
Remote Sens. 2012, 4, 1856-1886; doi:10.3390/rs4061856 

 

Remote Sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Preparing Landsat Image Time Series (LITS) for Monitoring 

Changes in Vegetation Phenology in Queensland, Australia 

Santosh Bhandari 
1,2

*, Stuart Phinn 
1
 and Tony Gill 

3
  

1
 Biophysical Remote Sensing Group, Centre for Spatial Environmental Research, School of 

Geography, Planning and Environmental Management, The University of Queensland, Brisbane, 

QLD 4072, Australia; E-Mail: s.phinn@uq.edu.au  
2
 Indufor Asia Pacific Ltd, 55 Shortland St, PO Box 105039, Auckland , 1143, New Zealand  

3
 Remote Sensing Centre, Remote Sensing Unit, NSW Office of Environment and Heritage,  

P.O. Box 717, Dubbo, NSW 2830, Australia; E-Mail: tony.gill@environment.nsw.gov.au 

* Author to whom correspondence should be addressed; E-Mail: santosh.bhandari@indufor-ap.com;  

Tel.: +64-9-281-4764; Fax: +64-9-281-4769. 

Received: 12 May 2012; in revised form: 12 June 2012 / Accepted: 15 June 2012 /  

Published: 19 June 2012 

 

Abstract: Time series of images are required to extract and separate information 

on vegetation change due to phenological cycles, inter-annual climatic variability, and  

long-term trends. While images from the Landsat Thematic Mapper (TM) sensor have the 

spatial and spectral characteristics suited for mapping a range of vegetation structural and 

compositional properties, its 16-day revisit period combined with cloud cover problems 

and seasonally limited latitudinal range, limit the availability of images at intervals and 

durations suitable for time series analysis of vegetation in many parts of the world. Landsat 

Image Time Series (LITS) is defined here as a sequence of Landsat TM images with 

observations from every 16 days for a five-year period, commencing on July 2003, for a 

Eucalyptus woodland area in Queensland, Australia. Synthetic Landsat TM images were 

created using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) 

algorithm for all dates when images were either unavailable or too cloudy. This was done 

using cloud-free scenes and a MODIS Nadir BRDF Adjusted Reflectance (NBAR) product. 

The ability of the LITS to measure attributes of vegetation phenology was examined by: 

(1) assessing the accuracy of predicted image-derived Foliage Projective Cover (FPC) 

estimates using ground-measured values; and (2) comparing the LITS-generated normalized 

difference vegetation index (NDVI) and MODIS NDVI (MOD13Q1) time series. The 

predicted image-derived FPC products (value ranges from 0 to 100%) had an RMSE of 5.6. 
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Comparison between vegetation phenology parameters estimated from LITS-generated 

NDVI and MODIS NDVI showed no significant difference in trend and less than 16 days 

(equal to the composite period of the MODIS data used) difference in key seasonal 

parameters, including start and end of season in most of the cases. In comparison to similar 

published work, this paper tested the STARFM algorithm in a new (broadleaf) forest 

environment and also demonstrated that the approach can be used to form a time series of 

Landsat TM images to study vegetation phenology over a number of years. 

Keywords: vegetation phenology; time series; synthetic image; Landsat TM; eucalypt forest 

 

1. Introduction 

Landsat, one of the longest running satellite programs has been acquiring images of the Earth’s 

surface since 1972. Although, there is a data continuity problem due to uncertainty over Landsat data 

continuity mission, failure of scan line corrector in Landsat 7 ETM+ and retirement of Landsat 5, the 

images collected by its Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic 

Mapper Plus (ETM+) sensors have remained on the forefront of land-cover change monitoring and the 

development of various remote sensing applications [1]. The 30 m pixel size of the TM and ETM+ 

sensors makes them suitable to characterize the land-cover change resulting from natural and 

anthropogenic activities. Their number and placement of spectral bands is also an important advantage 

over other similar sensors. The TM and ETM+ sensors acquire the images in visible, near infrared and 

shortwave infrared portions of the electromagnetic spectrum, making them appropriate for studies of 

vegetation properties across a wide range of vegetation communities, in diverse environments [1–4]. 

Measuring, mapping and understanding changes in vegetation properties over specific spatial and 

temporal scales is critical for a range of ecosystem science and natural resource management 

applications. Remote sensing is considered a viable method for gathering information in a spatially and 

temporally continuous fashion. However, separating changes taking place due to phenological cycles, 

inter-annual climatic variability, human activities and long-term trends is challenging unless a data set 

of sufficient duration and short enough period between image acquisition dates exists. It is not possible 

with commonly used multi-temporal remote sensing applications, such as simple bi-temporal change 

detection and multi-date image analysis to extract this type of information [5–7]. Time series analysis 

techniques and data with highly frequent temporal observations sufficient for capturing seasonal 

variability (at least monthly) are required to produce such information [8,9]. Remote sensing 

sensors often trade-off between spatial and temporal resolution to acquire high spatial-resolution low  

repeat-frequency images, or low spatial-resolution high temporal-frequency images. Data from low 

spatial-resolution sensors like Advanced Very High Resolution Radiometer (AVHRR), Satellite Pour 

l’Observation de la Terre (SPOT)—VEGETATION, Moderate Resolution Imaging Spectroradiometer 

(MODIS) and Medium Resolution Imaging Spectrometer (MERIS) with spatial resolution ranging 

from 250 m to 1,000 m are acquired at high temporal-resolutions, making them a suitable source for 

time series analysis to monitor vegetation change [10–12]. Many processes of interest in terrestrial 
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ecosystems operate at spatial scales below the spatial resolution of those sensors and are more suited to 

detection at Landsat TM and ETM+ scales [13]. 

A Landsat image time series (LITS) is defined here as a sequence of Landsat Thematic Mapper 

(TM) images produced for a particular area with the best possible geometric registration, radiometric 

consistency and sufficient temporal resolution. Preparation of such a data set has a series of challenges. 

Until recently, it was an expensive endeavor given the high purchase cost of data. The data cost is no 

longer an issue after the decision which has made all US Geological Survey (USGS), archived Landsat 

data freely available [14]. In a number of areas around the world frequent cloud cover and smoke 

haze, and seasonal limitations to the Landsat 5 acquisition cycle could significantly extend the time 

between two successive, usable images [15]. Similarly, the successive Landsat TM scenes may not be 

radiometrically and geometrically consistent. The individual Landsat TM scene may need a considerable 

pre-processing effort to achieve a high level of geometric and radiometric integrity required for a time 

series analysis [16]. 

Integration of higher temporal-resolution images from the MODIS sensors with available Landsat TM 

and ETM+ image by using image fusion techniques is one of the solutions for preparing LITS by filling 

the gaps in Landsat image sequence due to the cloud and other problems [17–19]. MODIS sensors on 

board the Terra and Aqua satellites acquire data in 36 bands with a near daily revisit cycle in most parts 

of the world [20]. Out of seven MODIS bands which are commonly used for terrestrial applications, 

six are spectrally similar to Landsat TM and ETM+ reflective bands [17,21]. Generally, the image 

fusion techniques integrate high temporal and/or spectral resolution images and high spatial-resolution 

images to increase the temporal and/or spectral resolution of high spatial-resolution images [22]. 

