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Abstract: Land cover classification of very high resolution (VHR) imagery over urban 

areas is an extremely challenging task. Impervious land covers such as buildings, roads, 

and parking lots are spectrally too similar to be separated using only the spectral 

information of VHR imagery. Additional information, therefore, is required for separating 

such land covers by the classifier. One source of additional information is the vector data, 

which are available in archives for many urban areas. Further, the object-based approach 

provides a more effective way to incorporate vector data into the classification process as 

the misregistration between different layers is less problematic in object-based compared to 

pixel-based image analysis. In this research, a hierarchical rule-based object-based 

classification framework was developed based on a small subset of QuickBird (QB) 

imagery coupled with a layer of height points called Spot Height (SH) to classify a 

complex urban environment. In the rule-set, different spectral, morphological, contextual, 

class-related, and thematic layer features were employed. To assess the general 

applicability of the rule-set, the same classification framework and a similar one using 

slightly different thresholds applied to larger subsets of QB and IKONOS (IK), 

respectively. Results show an overall accuracy of 92% and 86% and a Kappa coefficient of 

0.88 and 0.80 for the QB and IK Test image, respectively. The average producers’ 

accuracies for impervious land cover types were also 82% and 74.5% for QB and IK.  
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1. Introduction 

With the availability of VHR satellite imagery (spatial resolution ≤ 1 m) since 1999, urban land 

cover classification using this type of data has become an emerging field of research in the remote 

sensing community. Because of the sub-meter spatial resolution, VHR imagery has a very high 

potential in more detailed and accurate mapping of urban areas [1]. However, the high spectral 

variation within the same land cover type (within-class) and the low spectral variation between 

different land cover types (between-class) in urban areas make the classification very challenging if the 

classifier relies solely on spectral information of the image [2–4].  

To differentiate impervious urban land covers such as buildings, roads, and parking and paved areas 

additional information should be incorporated into the classification process. Additional information 

could be the spatial measures extracted either from the image, in the forms of textural, morphological, 

and contextual measures, or from ancillary data [5]. Over the past decade, a significant amount of 

research has employed spatial measures extracted from the image (i.e., texture, context, and 

morphology) in the classification process of VHR imagery over urban areas [6–12]. 

The incorporation of ancillary data such as LiDAR data, digital elevation models extracted from 

stereo optical imagery, and vector data together with VHR imagery, which is often called multisource 

classification [13], has received increasing attention in the remote sensing community in recent years. 

A bibliographic review of multisource data fusion for urban remote sensing applications is presented 

in [14]. Examples of integrating LiDAR data and VHR imagery for urban land cover mapping are 

provided in [13] and [15,16]. In recent years some studies have benefited from vector data for land 

cover classification of VHR imagery over urban areas. An example is the work carried out by [17] in 

which some spatial modelling techniques of vector data (road centre lines and parcel layers) were 

developed to deal with the problem of confusion between spectrally similar classes. Another example 

is [18] who employed road maps and building footprints in segmenting high resolution aerial 

photographs for monitoring urban tree cover. 

A problematic issue in multisource image analysis is the misregistration between layers from 

different sources (e.g., VHR image and vector data). A precise geometric registration of corresponding 

data layers is often very difficult to achieve, particularly in VHR imagery. Because of the sub-meter 

pixel size of VHR imagery, a pixel-by-pixel co-registration between vector data and VHR imagery is 

near to impossible. For this, pixel-based classification approaches do not yield promising results for 

multisource classification. Object-based approaches, on the other hand, facilitate the use of ancillary 

data [19] and since they require less precise registration of data, object-based approaches are highly 

desirable for multisource image analysis [20]. In object-based classification the basic element is a 

group of pixels (segments) instead of a single pixel. Consequently, it is not required that each pixel is 

exactly co-registered with the corresponding pixel in another layer. Indeed, if the objects of two 

different layers have reasonable overlap, a small shift between different data layers can be ignored 
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during the classification process. In addition, the basic processing unit of object-based classification is 

an aggregated group of pixels forming a semantically meaningful object polygon which thus can 

effectively be integrated and analyzed with vector data [16].  

Object-based image analysis also facilitates the incorporation of spectral and spatial information 

inherent in the VHR imagery into the classification process. By segmenting the image, several spectral, 

textural, and morphological (e.g., shape and size) features of objects can be incorporated into the 

classification process. These objects’ features help the classifier to distinguish spectrally similar land 

cover types (e.g., buildings and roads). In addition, object-based classification reduces high spatial 

frequency noise present in VHR images by exploiting the spectral and spatial dependency of 

neighboring pixels, in the form of objects, and thus increasing the classification accuracy. 

