (YSF < 10 years) to allow a clearly identifiable cohort of 

post-fire regeneration to emerge, or the apparent annual mean growth rate  1

inLHT YSF 
 
of the observed 

canopy within a fire perimeter was greater than what can reasonably be expected (i.e., 
1

95QLHT YSF  ). 

Three randomly selected cases from this group are shown in Figure 7. As indicated, the assigned 

default height to the post-fire canopy represents at most two percent of the observed height distribution 

inside the fire perimeter. Given a strong likelihood that the studied fires were caused by lightning and 

the low probability of surface fires in Canada’s north [22,33,46], we assumed that most of the 
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observed height distribution emerged from a previous fire. Our database did not allow us to verify this 

assumption. In some cases the assigned “default” height may have been too high (recall, default 

computed as average annual post-fire canopy height growth rate equal to 0.5LĤTQ95 × YSF
−1

). It is 

known that boreal forest fires can create adverse conditions for post-fire regeneration, resulting in 

either a considerable delay in the recovery of a post-fire canopy or the growth of a vegetation type 

different from the one present prior to the fire [19,57,58]. A new LIDAR-based algorithm for 

separating forested from non-forested areas [59] may improve the discrimination of pre- and post-fire 

canopy height by eliminating areas that do not qualify as forest based on a minimum crown coverage 

definition. 

Figure 7. Three randomly selected examples (of 32) without an identified post-fire 

recovered canopy. The assigned default canopy height is indicated. The distributions of 

LHTin (full outline) and LHTout (dashed outline) are indicated. 
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Our results were not sensitive to the imposed minimum separation of 50 m between canopy heights 

from the inside and outside of the fire-perimeter. Analyses with a 100 m limit resulted in three 

additional rejections of unimodality and two fewer inconclusive cases. Estimates of canopy height 

recovery were practically identical with an adjusted coefficient of determination between the two set of 

estimates of 0.996 and the slope of 1.006 and intercept of −0.004 were statistically non-significant at 

the 0.05 level. 

A summary of the 154 estimates of post-fire regenerated canopy heights is presented in Figure 8. A 

forward-stepwise regression analysis [60] with 
1

inLHT YSF  as the dependent variable and YSF, latitude 

(LAT), longitude, number of growing degree days, average daily maximum temperature (May-August) 

as explanatory variables identified YSF and LAT, as the only significant explanatory variables. Squared 

and square-root transformation of all explanatory variables were included in the stepwise screening 

which used a entry level of significance of 0.02, and a retention level of significance of 0.05 [61]. The 

model identified by the stepwise screening and re-transformed to a polynomial of LHTin in YSF is in 

Figure 8 (adjusted coefficient of determination = 0.63; residual standard error = 1.31 m).  

Figure 8. Trends in mean post-fire regenerated canopy heights across years since fire 

(YSF). Trends are estimated for the median (full line) and maximum and minimum latitude 

(dashed) of the fire locations. The fitted regression model is: 
2ˆ 0.057 3.83 0.36 0.0019LHT LAT YSF YSF YSF     .  = 0.78,  = 90.12 (P < 0.01). 

A 95% confidence interval for LHT determined from field plots located to the south of the 

studied fires is shaded in gray. 

 

The height–age model in Figure 8 can be converted to a model for the aboveground live biomass 

(AGBM) as a function of YSF and canopy closure and then to a model for sequestered carbon. The 

success of this approach requires validated biomass equations for post-fire regenerated stands [62]. 

The weak influence of location and two important climate variables was unexpected. Without an 

identification of species or a knowledge of the number of years it takes for stand establishment and 
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regeneration after fire, we cannot determine if actual location effects have been masked by species 

differences and variation in the years it takes for trees to re-populate a burned area. Complex 

interactions between longitude and latitude is another potential masking issue. At a national scale, our 

sampling intensity is very low; an order of magnitude increase of additional locations would be 

necessary to determine geographic trends. Although the estimated standard error around the estimated 

YSF-trend in LHT is relatively large (1.3 m), the model is an important step forward towards an 

estimation of biomass and carbon sequestration, in areas of Canada’s boreal forest where we lack basic 

forest inventory information.  

4. Conclusions 

Post-fire tree canopy height distributions in boreal forests are typically composed of post-fire 

regeneration and pre-fire canopy elements. When canopy heights are derived from airborne laser 

scanner data an estimate of post-fire canopy recovery rates requires a separation of the burned and 

unburned structural elements. Without ancillary information, the separation must be based on 

statistical inference and generally accepted limits of tree height growth. In this study, we proposed and 

implemented a novel sequential statistical procedure for separating post- and pre-fire canopy elements. 

In so doing, we demonstrated that a separation of post- and pre-fire canopy elements could be 

identified and separated with confidence in most cases. Our approach serves to advance the capacity 

for understanding forest structural dynamics and regeneration rates following wildfire over remote 

boreal regions. A novel sequential statistical testing procedure was applied to stand-alone ALS data of 

canopy height collected over 163 previously burned areas in Canada’s boreal forest allowing us to 

separate pre- and post-fire canopies, and to estimate post-fire recovery rates with acceptable levels of 

precision. Inference based on Hartigan’s diptest was critical to the success of the study. Further 

improvements would be possible with the addition of high-resolution satellite imagery, although the 

limited image extents, relative to boreal wildfire areas, would result in unique challenges. 
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