Although a number of image fusion techniques and algorithms are found in existing literature, very 

few are capable of producing scaled reflectance at higher spatial resolutions [17,18].  

The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [17], Multi-temporal 

MODIS-Landsat data fusion method [18], Muti-Resolution Multi-Temporal technique [23] and 

Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) [19] are capable of 

producing reflectance at Landsat TM and ETM+ spatial scales by integrating Landsat TM and MODIS 

reflectance. The STARFM algorithm predicts reflectance at Landsat TM and ETM+ spatial resolution 

using one or more pairs of Landsat and MODIS images acquired on the same date and MODIS 

reflectance from the date at which the Landsat TM reflectance is to be predicted [17]. The method has 

been tested in coniferous forests in British Columbia, Canada for predicting surface reflectance 

at Landsat TM spatial scale with reasonable accuracy when compared to actual Landsat TM 

reflectance [24]. The Multi-temporal MODIS-Landsat data fusion method estimates Landsat TM 

reflectance assuming that the temporal dynamics of MODIS reflectance can be approximated by a 

modulation term (ratio of reflectance between two dates), which remains representative of the temporal 

variation in reflectance at the Landsat TM pixel scale over the same period given the viewing and 

illumination geometry remains same [18]. The Multi-Resolution Multi-temporal technique estimates 

the reflectance based on percent contribution of Landsat pixels within the MODIS pixels [23]. Unlike 

STARFM, the methods have not been further tested and validated. ESTARFM is the enhanced version 

of the STARFM algorithm, which performs better in an environment with heterogeneous land-cover 

types at the MODIS pixel scale [19]. This method requires at least two pairs of fine and coarse  

spatial-resolution data acquired at the same date as input, whereas STARFM can work with a single 
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pair. The minimum requirement of two pairs of images could be a limitation of ESTARFM. Finding 

two sets of high quality inputs is difficult as images of proximal dates representing different stages of 

phenological changes are desirable for better prediction results [19]. 

Gao et al. [17] originally tested the STARFM algorithm in a boreal forest environment using 

MODIS daily surface reflectance (MOD09GHK) as MODIS input reflectance. Hilker et al. [24] further 

tested the algorithm [17] to predict a small number of Landsat images within a period of five months 

using MODIS eight-day composite reflectance (MOD09A1) products in a coniferous-dominated 

environment. However, to date, the algorithm has not been used to generate a long, regularly-spaced 

time series of data, spanning several seasonal cycles, suitable for vegetation phenology studies, outside 

of coniferous-dominated environments [24]. 

The aim of this work was to construct a long (2003–2008) time series of Landsat TM images (LITS) 

for assessing vegetation phenology in Eucalyptus woodland and open forest environments in Australia. 

To achieve the aim, three specific tasks were addressed. The first task was to work out a pre-processing 

routine to make all available Landsat TM images geometrically and radiometrically consistent and 

suitable for input to the STARFM algorithm [17] to fill the gap in the time series. The second task was 

to use STARFM algorithm to predict synthetic images for all dates when Landsat TM images were not 

captured or unsuitable using an appropriate MODIS reflectance product and nearest-date Landsat TM 

imagery. The second task was also to examine the accuracy of the synthetic reflectance by direct 

comparison to observed image-reflectance, and by deriving foliage projective cover estimates from the 

imagery and comparing it to field-measured estimates of tree-foliage density. The final task was to 

assess the ability of LITS to monitor changes in vegetation phenology by comparing the LITS 

generated NDVI time series with MODIS NDVI time series, as the MODIS NDVI time series has been 

shown to be an indicator of vegetation phenology on the ground [25]. 

2. Data and Methods 

2.1. Study Area, Field and Image Data 

The study area is comprised of a part of Landsat TM scene WRS-2, Path 91/Row 78, located in 

Queensland, Australia. The major part of the area is covered by Barakula state forest, which is the 

largest state forest in Australia. The forests lies in the Brigalow Belt bioregion and covers an area of 

260,000 ha (Figure 1). The forests are dominated by mature eucalypt and cypress pine woodlands and 

open forests. The understory is either shrubs or grasses, which green up on a seasonal cycle. According 

to National Vegetation Information System (NVIS) dataset [26], the area has 10 major vegetation  

sub-groups. The non-forest area is mainly covered by agriculture, buildings and non-native vegetation. 

Table 1 shows the major vegetation types and the area covered by them. Topographically, the area is 

relatively flat and receives an average annual rainfall of 660 mm with a relatively wet summer 

(November–February) and dry winter (June–July).  

Criteria for site selection included the availability of ground-measured foliage projective cover 

(FPC) data in 10 permanent measuring plots established by the Department of Environment and 

Resource Management (DERM) of the Queensland Government. FPC is a commonly adopted metric 

of vegetation cover in many vegetation classification frameworks in Australia [27]. It is defined as the 
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vertically-projected fractional area covered by one or more layers of photosynthetic foliage of all strata 

in a given area [28]. The FPC is closely related with vegetation projective cover (VPC) or canopy 

cover as the exclusion of the fraction covered by branches and stem in VPC results in FPC. Generally, 

FPC makes up about 80–90% of the VPC for woody vegetation depending on canopy structure. As 

Australian vegetation communities are dominated by trees and shrubs with irregular crown shapes and 

sparse foliage, FPC is considered a more suitable indicator of a plant community’s physiological 

activities such as photosynthesis and transpiration than the crown cover [29]. 

Figure 1. (A) A Landsat TM image color composite, showing  bands 5, 4, and 3 as  red, 

green and blue for November 24, 2003 and locations of dry season photographs of the 

study area, Barakula state forest, Queensland, Australia. Photographs are shown for 

Eucalyptus woodland with: (a) Eucalyptus cerebra dominated canopy; (b) mixed species 

canopy; (c) grassy understory, and (d) shrubby understory. Photos were taken during field 

work in November 2008. (B) Major vegetation subgroups in the study area as categorized 

by the National Vegetation Information System (NVIS) database. The map was produced 

from NVIS major vegetation subgroups raster version 3.1 downloaded from 

http://www.environment.gov.au/erin/nvis/mvg/index.html#nvis31. 

 

(A) 
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Figure 1. Cont. 

 
(B) 
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Table 1. Major vegetation sub-groups as identified by National Vegetation Information 

System database in the study region and their area. 

S.N. Name of Vegetation Community Area (ha) 

1 Brigalow 9,683 

2 Callitris forests and woodlands 13,223 

3 Dry rain forests 3,898 

4 Eucalyptus open forests with a grassy understorey 78,147 

5 Eucalyptus open forests with a shrubby understorey 9,960 

6 Eucalyptus open woodlands with a grassy understorey 3,934 

7 Eucalyptus woodlands with a grassy understorey 398,399 

8 Eucalyptus woodlands with a shrubby understorey 213,574 

9 Regrowth or modified forests and woodlands 48,968 

10 Cleared, non-native vegetation and buildings 674,426 

Landsat TM images L1T product of WRS II path 091 and row 078 were used. All Landsat 5 TM 

scenes from 2003 to 2008 available from USGS Land Processes Distributed Active Archived Centre 

were acquired https://lpdaac.usgs.gov/lpdaac/get_data. A part of the scenes (140 km × 100 km), that 

covers the Barakula State Forest was subset and used for LITS development. MODIS collection 5 

Nadir- Bidirectional Reflectance Distribution Function (BRDF) Adjusted Reflectance (NBAR) product 

was used as the input MODIS reflectance to the STARFM algorithm. The collection 5 MODIS NBAR 

(MCD43A4) is a 16 days composite product, produced in every 8 days with a quasi-rolling 

strategy [30]. All NBAR scenes (h31v11) of the area from July 2003 to July 2008 were acquired 

https://lpdaac.usgs.gov/lpdaac/get_data. MODIS reflectance was used as an input for the STARFM 

algorithm for gap filling purpose. 