The primary objective of this research was to develop an object-based classification framework 

using the integration of VHR imagery and vector data such as Spot Height (SH) layer to classify an 

urban environment comprised of large buildings, small houses, parking lots, roads/streets, and 

vegetation including grass and trees. The second objective was to assess the general applicability and 

transferability of the framework to different areas and different VHR imagery. Finally, the third 

objective was to evaluate the effect of possible misregistration between the vector data and VHR 

images of various geometric accuracies (e.g., IK and QB) on object-based classification.  

To do this, a hierarchical rule-based object-based classification framework was developed using the 

Cognition Network Language available in the eCognition® software package. The rule-set was 

developed using a small subset of QB imagery by combining different spectral, morphological 

(geometry and extent), contextual, and class-related features of objects, resulting from the 

segmentation step, together with the information of a SH layer. To assess the transferability of the 

developed rule-set to different areas and images, the same and similar rule-set was applied to a 

different and larger area of the QB and IK image, respectively. QB and IK image have different 

misregistration with the SH layer. To evaluate the effect of misregistration on classification accuracy, 

misregistration of these images was deliberately left uncorrected.  

This paper is structured as follows: Section 2 describes data used and the study area. The proposed 

methodology is presented in Section 3. Sections 4 and 5 present results and discussion, respectively. 

Finally, section 6 provides the conclusion of this study. 

2. Datasets and Study Areas 

2.1. Study Area 

Two different parts of the city of Fredericton in New Brunswick, Canada were chosen as the study 

areas in this research. These include a small part of the city on the north side (Figure 1(a)) that was 

used for developing the rule-set and a larger part of the city on the south side that was used for testing 

the proposed method (Figure 1(b)). The city contains a variety of urban land cover types including 

vegetation areas (grass and trees), water, large buildings, small houses, parking and paved areas (with 

various sizes, shapes, and colors), narrow streets, and highways. Classification of such areas is 

challenging due to the complexity of land cover types. There are many buildings and small houses with 

a variety of roof colors such as white, gray and black. In residential areas, small houses and narrow 
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streets are partially covered by trees foliage since the images were collected in mid and late summer, 

when the trees have reached their maximum growth. Trees are mainly deciduous with many different 

species. Shadows cast by tall buildings are another source of land cover complexity. 

Figure 1. (a) Pan-sharpened QuickBird (QB) Pilot image used for developing the rule-set. 

(b) QB Test image in true color composite. 

 

(a) 

 

(b) 
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2.2. Datasets 

Two sets of data covering the same area are used in this study. These are (a) subsets of QB and IK 

and (b) a vector layer of height points called Spot Height (SH). 

2.2.1. The QB and IK Image 

The IK and QB images were acquired on 19 June and 31 August 2002, respectively. Both QB and IK 

imagery possess a panchromatic band (Pan) and four multispectral (MS) bands including blue (B), green 

(G), red(R), and near infrared (NIR). The middle wavelengths of QB multispectral bands are 487.5, 543, 

650, and 816.5 nm for B, G, R, NIR bands, respectively, while those of IK are 480.5, 550, 665, and 805 

nm. The spatial resolution of pan band is 0.65 m (QB) and 0.82 m (IK) at nadir, while for MS bands, it is 

2.62 m for QB and 3.28 m for IK [21,22]. As the preprocessing step (for both VHR imagery), the four 

multispectral bands were fused with the panchromatic band introduced by [23] resulting in four  

pan-sharpened bands with a spatial resolution of 0.7 m and 1 m for QB and IK. Figure 1(a) shows the 

portion of the QB image used for developing the rule-set (QB Pilot), and Figure 1(b) shows the QB 

Test image. 

2.2.2. Spot Height Vector Data 

The SH data was a by-product of a digital elevation model (DEM) generation project conducted by 

the City of Fredericton in 2002. The spot heights were collected from 2002 stereo aerial photography 

in which the photo scale was approximately 1:10,000. The points were collected photogrammetrically 

as a series of irregularly spaced points with spacing of approximately 20 m in both dimensions and 

vertical accuracy of ±0.40 m at a confidence level of 90%. These points were extracted using stereo 

plotters in which a clear view of the ground was possible (e.g., no points in dense forest areas). In 

addition, the points mainly lie in non-built-up areas. The geometrical shift (misregistration) between 

the SH layer and QB and IK poses a challenge when they are integrated for the subsequent image 

analysis (e.g., classification). These data were collected in 2002 and, unfortunately, we could not find 

the statistical information about the misregistration between these data layers. However, visual 

inspection reveals a slight misregistration between the SH layer and QB (Figure 2(a)), and a significant 

misregistration between the SH layer and IK. A number of points were manually collected over both 

QB and IK image to determine the approximate shift between these two images. A misregistration shift 

of approximately 10 m between the QB and IK image was calculated. Although this amount of shift is 

relatively high and can be mitigated by a few ground control points, no effort was made to mitigate it 

as one of the primary objectives of this study is to assess the effect of misregistration on classification. 

It should be noted that only the locations of Spot Heights were used and no elevation information of 

SH layer was used in this study.  



Remote Sens. 2012, 4              

 

 

2261 

Figure 2. Misregistration between the Spot Height (SH) layer and the QB (a) and 

IKONOS (IK) (b) image. Asterisks represent the Spot Heights. Spot Heights were 

collected over non built-up areas; however, due to misregistration, some points lie on 

building roofs as shown in this Figure. As seen, misregistration is larger in IK than in QB.  

 

(a)      (b) 

3. Methodology 

The proposed methodology is illustrated in Figure 3. The rule-based expert system starts by 

segmenting the Pan-sharpened image followed by a four-step hierarchical classification. First, the 

entire image is classified to vegetation and non-vegetation. Second, vegetation areas are further broken 

down to grass and trees. Non-vegetation areas are also classified to shadows and non-shadow in this 

step. Third, non-shadows are divided to parking lots and non-parking lots. Finally, non-parking lots are 

classified to buildings and roads. The remainder of this section describes the details of the flowchart in 

Figure 3. 

3.1. Image Segmentation 

The first step in object-based image analysis is segmentation. In general, image segmentation is 

defined as the process of partitioning an image into separated regions based on parameters specified [3]. 

These parameters often consider the homogeneity/heterogeneity of regions [24]. Depending on 

how homogeneity/heterogeneity is evaluated as well as how the pixels are aggregated (e.g., edge 

contour-based and region-based) there exists a large number of image segmentation techniques [25]. 

One of the widely used techniques is region-based, which includes both region growing and merging 

and splitting [26]. The region growing method starts from seed pixels, a bottom-up approach, and 

regions grow until a homogeneity/heterogeneity criterion is satisfied. 
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Figure 3. Flowchart of the developed rule-based expert system. Final classification results 

are shown in oval shape. The first and second thresholds for some features represent the 

threshold for QB and IK, respectively. When the threshold is identical for both images only 

one value is provided.  

 

In this study, multiresolution segmentation, a region-based technique [27] available in eCognition, 

which combines both region growing and region merging techniques [28], was used. In multiresolution 

segmentation both spectral (color) and spatial (shape) homogeneity of objects are considered. In fact, 

adjacent regions are merged based on a weighted homogeneity criterion of object shape and color [29]. 

Three key parameters, namely scale, shape, and compactness need to be set in multiresolution 

segmentation [30]. Scale, which is considered the most crucial parameter, controls the average size of 
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objects and the two other parameters control the homogeneity of objects [29]. Finding the optimal 

parameters for segmentation is a trial and error process, which is very time consuming and directly 

depends on the analyst’s experience [31]. Instead of trial and error, we used the Fuzzy-based 

Segmentation Parameter optimizer (FbSP optimizer) developed by [31,32] to get proper parameters in 

different levels of segmentation. FbSP optimizer is a supervised approach for automatic estimation of 

the three optimal segmentation parameters (scale, shape, and compactness) using the spectral and 

spatial information of training objects utilized in a fuzzy interface system. It is based on the idea of 

discrepancy evaluation to control the merging of sub segments to reach a target segment [32]. 

To use the FbSP optimizer, an initial segmentation is carried out by manually selecting the 

parameters (level 1). Normally the eCognition defaults are used for shape and compactness, and the 

scale parameter is set in such a way that the resulting objects are smaller than the real objects (small 

scale). After the first level of segmentation, a few sub-objects (e.g., sub-objects that form a building 

object) are selected as training objects (similar concept to selecting training pixels in traditional 

supervised classification). The information of training objects such as texture, brightness, area, and 

rectangular fit [31] are used to train the FbSP optimizer. After the training, the FbSP optimizer gives 

the optimal parameter for the second level of segmentation. Again, objects in the second level are used 

as training objects for calculating the parameters for the third level, and this process is iterated until the 

software gives objects which are close to the real objects. The full description of the FbSP optimizer 

can be found in [31]. 

3.2. Image Classification 

The second step in object-based image analysis is classification. Initially, five land covers were 

defined: vegetation, shadows (excluding the shadow of trees), parking lots, roads (including wide and 

narrow roads, highways, and streets), and buildings (including large buildings and small houses). 

Vegetation was then broken down to trees and grass. Also, shadows were later assigned to either 

parking lots or buildings and thus the final classification map contains five land cover types including 

three impervious land covers, grass, and trees. A hierarchical rule-based classifier was developed to 

assign each object to a land cover class. The object-based approach allows the analyst to combine 

spectral, textural, morphological (geometry and extent), contextual, and class-related features of 

objects in order to assign a class membership degree (between 0 and 1) to each object based on a fuzzy 

membership function or strict thresholds [27,33]. As seen in Figure 3, the membership functions used 

in this study are based on the logical operator AND (&) and thresholds. Furthermore, it has a hierarchical 

capability to classify the entire scene into general classes (e.g., vegetation and non-vegetation areas). 