2.2. Landsat Image Time Series (LITS) Preparation 

Image selection, cloud and cloud-shadow masking, geometric and radiometric correction, and gap 

filling were the major steps of the LITS preparation. Figure 2 summarizes the steps of the LITS 

preparation. 

2.2.1. Image Selection 

The main purpose of image selection was to identify the images suitable to use for the LITS 

development over the period of five years from July 2003. An image with some cloud cover could be 

used in LITS after masking cloud and cloud shadow and filling the gaps created. An image with few 

uncontaminated pixels could also be replaced by a predicted image instead. Images with more than 50% 

unusable pixels due to cloud and cloud shadow were discarded from analysis. A close evaluation of all 

cloudy images revealed that an average of 35% cloud cover would make about 50% of the data 

contaminated with the combined effects of cloud and cloud shadow. The available images were 

categorized by visual evaluation as cloud-free scenes that can be used directly in the LITS and also as an 

input to the STARFM algorithm to predict the synthetic images to fill gaps, and cloudy scenes with less 

than 35% cloud cover, which can form part of the LITS after masking clouds and filling the gaps as 

outlined earlier. In total, 75 usable scenes were found for the period, out of which 38 were cloud free. 
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Figure 2. A flow chart of the Landsat Image Time Series (LITS) preparation method. 
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2.2.2. Cloud and Cloud-Shadow Masking 

Masking cloud and cloud shadow was critical to develop the LITS. The pixels contaminated with 

cloud and shadow generally have sufficiently different reflectance properties than the actual land cover 

and produce erroneous information if used in an automated mapping algorithm [31]. Manual cloud 

masking was assisted by identifying pixels which appeared brighter than usual when compared over 

time. A python script was used to identify and mask the unusually brighter pixels and the identified 

areas were then manually edited where needed. Cloud shadows were masked using manual digitizing. 

2.2.3. Radiometric Calibration and Atmospheric Correction 

All images were converted to surface reflectance for two reasons. Firstly, it would make the 

images in the LITS comparable through time and ready to use for deriving biophysical variables of 

interest [32,33]. Secondly, only the surface reflectance can be used as an input to the STARFM 

algorithm to predict the Landsat images for gap filling [17]. 

The Landsat 5 TM L1T images were first converted to top of the atmosphere (TOA) radiance using 

standard equations and calibration parameters obtained from the metadata of each scene [34,35]. The 

TOA radiance was used to compute the surface reflectance using 6S radiative modeling code [36]. The 

atmospheric parameters needed for the code were ozone concentration, column water vapor and 

aerosol optical depth (AOD) at 550 nm [36]. The ozone concentration was derived from total ozone 

mapping spectrometer (TOMS) climatology data [37]. The column water vapor was derived from daily 

interpolation of point observations of vapor pressure [38]. A continental model for describing the 

aerosol proportions was used (dust-like = 0.7, water soluble = 0.29, oceanic = 0, soot = 0.01). 

A fixed value for AOD was used as it is difficult to get AOD values over the site. There is no field 

instrumentation, and image-data estimates, such as those from the MODIS and the Multi-angle 

Imaging SpectroRadiometer (MISR), are rarely available coincident with the image acquisitions. The 

dense dark vegetation method [39] can potentially be used to retrieve AOD directly from the imagery, 

but there are limitations in applying this method in Australia as the spectral-reflectance of the 

vegetation is neither sufficiently dark nor temporally-invariant [40]. In addition, the root mean square 

error of different AOD retrieval algorithms from satellite data shows that they are not sensitive enough 

to accurately predict low AOD values [41,42], which are typical of Australia’s atmosphere. The value 

of 0.05 was chosen as available aerosol robotic network (AERONET) sun-photometer data over the 

Australian continent showed that AOD remains under 0.1 in most of the cases 

http://aeronet.gsfc.nasa.gov/cgi-bin/bamgomas_interactive. For example, about 80% of the AERONET 

data from Birdsville, Southwest Queensland were less than 0.1 [43].  

2.2.4. Geometric Correction and Validation 

The L1T product of Landsat TM images are corrected for geometric accuracy using ground control 

points and digital elevation model (DEM). The accuracy depends on the quality of the control points 

and the resolution of the DEM used. The images are required to be geometrically correct with  

sub-pixel accuracy for the LITS to be suitable for temporal comparison. A common point comparison 

(CPC) method was used to ensure all images are geometrically correct and precisely registered to each 
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other. An image was first prepared as a reference to examine the geometric consistency of the whole 

time series. The image of 2006/02/01 was chosen as a reference as it was cloud free and near the  

mid-point of the time series. The geometric accuracy of the reference image was ensured using image 

to map registration using vegetation subgroup map. To avoid the resampling of the images, the 

reference map was first projected to the same projection as the images obtained from the USGS. 

Five well-distributed points within the image subset (Figure 3) were identified as common tie points 

in reference image. Care was taken to select the points so that they could be easily located in all 

images and were cloud free in most of the scenes. Those tie points were identified manually in all 

images and a list of X and Y coordinates of the points was created. The deviations of the coordinates 

of all images from reference image in both the X and Y directions were calculated. A threshold of 

15 m (half a pixel) was chosen and all images with a registration error more than the threshold value 

with reference image in either direction were identified. All identified images were then corrected 

using image to image registration method with the reference image to achieve a registration error of 

less than 15 m. 

2.2.5. Creating Synthetic Landsat Images using the STARFM Algorithm and Assembling the LITS 

The STARFM algorithm predicts reflectance at the Landsat TM’s spatial resolution using one or 

more pairs of Landsat TM and MODIS images acquired on the same date and MODIS reflectance 

from the date at which the Landsat TM reflectance is to be predicted [17]. STARFM predicts Landsat 

TM pixel values based on a spatially weighted difference computed from a selected moving window 

between input Landsat TM and MODIS images of date one, T1, and the temporal difference between 

MODIS images of T1 and T2 (prediction date) [17]. The theoretical basis, assumptions and other 

details of the prediction algorithm can be found in Gao et al. [17] and Hilker et al. [24]. The STARFM 

algorithm written by Gao et al. [17], which was capable of predicting each Landsat band at a time was 

received and used for this study. 