These general classes are called parent classes. Then, each parent class is divided to sub classes (child 

class) containing more detailed land cover types (e.g., buildings and roads). This hierarchical 

capability allows the developer to incorporate objects in different levels of segmentation for individual 

levels of class hierarchy.  

Table 1 reports image object features employed in the hierarchical rule-set for classifying the Pilot 

image into the aforementioned five classes. These features were mostly selected by visual examination 

of different features available in eCognition. The criteria used for each class will be described in more 

detail in the following subsections. 
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Table 1. Object’s features used in the rule-set hierarchy for different classes. 

Class Segmentation Level  Feature  

Vegetation L1 NDVI 

Shadow L1 Brightness, Area, Density, NDWI 

Grass and Trees L2 Brightness, GLCM-Homogeneity 

Parking lot L3 Number of SH points laid within the boundary of 

objects, Length/width of main axis, Existence to shadow 

Road/Street L3 Density and Ratio G  

Building/House L3 Unclassified Objects, Existence to shadow 

3.2.1. Vegetation 

The first step in the proposed hierarchical expert rule-based system is to extract vegetation. Active 

vegetation can be identified in the near infrared spectrum due to the rise reflectance value compared to 

the red spectrum. Reflectivity rises sharply at 0.75 µm, the so called red-edge region [34].The 

normalized difference vegetation index (NDVI) has been widely used in the literature to separate 

vegetation from non vegetation areas. It is calculated by: 

)/()( RNIRRNIRNDVI        (1) 

where NIR and R are the mean values of all pixels (within the boundary of each object) in band near 

infrared and red for a given object in each level of segmentation. Based on our experience the 

threshold for classifying vegetation areas was set to 0.3 in the Pilot image. Since the spectral properties 

of the original image (e.g., NDVI) are better preserved in smaller objects than in larger ones, the 

lowest level of segmentation (L1) is preferred for extracting vegetation.  

3.2.2. Grass and Trees 

Having extracted the vegetation areas, they were further classified into grass and trees. These two 

classes are distinguishable from their textural characteristics. The grey level co-occurrence matrix 

(GLCM) introduced by [35] is the most commonly used texture measure for the urban land cover 

classification of VHR imagery. After visually examining different GLCM texture measures, we found 

that the Homogeneity measure can effectively separate grass and trees. Grass is more homogenous 

than trees and thus has higher Homogeneity values. This measure can be calculated for individual 

objects in each band. Since the spectral reflectance of vegetation is larger in NIR than in any other 

band, NIR was selected for the GLCM texture calculation. In addition, shadows of trees cast on grass 

have a texture close to that of trees. Hence, the Brightness values of objects were also employed in the 

rule-set to distinguish shaded grass from trees. The Brightness value is calculated as the average mean 

values of all bands over each object [28]: 

4/)( NIRRGBBrightness       (2) 

GLCM texture measure is more meaningful for objects in level 2 than level 1 and thus second level 

of segmentation is preferred for grass and trees classification. 
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3.2.3. Shadows 

Shadows are dark features in optical imagery, and because the segmentation of such imagery is 

mainly based on the spectral structure of the image [36], shadow influences the segmentation of 

surrounding areas. Furthermore, shadow is an important factor that reduces the spectral values of the 

shaded objects and thus influences the land cover classification [37]. For this, it should first be 

extracted and excluded from the subsequent classification. Later, the area under shadow will be 

assigned to parking lots or buildings based on its adjacency to these classes. As mentioned, we only 

considered the shadow of buildings and not those from trees, since trees’ shadows were included in the 

class of either trees or grass. 

Regarding the spectral and spatial properties of shadow, two spectral (NDWI and Brightness) and 

two morphological features (Density and Area) of image objects were used in classifying the shadow 

areas.The normalized difference water index (NDWI) [38] is a metric used for masking out black 

bodies (water and shadow) in VHR imagery [39] and is defined as follows [38]: 

)/()( NIRGNIRGNDWI        (3) 

where G is the mean value of all pixels (within the boundary of each object) in each level of 

segmentation for the band green. If only the spectral features of objects are utilized for extraction of 

shadow areas, some buildings, and especially small black roofed houses, are also misclassified as 

shadow. Thus, shadows extracted by spectral measures, must be refined to exclude spectrally similar 

non-shadow areas. This is feasible by employing the morphological features in the classification 

decision. As mentioned, Density and Area of objects were used as the morphological features to refine 

the shadow areas. In eCognition, the Density feature describes the distribution, in space, of the pixels 

of an object and is calculated by the Area of the object divided by the approximated average of the 

major and minor axes of the ellipse fitted to the object [28]. Area is the number of pixels forming an 

image object. The size of shadows in optical imagery depends primarily on the height of objects but 

also on the sun elevation angle [40].In our study area (a typical North American small city), majority 

of buildings are two to three stories high. Therefore, shadows are normally small features compared to 

surrounding features such as buildings and parking lots, and thus objects in the first level of 

segmentation better represent shadow areas.  

3.2.4. Parking Lots 

Having extracted vegetation and shadows, they are excluded from the subsequent processes in the 

rule-set hierarchy. Objects in the first level of segmentation do not represent the boundaries of 

impervious land cover types. Because of the relatively large size of parking lots, objects in the third 

level were chosen for the subsequent classification process. Parking lots and roads are spectrally 

similar because the same materials (e.g., asphalt, gravel, etc.) are used in their construction. Parking 

lots and buildings are also similar in terms of their morphological features such as shape and extent. 

Therefore, extracting the parking lots solely based on the information of the image does not yield 

promising results. The SH layer which contains points in areas other than those with roads and 

buildings was utilized to help the classifier in distinguishing parking lots from roads and buildings. For 

classifying parking lots, the SH layer was intersected with the objects in level 3. A threshold of three 
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points within each object was set (by visual inspection) to extract objects containing three or more 

height points and to classify them as parking lots. Furthermore, due to the misregistration between the 

VHR imagery and SH layer, roads which are neighboring parking lots may be misclassified as parking 

lots. Therefore, another criterion was defined based on the Extent feature of objects to reduce the 

possible misclassification of roads as parking lots. The ratio between the length and width of the main 

line of each object’s skeleton [28],which has a high value for roads and a low value for parking lots, 

was considered as an Extent feature for parking lot classification as seen in the flowchart of the method 

in Figure 3.  

3.2.5. Roads and Buildings 

The last step in the hierarchical rule-based classifier is to classify roads and buildings. Separation of 

these two impervious land covers is feasible with the employment of proper object features and level 

of segmentation. Visual inspection of different segmentation levels confirms that roads and buildings 

are well represented in the third level of segmentation (L3). Moreover, the linear structure of roads, 

compared to the compact structure of buildings, helps the classifier to distinguish between these two 

classes. After visually examining several spectral features of objects including the Brightness and 

Ratios of all four bands, we found that Ratio G, a spectral feature, together with Density, a shape 

feature, can effectively distinguish between roads and buildings. Ratio G describes the amount that 

band G contributes to the total brightness for an object and is calculated as follows [28]: 

)/( NIRRGBGRatioG        (4) 

Having classified roads, the remaining unclassified areas are assigned to the class of buildings. The 

diversity in shape and color of buildings is relatively higher than of any other class in the scene. For 

this, we left buildings as the last class to be extracted in the hierarchical classification system.  

3.2.6. Classifying Shadows 

After extracting shadow areas, they should be assigned to the corresponding land cover class. 

Visual inspection of the image reveals that shadows cast by tall buildings belong to either parking lots 

or buildings. A few buildings have multi level roofs and the shadow of the top roof covers part of the 

lower roofs. The rest of the shadows cover part of the parking lots surrounding the buildings. Shadow 

areas can possibly cover the road, but since the majority of shadows in the image are cast by large and 

tall buildings, which are normally encompassed by parking lots, most of the shadow areas belong to 

parking lots. Therefore, in the rule-set shadows were assigned to either buildings or parking lots. 

The assignment of shadows was carried out through the employment of class-related features. The  

class-related feature used in this study is the existence of neighbor objects. In other words, if the 

shadow is adjacent to parking lot object(s), it is assigned to parking lots; otherwise it is assigned to the 

class of buildings. It should be noted that this rule is hardly transferable to areas with different urban 

structure. For instance, shadows may belong to road as well. However, in our study area, shadow does 

not cover a large area and missing some shadow does not have a significant effect on the classification 

accuracy of the entire image. Moreover, further development of rules for shadow will lead to a more 

complex rule-set and thus affect the transferability of the entire rule-set to other areas.  
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4. Results 

4.1. Segmentation Results 

The segmentation results of the three images, using the FbSP optimizer, are reported in Table 2. 

The visual results of a portion of the QB and IK Test image are also depicted in Figure 4. The three 

segmentation parameters (i.e., scale, shape, and compactness) are different for QB and IK image. This 

is mainly because of the slight difference between the spatial resolution, the wavelength coverage of 

each multispectral band, and the acquisition date of QB and IK image (see Section 2.2). 

Table 2. Multi-resolution segmentation parameters for the three images. 

 Level Scale Shape Compactness No of Objects 

QB-Pilot Image 

1 30.00 0.10 0.50 18,204 

2 77.83 0.64 0.81 2,190 

3 131.33 0.50 0.81 1,890 

QB-Test Image 

1 30.00 0.10 0.50 64,481 

2 77.83 0.64 0.81 7,634 

3 131.33 0.50 0.81 6,103 

IK-Test Image 

1 40.0 0.10 0.50 69,102 

2 82.0 0.57 0.80 10,810 

3 142.0 0.59 0.80 7,375 

Figure 4. Multi-resolution segmentation results of level 1 (L1), level 2 (L2), and level 

3(L3) for a sample area of QB (top) and IK (bottom) Test images.  
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Objects in the first level of segmentation are not meaningful for any of the land covers. However, 

since the original spectral properties of the image are better preserved in lower levels than in higher 

levels of segmentation, the lower levels (i.e., L1) preferred for classifying land covers in which the 

spectral features are employed (e.g., shadow and vegetation). 