Careful selection and preparation of Landsat TM and MODIS scenes was required. To predict all 

six reflective Landsat TM bands, reflectance products with 500 m spatial resolution could only be used 

as all corresponding MODIS bands with Landsat TM-like wavelength were not available at the 250 m 

spatial-resolution. The MODIS nadir-view BRDF-adjusted reflectance (NBAR), MCD43A4, product 

was used as it offers additional benefits to a standard reflectance product. As MODIS reflectance may 

still contain significant variations due to viewing geometry [44], the NBAR product with nadir viewing 

geometry is similar to Landsat TM’s viewing geometry. MODIS NBAR is a Terra and Aqua combined 

product modeled from the BRDF model parameters (product MCD43A1) to provide reflectance as if 

they were taken from nadir view [45]. 

All bands with equivalent bandwidth to Landsat’s reflective bands as shown in Table 2 of MODIS 

NBAR imagery were re-projected and subset using GDAL Utilities tools http://www.gdal.org/ 

gdal_utilities.html to match the Landsat TM image extent for Barakula Forest. They were resampled to 

30 m spatial resolution using GDAL translate tool. Nearest neighbor resampling approach was used as 

does not alter the reflectance value. In addition to having similar spatial resolution and projection, the 

data format of Landsat TM and MODIS imagery were also required to be same format for data fusion. 

The Landsat TM images, therefore, were also stored in 16 bit format. GDAL translate tool and Python 

programming language were used to accomplish the tasks. 
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Figure 3. Evaluation of geometric consistency of the images used for developing LITS by common point comparison method. Y axis shows 

the deviation in X and Y coordinates of five different points (shown in image) in other images compared to reference images dated 

2006/02/01. The symbols X1, Y1, X2, Y2 etc. represent the deviation of respective points. Only the images that were cloud free in all five 

points were plotted here.  
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Table 2. Landsat TM bands and corresponding MODIS bands and their band width. 

Landsat TM MODIS 

Band No Band width μm Band No Band width μm 

1 0.45–0.52 3 0.459–0.479 

2 0.52–0.60 4 0.545–0.565 

3 0.63–0.69 1 0.620–0.670 

4 0.76–0.90 2 0.841–0.876 

5 1.55–1.75 6 1.628–1.652 

7 2.08–2.35 7 2.105–2.155 

The STARFM algorithm was run for all dates, when Landsat TM images were either cloudy or 

unavailable. Though STARFM can work on single-pair inputs, the prediction quality improves when 

two pairs of Landsat TM and MODIS images acquired on the same date are used as input [17]. It is not 

only the number of input pairs; the acquisition date of those images also affects the results [19]. A 

balance between number of input pairs and the time difference between the acquisition date of those 

data and prediction date was desirable. It was therefore decided to use two pairs of inputs only if they 

were available within two months either side of the prediction date. As the MODIS images were 16-day 

composites, it was not possible to have the MODIS images exactly matched to the Landsat TM dates. To 

address this, MODIS images of the closest date prior to the Landsat TM acquisition were used.  

The LITS was assembled using all cloud-free original scenes and STARFM predicted synthetic 

Landsat TM images. Synthetic imagery for those dates in which Landsat TM images were either 

unavailable or rejected due to high cloud cover were directly included in the LITS. For other dates 

when less than 50% of the original data were contaminated, the synthetic images predicted were used 

to fill the gap of the cloud and cloud shadow, and gap filled images were included in the LITS. 

2.3. Evaluation of the LITS 

The LITS was evaluated in two steps. First, the accuracy of STARFM predicted synthetic imagery 

was assessed. The accuracy as a time series was assessed in the second step. Synthetic Landsat TM 

images were generated for three dates (Table 3) for which a good quality original Landsat TM images 

were available and used for comparison. 

Table 3. Description of input images used to predict Landsat images used for accuracy 

assessment purpose. 

Predicted 

Image Date 

Input Landsat 

Date 1 

Input Landsat 

Date 2 

Input MODIS 

Date 1 

Input MODIS 

Date 2 

Input MODIS 

Prediction Date 

2003/09/05 2003/07/19 2003/09/21 2003/07/12 2003/09/14 2003/08/29 

2006/06/25 2006/05/24 2006/07/11 2006/05/17 2006/07/04 2006/06/18 

2007/07/30 2007/04/09 2007/08/31 2007/04/07 2007/08/29 2007/07/28 

2.3.1. Accuracy of Predicted Landsat TM Images 

The accuracy of STARFM predicted synthetic imagery was assessed by two means. Firstly, direct 

reflectance comparison was carried out between original and predicted images. The prediction accuracy 
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was assessed on a pixel by pixel basis by means of correlation between the reflectance of original images 

and predicted images. The reflectance between original and predicted images was also compared for 

major vegetation communities in the study area to see if the prediction accuracy was different within 

different structural forms of vegetation. The mean and standard deviations of at-surface reflectance for 

all major vegetation communities were calculated from both the original and predicted images and 

compared. StarSpan [46] was used to extract the mean and standard deviation of reflectance value 

from all pixels with in the vegetation communities. 

Secondly, FPC values derived from predicted images were compared with ground measured values. 

FPC values measured in 2005/07/11–13 at ten different field plots of 100 m diameter were available. 

The details of the method used to measure FPC in the field can be found in Armston et al. [47]. FPC 

values were derived from two predicted images of 2005/07/08 and 2005/07/24, which were the closest 

images before and after the field measurement. A multiple linear regression method was used to derive 

FPC from those images, using the reflectance of all reflective bands as explanatory variables. As field 

measured values within the study area were not sufficient to build a regression model, FPC maps of the 

area dated 2003/09/05, 2006/07/11 and 2007/02/04 developed by DERM were used as reference data 

sets to build the regression model. FPC maps used as reference data in this study were produced by 

DERM from Landsat images as a part of their state-wide vegetation monitoring program. Those maps 

were produced using a multiple regression model developed from an intensive field measured dataset 

of approximately 1,400 sites representing all types of vegetation communities and environments across 

the state of Queensland [47]. The regression model developed by DERM was not directly applicable to 

produce FPC maps from the images used in this study as the radiometric and atmospheric correction 

routine applied were different from those images used by DERM. Therefore, a separate regression 

model was developed from those FPC maps and reflectance values of all reflective bands from the 

corresponding pixels of Landsat TM images of the same dates. The pixels were selected systematically 

using a grid of 1000 m and 80% of the selected pixels were used to calibrate the regression model. The 

remaining 20% pixel values were used as to validate the model and an R
2
 of 0.88 was achieved. The 

model then used to produce FPC maps from the LITS. As the field measured values were from plots of 

100 m diameter, an average FPC value of 3 × 3 pixels in the images of 2005/07/08 and 2005/07/24 

were extracted for those plots and compared with the ground-measured values. Coefficients of 

determination (R
2
) and root mean square error (RMSE) terms were calculated to examine accuracy 

level. The linearity assumption of multiple regression was checked to verify whether it violated the 

assumption. 

2.3.2. Accuracy of the Time Series 

The accuracy of the predicted images was an important component of the LITS accuracy but that 

alone may not signify its overall usefulness. The usefulness of the LITS depends on how accurately the 

LITS generated time series represents actual changes in vegetation and other properties on the ground. 

Therefore, the second part of the evaluation assessed the accuracy of the time series generated from the 

LITS representing a particular location or a vegetation community. As there was no direct means of 

assessing the accuracy of the LITS-generated time series, several indirect methods were used. Firstly, 

NDVI images were generated from the LITS and the mean and the standard deviation of NDVI values 
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of all images in the time series were calculated for all vegetation communities using StarSpan [46]. 