For the classification of impervious land covers, larger objects (level 3) proved to be more effective 

than smaller objects. This is because of two main reasons: First, morphological features such as size 

and shape play a more important role than spectral features for the classification of such land covers. 

Furthermore, shape and size of impervious land covers are better modeled in higher levels of 

segmentation where objects are more meaningful. Second, the error of misregistration between 

different data layers (e.g., vector data and the VHR image) is less effective for larger objects than for 

smaller objects. In fact, if the object of interest has a reasonable overlap in the two layers, which is 

more likely for larger objects, the misregistration could be ignored. 

4.2. Classification Results 

In order to evaluate the quality of land cover classification, accuracy assessment is often required. 

The conventional pixel-based error matrix [41,42] was used for accuracy assessment of the results. 

Different elements of the error matrix including overall accuracy, kappa coefficient, user’s and 

producer’s accuracy were calculated for both QB and IK Test images. For each dataset, the Z-test was 

also performed to test the significance of the error matrix. The Z-test checks whether the classification 

is meaningful and significantly better than a random classification [42]. For each Test image, the result 

of object-based land cover classification was exported in raster and was compared with reference data. 

The reference dataset was generated through a precise manual digitizing of many samples (60% of the 

entire image) of five land cover types on both the QB Pilot, and the QB and IK Test image.  

4.2.1. Classification of the Pilot Image 

As mentioned earlier, the QB Pilot image was used to develop the hierarchical expert rule-based 

classification system. Figure 5 shows the classification results of the Pilot image. The confusion matrix 

and its measures including overall accuracy, producers’ accuracy, users’ accuracy, and the kappa 

coefficient are reported in Table 3. For the purpose of transferability and the general applicability of 

the rule-set to other areas and images, few spectral and spatial features of the objects were utilized in 

the classification of the Pilot image. The fewer number of objects’ features leads to a less complex 

rule-set, and consequently it better guarantees the transferability of the same rule-set to other images. 

Notwithstanding the low complexity of the developed rule-set, the classification result of the Pilot 

image is very promising. An overall accuracy of 95% and a Kappa coefficient of 0.92 were achieved 

for this image (Table 3). Trees, grass, and roads were classified with producer accuracies of more than 

92%. Although there are a few misclassifications between buildings and parking lots, the majority of 

these two classes were correctly classified. The accuracies for buildings and parking lots were 84% 

and 89%, respectively.  
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Figure 5. Hierarchical object-based classification results of the QB Pilot image. 

 

Table 3. Classification results for the QB-Pilot image. 

 Reference Data (No. of Pixels) 

Class Name Tree Grass Building Road Parking Lot User’s Acc.(%) 

C
la
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Tree 778,395 10,887 12,427 6,600 1,313 92.9 

Grass 9,587 18,9105 1,634 1,837 1,327 96.1 

Building 184 1,065 141,261 1,530 11,366 90.9 

Road 225 2,107 8,254 152,881 3,362 91.6 

Parking lot 102 567 4,274 2,534 140,175 94.9 

Prod’s Acc. (%) 98.7 92.8 84.2 92.4 89.0  

 Overall Accuracy: 94.53% Kappa Coefficient : 0.92 Z Statistic: 3251 

4.2.2. Classification of the Test Images 

The rule-set that was used for the segmentation and classification of the QB Test image was 

identical to the one used for the Pilot image. The same workflow and object features were also used for 

the IK Test image. However, due to the difference between QB and IK image in terms of spatial 

resolution, wavelength range of multispectral bands, the date of acquisition, and also the segmentation 

results, different thresholds for object’s features were used in classifying the IK Test image. A small 

portion of IK image was used to determine the segmentation parameter using FbSP parameter 

optimizer and then the same parameters applied to the entire image. The same portion of the IK image 

was also used to visually determine the threshold values of classification. The confusion matrices and 

their measures are reported in Tables 4 and 5. The results are also displayed in Figure 6. 

At the 99.9 % confidence level, the critical value for Z statistic would be 3.3. Therefore, if the Z 

value of the classification results is greater than 3.3, the results are significant and better than random. 

The Z values for QB and IK are far greater than the critical value (5434 for QB and 2731 for IK) 

showing that the classification is significantly better than a random classification. The kappa 
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coefficient of 0.88 and 0.80 for the QB and IK Test image represent a strong agreement between 

reference data and classification results. The overall classification accuracy of QB is 91.6%, 

confirming the high potential of transferability of the developed rule-set to different areas of the same 

image. For IK, however, a lower overall accuracy of 85.6% was achieved. The comparison of error 

matrices between IK and QB shows that the big difference is between the accuracies of the impervious 

land covers, especially parking lots. This is mainly because of the large misregistration between the SH 

layer and the IK image (Figure 2), since this layer is the key feature in classifying the impervious land 

covers. Nevertheless, this level of accuracy for IK shows the efficiency of the proposed method in 

classifying urban areas of different VHR imagery. 

Table 4. Classification results for the QB Test image. 

 Reference Data (No. of Pixels) 

Class Name Tree Grass Building Road Parking Lot User’s Acc. (%) 

C
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Tree 2,087,435 56,242 16,343 14,856 2,441 95.87 

Grass 20,517 1,177,125 3,552 14,956 1,310 96.69 

Building 1,991 2,355 497,277 15,799 70,516 84.58 

Road 3,407 15,531 83,770 499,652 78,238 73.41 

Parking lot 251 2,775 25,530 7,815 503,632 93.26 

Prod’s Acc. (%) 98.76 93.87 79.38 90.34 76.76  

 Overall Accuracy: 91.58% Kappa Coefficient : 0.88 Z Statistic: 5434 

Table 5. Classification results for the IK Test image. 

 Reference Data (No. of Pixels) 

Class Name Tree Grass Building Road Parking lot User’s Acc.(%) 

C
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Tree 930,657 30,395 3,599 7,919 1,705 95.5 

Grass 35,590 400,240 8,587 3,275 1,967 89.0 

Building 3,374 697 243,902 6,966 51,631 79.6 

Road 6,701 6,984 51,041 246,458 76,816 63.5 

Parking lot 262 644 28,974 19,587 235,271 82.6 

Prod’s Acc.(%) 95.3 91.2 72.6 86.7 64.1  

 Overall Accuracy: 85.6% Kappa Coefficient : 0.80 Z Statistic: 2731  

The highest producer’s accuracy for both images was achieved for the class of trees and grass with 

98.8% and 93.9%for QB and 95.3% and 91.2% for IK. These indicate the very high potential of 

object-based classification of VHR imagery for extracting vegetation areas using the well known index 

of NDVI and segmentation in lower levels (L1 and L2). The selection of the threshold values for 

NDVI is critical in classifying vegetation areas. In this study, the thresholds of 0.30 and 0.20 were 

selected for QB and IK, respectively. 

The average producer’s accuracy for impervious land covers for QB is 82%, while for IK it is 

74.5%. Among the three impervious land covers, roads achieved the highest producer’s accuracy in 

both images (90% for QB and 87% for IK). Roads are elongated features and they are distinguishable 

from buildings and parking lots using the morphological features of objects. Additionally the within-

class spectral heterogeneity of the class of road is far less than those of buildings and parking lots. The 

comparison of the original image (Figure 1(b)) with the classification results (Figure 6) reveals that all 
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major roads and the majority of minor roads, with a few mis-classifications of road intersections, were 

properly classified in both images. 

Figure 6. Hierarchical object-based classification results of (a) QB and (b) IK Test images. 

 

(a) 

 

(b) 
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Parking lots are typically spectrally similar to roads and morphologically similar to building roofs. 

Therefore, the separation of parking lots from the two other classes is quite problematic. In this study, 

however, the key feature for extracting parking lots was the SH layer. Although there is a slight 

misregistration between QB and the SH layer (Figure 2(a)), utilizing the objects instead of the 

individual pixels in the classification process effectively mitigates this negative effect of multisource 

classification. The producer’s accuracy of parking lots is 77% in QB. For IK Test image, however, the 

larger misregistration between the image and the SH layer, together with the smaller objects in level 3, 

leads to a lower producer’s accuracy of 64% for parking lots. The FbSP optimizer resulted in a larger 

number of objects in level 3 for IK than for QB (Table 2). This means that objects in level 3 are 

smaller in IK compared to QB. Consequently, the possibility of overlapping three spot heights with an 

object (the key criteria that is used for extracting parking lots) is greater for the QB than for the IK 

Test image. As a result, more parking lots are missed during classification in IK than in QB Test image 

leading to lower producer’s accuracy.  

The last step in rule-set hierarchy is the classification of buildings. Almost all large buildings and 

most of the small houses in the lower left and upper part of the images were classified correctly in QB 

but not in the IK. The producer’s accuracy for buildings in IK is 72.6%, while for QB it is 79.4%. This 

difference can also be interpreted based on the larger misregistration and smaller objects in IK 

compared to QB. 

5. Discussion 

As mentioned, the segmentation parameters and classification rule-set of the QB Pilot image is 

identical to those used for QB Test image. A small discrepancy of 3% and 0.04 of overall accuracy and 

kappa coefficient, respectively, between the QB Pilot and Test images demonstrates the great potential 

of the transferability of the rule-set to other areas of the same VHR imagery. This suggests that for a 

large dataset, the rule-set needs to be developed using a small portion of the image and then can be 

applied directly to the entire dataset.  