The calculated mean and standard deviation of NDVI values from all original and predicted images 

were plotted in a time series plot and visually evaluated to determine the extent to which the predicted 

images followed a pattern of the original.  

Secondly, NDVI time series generated from the LITS were compared with MODIS NDVI time 

series, generated from the MOD13Q1 product, to assess their similarities and differences in terms of 

their overall shape and their ability to capture information on vegetation phenology. Comparison with 

MODIS NDVI values was carried out as they are considered the best available scientific data ready to 

use for vegetation monitoring and represent vegetation phenology correctly [25,48]. Trend and 

seasonal components, were decoupled using Seasonal Trend Decomposition based on Locally 

weighted regression (STL) algorithm [49] and examined for different forest communities. The series 

were decoupled using R and a seasonal window of 35 and frequency of 23 was used as input 

parameters. A Mann-Kendall Trend Test was used to test the difference the trend extracted from LITS 

and MODIS NDVI time series. Similarly, quantitative seasonal parameters including the start, end and 

peak dates of the growing season were calculated from both Landsat TM and MODIS time series using 

the TIMESAT 3.0 program [50]. The parameters were calculated from noise free Landsat TM and 

MODIS NDVI time series removing the error components shown by the STL algorithm from the 

original series and compared for different forest communities. 

3. Results 

3.1. Geometric Consistency of the LITS 

Figure 3 shows the geometric consistency among the images used to develop the LITS. It shows the 

registration accuracy of all images with a common reference image of 2006/02/01. The different 

symbols on the graph show the difference in X or Y coordinates at the five points of a particular image 

compared to the reference image. It can be seen that an average registration error of less than 10 m 

(one third of a pixel size) in most of the cases and less than 15 m in all cases was achieved. The images 

which are not shown in the figure due to the missing values of one or more tie points due to cloud 

cover had the same range of error values in available points. As the registration accuracy of the 

predicted images remains similar to the input Landsat TM images, the registration error of all images 

in the LITS was considered to be within a half of a Landsat TM pixel in each dimension. 

It was found during the CPC procedure that the registration accuracy of the USGS supplied L1T 

TM images was acceptable in most of the cases. No images with registration error more than 30 m in 

one dimension were observed. About 80% of the examined images in this case were within acceptable 

registration accuracy and no treatment was required. Only remaining 20% of images had the error 

more than selected threshold of 15 m, and image to image registration to the reference image was 

required. 

3.2. Accuracy of the STARFM Generated Landsat TM Imagery 

Table 3 shows the description of three predicted Landsat TM images used for assessing the 

prediction accuracy of the STARFM algorithm. The prediction dates were chosen so that the original 
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Landsat TM images for all three dates as well as all other required input images were cloud free and 

good quality. Figure 4(a–f) shows per-pixel comparison of reflectance from all six reflective bands of 

the original Landsat TM image of 2006/06/25 and the predicted image. It shows the fit of scatter plots 

to the 1:1 line and the coefficient of determination (R
2
) values. 

The distribution of the scatter plots around the 1:1 line and the consistently high correlation  

(R
2
 > 0.85) values across all bands (Figure 4(a–f)) showed that the predicted image was able to explain 

most of the variation in the original image in this case. The mean R
2
 value between original and 

predicted images of all three dates 0.61, 0.78, 0.86, 0.81, 0.90, 0.90 for Landsat bands 1, 2, 3, 4, 5 and 

7 respectively showed that STARFM maintained a reasonably accurate predicting capability in this 

environment. The R
2
 values across the different vegetation communities (Table 4) in the study area 

showed a similar trend with some exceptions in bands 1 and 2. In general a higher accuracy was 

observed in longer wavelength bands. The possible reasons of such exception follow in Section 4.2. 

Figure 4. Per-pixel Comparison of reflectance in original and Spatial and Temporal 

Adaptive Reflectance Fusion Model (STARFM) predicted image of 2006/06/25 for Landsat 

TM bands 1-5, and 7 (a–f). All pixels of the subset image covering the study were used. 

 

Figure 5(a–c) shows an example of a quantitative comparison of reflectance between the original 

Landsat TM reflectance values and those in the predicted image for 2006/06/25 for three different 

vegetation communities in all bands. The predicted reflectance was higher in visible bands (1–3) and 

smaller in infrared bands (4, 5 and 7) than the original. The difference was bigger in lower bands with 

highest positive difference in band 1-blue and lowest in band 3-red and highest negative difference in 

band 4—infrared and lowest in band 7—short-wave infrared. Among them, the highest absolute 

difference in mean and standard deviation between original and predicted reflectance values was in 

(a) (b) (c) 

(d) (e) (f) 
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band 1—blue. Eucalyptus woodland with shrubby understory showed the highest difference of 16% 

from the original image in mean and Brigalow showed the highest difference of 19% from the original 

image in standard deviation. The lowest difference was in band 5 middle infra-red (0.21% in mean and 

1.96% in standard deviation in Callitris forest and woodland and Brigalow respectively). The average 

of all vegetation communities showed that the highest difference both in mean and standard deviation 

between the reflectance of the original and predicted images was in blue band  (12.95% in mean and 

18.48% in standard deviation) and the lowest difference of 0.14% and 10.45% in band 7 (short-wave 

infrared). 

Table 4. Pixel based regression between reflectance values of the predicted Landsat TM 

scenes versus original Landsat TM scenes for three different dates for different forest 

communities in the Barakula State Forest. 