For IK Test image, however, segmentation is conducted independently of QB Pilot image. Indeed, 

FbSP optimizer needs to be trained for each VHR image separately. Nonetheless, the segmentation 

parameters of a portion of the VHR image are identical to those of the entire VHR image. For 

classification, the rule-set developed using the QB Pilot image is very similar to the one used for IK 

Test image. In other words, all the rules and features are the same but some thresholds (see Figure 3) 

are slightly different. The discrepancy of overall accuracy and kappa coefficient between QB Pilot 

image and IK Test image is about 9% and 0.12, respectively. These two images are different in terms 

of spatial resolution, date of acquisition, the wavelength range of each band, and more importantly the 

misregistration with SH layer. These factors all contribute in the existence of discrepancies between 

the classification results of the two images. Especially, the misregistration between SH layer and IK 

image is significantly larger (about 10 m) than that between SH layer and QB image (see Figure 2). 

Checking the confusion metrics of QB Pilot and IK test images shows that the largest discrepancy is 

between the producers’ accuracies for parking lots in two matrices (about 25%). In addition, SH layer 

plays a critical role in classifying parking lots and thus larger misregistration between SH layer and the 

VHR image leads to worse classification result for parking lots than for any other classes. 
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Regardless of the misregistration effect, morphological features (e.g., density, area, etc.) prove to be 

more effective for standardization (transferability) of the rule-set. Most of the morphological features 

in the developed rule-set use the same threshold in QB and IK images. Therefore, for the general 

applicability of the rule-set to other images, more attention should be directed to the use of 

morphological features rather than spectral and/or textural features, especially for classifying 

impervious land cover types. However, spectral and textural features play an important role in 

classifying vegetation areas. 

This study demonstrates the usefulness of ancillary data in conjunction with object-based image 

analysis for urban land cover classification of VHR imagery. The ancillary data that was used is a Spot 

Height data layer, which was employed for separating parking lots from buildings and roads. This 

layer, however, may not be available for many urban areas. Alternatively, the SH layer can be created 

from a relatively inaccurate digital elevation/surface model (DEM/DSM)(e.g., from stereo satellite 

imagery) of an urban area since the proposed method only uses the locations of Spot Height points in 

the rule-set but not the elevation of points. Therefore, an accurate DEM/DSM of the area which is 

often acquired by LiDAR data, and thus is expensive, is not required. Moreover, most VHR satellites 

offer stereo imagery from which DEM/DSM information can be extracted. This is a topic for future 

research. 

6. Conclusion 

This research presented a novel multisource object-based image analysis framework based on VHR 

imagery and Spot Height vector data for detailed classification of complex urban environments to five 

major land cover types consisting of buildings, roads, parking lots, grass, and trees. The framework 

was developed using the Cognition Network Language available in eCognition software package. The 

framework consists of multiresolution segmentation followed by hierarchical rule-based classification. 

The method offers a practical, fast, and easy to use (within eCognition) framework for classifying 

VHR imagery of small urban areas. Despite the spectral and spatial complexity of land cover types, the 

method resulted in the overall accuracy of up to 92%. This level of accuracy is very promising and 

shows the great potential of combining vector data, VHR imagery, and object-based image analysis for 

classification of small urban areas.  

Current literature often ignores two important issues of multisource object-based classification: the 

transferability of the rule-set to different areas and different VHR images (e.g., transferring a rule-set 

developed using a QuickBird image to an IKONOS image) and the possible misregistration between 

different data layers (e.g., between VHR images and vector data). This research mainly investigated 

the aforementioned issues.  

To assess the transferability of the rule-set, the classification rule-set was developed using a small 

portion of a QuickBird image (Pilot image) and then the same and similar (i.e., all rules and features 

remain unchanged with slight changes in some thresholds) rule-sets were applied to larger areas of 

QuickBird and IKONOS imagery, respectively. The small discrepancy of 3% between the 

classification overall accuracies of QuickBird Pilot and QuickBird Test images and the relative small 

discrepancy of 9% between the classification overall accuracies of QuickBird Pilot and IKONOS Test 

images demonstrates the general applicability of the method to different areas and different VHR 
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images. The method also mitigates the effect of misregistration between different datasets (which is 

inevitable in multisource classification) on classification by incorporating objects of higher levels of 

segmentation into classification.  

 The proposed framework, though it is not applicable to all urban areas, provides guidelines on the 

types of features (e.g., texture, shape, size, brightness) and ranges of thresholds which are suitable for 

classifying specific land cover types. However, ancillary data used in this study (Spot Height) may not 

be available for many urban areas. Utilizing more available ancillary data such as digital elevation 

models/digital surface models extracted from stereo VHR imagery, is especially desirable and will be 

the focus of our future research.  
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