Dates Vegetation Types   R
2
     

  Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 NDVI 

2
0
0
3
/0

9
/0

5
 

Brigalow 0.73 0.86 0.90 0.85 0.93 0.94 0.82 

Callitris forests and woodlands 0.52 0.76 0.85 0.81 0.90 0.93 0.79 

Dry rainforests 0.49 0.77 0.88 0.80 0.90 0.93 0.83 

Eucalyptus open forests (gu) 0.20 0.54 0.85 0.86 0.90 0.90 0.75 

Eucalyptus open forests (su) 0.71 0.82 0.87 0.81 0.90 0.90 0.74 

Eucalyptus open woodlands (gu)  0.56 0.72 0.86 0.80 0.92 0.92 0.80 

Eucalyptus woodlands (gu)) 0.63 0.83 0.90 0.88 0.92 0.93 0.80 

Eucalyptus woodlands (su) 0.58 0.74 0.87 0.89 0.90 0.91 0.76 

Cleared, non-native, buildings 0.77 0.88 0.92 0.88 0.90 0.92 0.80 

2
0
0
6
/0

6
/2

5
 

Brigalow 0.63 0.91 0.95 0.86 0.96 0.96 0.94 

Callitris forests and woodlands 0.74 0.80 0.90 0.87 0.94 0.94 0.89 

Dry rainforests 0.08 0.59 0.81 0.86 0.93 0.95 0.89 

Eucalyptus open forests (gu) 0.71 0.80 0.90 0.88 0.94 0.93 0.87 

Eucalyptus open forests (su) 0.70 0.79 0.89 0.88 0.93 0.94 0.86 

Eucalyptus open woodlands (gu) 0.41 0.74 0.87 0.89 0.94 0.92 0.88 

Eucalyptus woodlands (gu) 0.73 0.85 0.93 0.88 0.95 0.95 0.89 

Eucalyptus woodlands (su) 0.74 0.84 0.92 0.88 0.95 0.94 0.88 

Cleared, non-native, buildings 0.83 0.90 0.94 0.86 0.95 0.95 0.92 

2
0
0
7
/0

7
/3

0
 

Brigalow 0.78 0.89 0.84 0.76 0.89 0.86 0.68 

Callitris forests and woodlands 0.76 0.86 0.88 0.80 0.91 0.90 0.82 

Dry rainforests 0.30 0.44 0.58 0.50 0.77 0.77 0.76 

Eucalyptus open forests (gu) 0.64 0.77 0.81 0.78 0.86 0.86 0.75 

Eucalyptus open forests (su) 0.78 0.88 0.84 0.78 0.88 0.86 0.66 

Eucalyptus open woodlands (gu) 0.73 0.84 0.90 0.60 0.89 0.92 0.75 

Eucalyptus woodlands (gu) 0.67 0.80 0.85 0.82 0.89 0.88 0.79 

Eucalyptus woodlands (su) 0.53 0.65 0.75 0.74 0.84 0.85 0.78 

Cleared, non-native, buildings 0.77 0.85 0.87 0.79 0.85 0.87 0.74 

gu=grassy understorey, su= shrubby understorey 
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Figure 5. Mean and standard deviation of the Landsat TM spectral band reflectance values for original and predicted Landsat TM image of 

2006/06/25 in (a) Eucalyptus woodlands with shrubby understory (b) Callitris forests and woodlands and (c) Brigalow. Similar results were 

found across all vegetation communities and these three were presented as an example 
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The difference in mean and standard deviation observed between the original and predicted Landsat 

TM reflectance images, however, was statistically significant. A two sided t-test with α = 0.05 showed 

that the mean predicted reflectance for different vegetation communities across all bands were not 

statistically similar to the mean of the original reflectance in most cases.  

Figure 6(a,b) shows the accuracy of the FPC map derived from STARFM predicted images by 

comparing the FPC values measured in ten different plots in 2005/07/11–13 with image-derived FPC. 

The accuracy was reasonably good with a R
2
 of 0.73 and root mean square (RMSE) of 5.6 for 

2005/07/08 image and a R
2
 of 0.75 and RMSE of 6.9 for 2005/07/24 image. The accuracy in 9 out of 

10 plots was better as the RMSE was only 4.38 for 2005/07/08 image and 2.92 for 2005/07/04 image 

excluding a plot in Brigalow forests with high FPC value. The higher error in the areas with higher 

ground-measured FPC was also observed by Armston et al. [47], and reported that the regression based 

approach was less accurate when estimating image-derived FPC for forested areas with more than 

50% FPC. 

Figure 6. Comparison of predicted Landsat TM image derived foliage projective cover 

(FPC) of: (a) 2005/07/08; and (b) 2005/07/24 with field measured FPC from 2005/07/11–13.  

 

3.3. Ability of the LITS to Capture Vegetation Phenology 

The ability of the LITS to capture vegetation phenology was assessed by examining images visually 

and comparing means and standard deviations of the original and predicted images in the LITS. 

Figure 7 shows the images from two subsets of the LITS in band combination 5, 4 and 3 as red, green 

and blue. Each subset features two Landsat TM images and a predicted image in the time period  

in-between the original images. The decreasing seasonally-green area between the two original images 

has been captured by the predicted images in the middle of the time series. The second and last row of 

the figure, a zoomed out area from the earlier rows shows that the predicted Landsat TM images are 

showing a scenario between the two original images, demonstrating the ability of LITS to capture the 

vegetation phenology. 



Remote Sens. 2012, 4                            

 

1874 

Figure 7. Comparison of predicted Landsat TM images band 5, 4 and 3 as red green and 

blue (central column) with original images of earlier acquisition dates (left column) and 

later acquisition dates (right column). The second and last row shows the zoomed out area 

indicated by a rectangle in the first images of the earlier rows. It shows an example of 

predicted image capturing seasonal change in vegetation cover. 

 

An evaluation of the mean and standard deviation of NDVI for different vegetation communities 

also showed that the LITS was able to capture the seasonal change in vegetation. Figure 8(a–c) shows 

a time series plot of means and standard deviations of NDVI value of all images in the LITS for three 

different vegetation communities. It can be observed from the figure that the mean and standard 

deviation of NDVI value of the predicted images follow the seasonal pattern shown by the mean and 

standard deviation of NDVI value of the original images. It also showed that the standard deviations of 



Remote Sens. 2012, 4                            

 

1875 

all predicted images except from the images of 2007/12/21 and 2008/01/06 were similar to the original 

images and therefore had followed the seasonal pattern of the original. The possible reasons of the high 

standard deviation for those days follow in discussion (Section 4.2). 

Figure 8. Time series of mean NDVI values derived from LITS for three different 

vegetation communities (a) Brigalow, (b) Callitris forests and woodlands and (c) Eucalyptus 

woodlands with shrubby understorey. The circles show the mean NDVI from the original 

images and the asterisks show the value from predicted images. The corresponding error 

bars show the standard deviations. 

 

3.4. Comparing LITS and MODIS NDVI Time Series 

The averaged NDVI time series generated from the LITS for different forest communities in 

Barakula State Forest were compared to the respective MODIS NDVI time series of the same period. 

As the Landsat TM acquisition dates don’t exactly match with MODIS 16 day composite product 

dates, MODIS NDVI of nearest earlier date from Landsat TM dates were considered to be equivalent 

for the comparison. Figure 9(a–d) shows the Landsat TM and MODIS NDVI time series for two 

vegetation communities of Callitris forests and woodlands and Eucalyptus woodlands with grassy 

understorey. Figure 9 compares the original NDVI time series along with the trend and seasonal 

components. The visual comparison of the original time series showed a level of similarity in overall 

shape between them, but the NDVI time series from MODIS were found higher than NDVI time series 

generated from LITS.  
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Figure 9. Comparison of LITS generated normalized difference vegetation index (NDVI) 

time series with Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI time 

series. The time series were generated averaging all pixels within the vegetation 

communities. The trend (a), (b) and seasonality (c), (d) shown were decoupled using the 

Seasonal Trend Decomposition based on Locally weighted regression (STL) algorithm. 
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The comparison of trend and seasonal components could be more useful than the comparison of the 

original series as they signify whether the NDVI time series generated from the LITS are showing 

similar pattern of vegetation change as shown by MODIS time series. The visual comparison of time 

series plots reveals that there is a slight difference between trends and seasonal components of the 

LITS and MODIS NDVI time series. A Mann-Kendall test, however, showed no significant difference 

between the trends of MODIS and Landsat TM time series for both vegetation communities. The test 

showed that the trends were slightly negative in all cases but none of them were significant at α = 0.05 

(τ = −0.094, two sided p = 0.13 for Landsat TM time series and τ = −0.05, two sided p = 0.37 for 

MODIS time series of Callitris forests and woodlands and τ = −0.097, two sided p = 0.12 for Landsat 

TM time series and τ = −0.08, two sided p = 0.17 for MODIS time series of Eucalyptus woodlands 

with grassy understorey). 

Figure 10. Extraction of seasonal parameters from Landsat TM and MODIS NDVI time 

series using the TIMESAT program. (a) and (b) Callitris forests and woodlands; (c) and 

(d) Eucalyptus woodlands with grassy understorey. The polynomials were fitted in noise 

free NDVI series using the Logistic function available in TIMESAT. The dots in the fitted 

polynomials indicate the start and end points of respective seasons. 

 

The quantitative evaluation of seasonality shown by two different series was performed using the 

key seasonal parameters: start, end and peak time of a growing season. Figure 10(a–d) shows the 

logistic polynomials fitted by the TIMESAT program [50] to produce the information. The information 

on start-point, end-point and peak time of a growing season was extracted for four seasons as shown 
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by dots in the fitted polynomials in Figure 10(a–d). The Landsat TM data generally showed an earlier 

start and a longer growing season compared to MODIS, but the difference was reasonably small 

considering the 16 days composite period for MODIS NDVI and similar nature of MODIS reflectance 

used to predict Landsat TM images. The average difference in the start of the seasons between Landsat 

TM and MODIS NDVI series was 21 days for Callitris forest and woodlands. The average difference 

in end of season and peak timing were 3 and 12 days, respectively. In the case of Eucalyptus 

woodlands with grassy understorey the average difference in start, end and peak of season were only 

10, 5 and 4 days respectively. The comparison for other vegetation communities also showed that the 

difference between key seasonal parameters shown by two different series was less than 16 days in 

eight out of 10 vegetation communities. 

4. Discussion 

This study tested the STARFM algorithm in a Eucalyptus woodlands environment and also showed 

the usefulness of the algorithm to build a long and regular time series of Landsat TM images capable 

of capturing vegetation phenology. The pre-processing routine applied to Landsat TM images was able 

to derive surface reflectance for input to the STARFM algorithm [17]. Altogether 77 synthetic Landsat 

TM images were produced using 38 cloud-free Landsat TM images and 115 MODIS NBAR images 

for the period between 2003/07/03 and 2008/07/16 to build the regular time series by filling the gaps 

due to clouds. The methods and data used produced an LITS with an observation every 16 days. 

4.1. Preparing Landsat Thematic Mapper Images and Choice of MODIS Data Sets 

Atmospheric correction of Landsat TM images is still an issue for operational implementation [18] 

due to the difficulties of acquiring all of atmospheric parameters required at the time of the overpass. 

The atmospheric correction routine applied in this study assumed that the AOD at 550 nm in the study 

area remained 0.05. Published reports [43,51] and the data available from AERONET 

(http://aeronet.gsfc.nasa.gov/) webpage for different sites in Australia showed that it is reasonable to 

assume an AOD of 0.05 in most of the areas in Australia except the Northern tropics. The almost 

similar prediction accuracy of September and June images (Table 4) also indicated that the assumption 

of a fixed AOD of 0.05 was appropriate in this context. AERONET AOD data showed that the 

atmosphere in June was near its clearest with low AOD values, while in September it was at it had 

very low visibility and high AOD, due to smoke from fires. Assuming constant AOD is a limitation of 

the approach used in this study and may limit the approach in areas of temporally and spatially 

variable AOD.  

The use of the MODIS NBAR product instead of the daily or 8-day composite MODIS reflectance 

as the input MODIS dataset to STARTFM was useful for two reasons. Firstly, the use of a composite 

product like NBAR enables prediction of the Landsat TM reflectance even in areas where cloud cover 

prohibits acquisition of frequent cloud free images [24]. Except for the two MODIS scenes used to 

predict the December 2007 images, all other scenes used in this study were free from missing data due 

to cloud cover and helped to predict Landsat TM scenes correctly to complete the LITS. Secondly, 

compared to the daily or 8-day composite MODIS reflectance, the viewing and illumination geometry 

of the NBAR product is similar to the Landsat TM images. The daily MODIS reflectance product can 
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have a significant reflectance variation, particularly on the edges of the images due to its wide (±55°) 

sensor view angle compared to ±7° of Landsat. The 8 day or 16 day composite products are meant to 

be from near nadir viewing observations but in practice about 50% observations could be from high 

viewing angles (>20°) as observed in an analysis of 34 randomly selected pixels of MOD13Q1 in the 

study area from 161 scenes (2001–2007) [52]. As the solar geometry remains more or less similar 

between Landsat TM and MODIS, the use of NBAR product reduces the differences in viewing 

geometry over most of the Landsat TM scenes. The use of NBAR data, however, may impact the 

accuracy of predicted reflectance as the NBAR product represents an averaged scenario for a 16-day 

composite period, rather than the actual Landsat TM date of prediction. The NBAR product may not 

be available for all required dates as missing data was encountered here for two dates. The problem 

could be more serious in tropical regions where more frequent cloud cover and smoke contamination 

exists. Use of quality checking and temporal interpolation tools like TiSeG [53] can help to get the 

data for all required dates but will also increase the uncertainty of prediction as interpolated values 

may not truly represent the actual values. 

4.2. Accuracy of STARFM Predicted Images and the LITS 

The accuracy of predicted images observed in this study showed the STARFM algorithm [17] worked 

well in a eucalyptus-dominated broad-leaved forest environment, similar results to Hilker et al. [24] from 

coniferous forests. The very low R
2
 value (0.08) of Dry Rain Forests on 2006/06/25 images was the 

result of missing blue-band data over the area in the input MODIS image. No obvious reasons were 

determined for the other low values of 0.20 for Eucalyptus Open Forests with grassy understorey on 

2003/09/05, 0.41 for Eucalyptus Open Woodland with grassy understorey on 25 June 2006 and 0.30 

for dry rain forests on 2007/06/30 for band 1 and 0.44 for Dry Rain Forests on same date for band 2. 

Higher prediction accuracy in the infrared bands than the visible bands as observed in this case was 

also reported by Hilker et al. [24] in coniferous forest environments. The reason for the difference is 

likely to be due to the separate atmospheric correction routines applied for Landsat and MODIS 

reflectance. The difference in atmospheric conditions at the time of image acquisition for input 

MODIS image and original Landsat TM image could also be the reason for the poor relationship for 

blue bands. The reason is that the shorter wavelengths are more affected by atmospheric attenuation 

than the longer wavelength [18]. 

The significant difference between the reflectance of original and predicted images for different 

vegetation communities observed in this study was different from the earlier study of Hilker et al. [24], 

who reported no significant difference in original and predicted reflectance. The important question 

was whether the difference is important for further image analysis tasks as the difference in mean does 

not always have the same effect. For example, if all reflectance values in different bands are offset in 

one direction proportionately, no impact may be observed in the analysis results though the offset 

image may have a significantly different mean value from the original. However, if the difference in 

means was due to a random change in values, it could affect the analysis results. The change in 

standard deviation and the per-pixel correlation, therefore, could be a stronger measurement of the 

similarity and differences in images in terms of output products. As the correlation observed in this 

case was significant, the difference in standard deviation was small between original and predicted 
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images in most of the bands, the images could still be useful to monitor vegetation change. The 

accuracy of the FPC product derived from the predicted images (Figure 6(a,b)) indicated the usefulness 

of the approach to develop a time series of FPC to monitor change in structural properties of vegetation 

over time. As the result shown here was based on only 10 field plots, testing the approach in other 

areas where more field-measured FPC values are available will signify whether the approach can be 

used operationally to develop FPC time series in Queensland. 

The other difference observed in this study was a smaller prediction accuracy (R
2
 value) for band 4 

(near-infrared) than band 3 (red), an exception of the trend of higher accuracy for long wavelength 

bands reported in an earlier study and observed in this case. The correlation observed in this study for 

band 4, however, was not smaller than that reported by Hilker et al. [24] but the correlation for band 3 

observed here was higher. Similarly, the positive prediction error at visible bands and negative 

prediction error in infrared bands observed in this study was also interesting. The reason for this could 

be the difference in vegetation canopy, branch and trunk structure between coniferous and broadleaf 

forests, which results in different BRDF properties at the Landsat and MODIS scales.  

The pattern of means and standard deviations of predicted and original images (Figure 8(a–c)) 

indicated the usefulness of STARFM generated images as a part of long time series. Examination of 

the input MODIS data showed that the abnormally high standard deviation of two dates (2007/12/12 

and 2008/01/06) was the result of missing data in the input MODIS imagery used for prediction. For 

example, about 40% of pixels covering the area were missing in the MODIS NBAR imagery dated 

2007/12/19 and input MODIS image for prediction of Landsat image dated 2007/12/21. The Callitries 

forests and woodland were not affected as the MODIS data for that area were not missing. Quantitative 

analysis also showed that the difference in standard deviations of NDVI between original and 

predicted images excluding those exception images was small. For example, the absolute difference 

between averaged standard deviation of original and predicted images for Briglow, Callitries forests 

and woodlands and Eucalyptus woodlands with shrubby understorey was 1.15%, 4.09% and 3.63% of 

the average value of original images respectively. 

The similarities in the overall trend of the NDVI time-series derived from the LITS with the NDVI 

time series extracted from MODIS product (Figures 9(a–d) and 10(a–d)) also indicated the usefulness 

of the STARFM algorithm to produce a long and regular time series which can be used to study 

vegetation phenology. However, the MODIS NDVI series were higher than the LITS generated NDVI 

series. A certain level of difference in the NDVI series is an anticipated behavior as identical NDVI 

values from the images with different spatial resolution and acquired by different sensors can’t be 

expected. The spatial point spread functions of Landsat TM and MODIS sensors are different and the 

simple spatial averaging cannot mimic the functions and won’t produce the similar values [20]. In 

addition, the gridding effects of MODIS reflectance [54] could also have some negative effect. 

Besides, the higher red reflectance in band 3-red and lower infrared reflectance in band 4—infrared in 

predicted images also contributed to lower the NDVI series generated from LITS. In spite of the 

difference, as both series showed similar trend information and coincident key phenological metrics, 

like start of season and end of season, were smaller than the composite period of the MODIS data (16 

days), the LITS can be considered capable of capturing vegetation phenology and trend in the 

environment and data studied in this work. The performance of LITS at individual Landsat TM pixel 

level, however, could not be examined due to the lack of ground-based phenological and trend 
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information. Future studies similar to Liang et al. [25] with field information at Landsat TM spatial 

scale would help to assess the LITS approach with greater confidence across more environments. 

The capability for detecting change in vegetation structure and condition in the predicted Landsat TM 

image depends on the ability of the input MODIS images to detect such change and the nature of the land 

cover [17]. If the two input MODIS images are captured at significant times apart, and are unable to 

capture the temporal change in reflectance, the predicted Landsat TM image will also be unable to record 

the change. In a heterogeneous landscape where similar Landsat TM pixels can’t be found within the 

MODIS pixel boundary, the prediction accuracy of the STARFM algorithm degrades [17,19]. The 

ESTARFM algorithm [19] is aimed at improving the prediction in a heterogeneous environment, but 

needs at least two sets of input Landsat and MODIS images as stated earlier. The ESTARFM was not 

used in this study as two near-date Landsat images were not available for all prediction dates. 

Although ESTARFM could have been used for the dates where two pairs of Landsat and MODIS 

image were available, STARFM was used to make all prediction in the LITS consistent.  

The choice of input Landsat TM and MODIS pairs is important as the performance of these 

algorithms not only increases with more input Landsat and MODIS image pairs but also depends on 

the time difference between input images and predicted images [17,19]. Hilker et al. [55] have 

developed a new algorithm called Spatial Temporal Adaptive Algorithm for Reflectance Change 

(STAARCH) which identifies optimal input Landsat images for STARFM particularly to record major 

disturbances in predicted images. As the balance of the number of input image pairs and the time 

difference between input images and predicted images is important for the accuracy of predicted 

images, further tests on the impact of the number of input image pairs and the time difference of input 

images and predicted image are required. This information will also help to decide whether to use 

STARFM or ESTARFM based on the available Landsat and MODIS images for input. 

5. Conclusions and Future Works 

The method outlined in this paper can be used to develop Landsat Image Time Series (LITS), a 

relatively long, dense and regular (in time) sequence of Landsat TM/ETM+ images, suitable to be 

analyzed by means of time series analysis techniques, to monitor and measure seasonality and trends in 

the structural and physiological properties of vegetation. The STARFM algorithm performed equally 

well to predict the synthetic Landsat TM images in a eucalyptus dominated forest and woodlands 

environment compared to coniferous environments reported by earlier studies. The MODIS NBAR 

data set is a viable alternative to the MODIS daily and 8-day composite reflectance used in similar 

studies, for input to the STARFM algorithm. Moreover, the accuracy of FPC values derived from 

STARFM predicted images indicated that the information could also be accurate at the Landsat TM 

spatial scale. Future studies with sufficient ground-measured phenological data at the Landsat TM 

spatial scale will be required to strengthen this conclusion. The method, however, required 

considerable human machine interaction for the cloud and cloud shadow masking and to make sure 

that all images in LITS are well registered each other, it could not be fully automated. 

The LITS constructed by this method can be used to derive similar phenological information 

compared to MODIS NDVI (MOD13Q1) time series at the vegetation-community scale in an 

Australian ecosystem. As MOD13Q1 NDVI also has some issues as a time series data sets due to 
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variable viewing and illumination geometry across time [44], the LITS constructed by this method is 

not also free from the effect. The view zenith angle variation may not be significant in LITS due to the 

small scan (±7°) angle of Landsat TM but an equally important effect of solar zenith angle variation as 

it was observed in MOD13Q1 dataset can be expected. The satellite observations available at present, 

however, do not allow modelling the BRDF properties at Landsat TM spatial scale and therefore is not 

possible to decouple the effect of solar zenith angle variation. With ever improving technology, it can 

be expected that future satellite programs will make it possible to model the BRDF in Landsat-like 

spatial scale (e.g., through Europe’s Sentinel program or Landsat 8’s sensor) and the earth observing 

community will be able to model biophysical parameters more accurately at Landsat like spatial 

scale too. 
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