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Abstract: The objective of this study was to compare the use of hyperspectral narrowbands, 
hyperspectral narrowband indices and pigment measurements collected from switchgrass 
leaf as potential tools for discriminating among twelve switchgrass cultivars and five N 
treatments in one cultivar (Alamo). Hyperspectral reflectance, UV-B absorbing compounds, 
photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids) of the uppermost 
fully expanded leaves were determined at monthly intervals from May to September. Leaf 
hyperspectral data was collected using ASD FieldSpec FR spectroradiometer (350–2,500 nm). 
Discrimination of the cultivars and N treatments were determined based on Principal 
Component Analysis (PCA) and linear discriminant analysis (DA). The stepwise discriminant 
analysis was used to determine the best indices that differentiate switchgrass cultivars and 
nitrogen treatments. Results of PCA showed 62% of the variability could be explained in 
PC1 dominated by middle infrared wavebands, over 20% in PC2 dominated by near infrared 
wavebands and just over 10% in PC3 dominated by green wavebands for separating both 
cultivars and N treatments. Discriminating among the cultivars resulted in an overall 
accuracy of 81% with the first five PCs in the month of September, but was less accurate 
(27%) in classifying N treatments using the spectral data. Discrimination based on pigment 
data using the first two PCs resulted in an overall accuracy of less than 10% for separating 
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switchgrass cultivars , but was more accurate (47%) in grouping N treatments. The plant 
senescence ratio index (PSRI) was found to be the best index for separating the cultivars 
late in the season, while the transform chlorophyll absorption ratio index (TCARI) was 
best for separating the N treatments. Leaf spectra data was found to be more useful than 
pigment data for the discrimination of switchgrass cultivars, particularly late in the 
growing season. 
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1. Introduction 

Switchgrass (Panicum virgatum L.), a native North American warm-season C4 perennial grass has 
been identified as a potential biofuel feedstock with a promise for production across diverse climates 
in North America [1–3]. Switchgrass is adapted to a wide range of climatic and edaphic conditions 
from northern Mexico to southern Canada, and from the Atlantic coast to the Rocky Mountains [3]. It 
is classified as a dedicated biofuel feedstock due to its high level of productivity over long-term (>10 yr) 
across varied environmental conditions [4], suitability for production on marginal land [3], low nutrient 
requirements [1,5], and positive environmental benefits such as reduced erosion, increased water quality, 
enhanced soil-carbon sequestration, wildlife habitat and reducing greenhouse gas emissions [2].  

Two major types of switchgrass are found in North America: the low land ecotype is exclusively 
tetraploid, associated with wet conditions and better adapted to lower latitudes, while the upland 
ecotype is mainly tetraploid or octaploid, associated with dry conditions and better adapted for mid to 
northern latitudes [6,7]. Because of these distinct differences between and within the upland and 
lowland ecotypes, it is important to be able to discriminate switchgrass plants. Current methods of 
identification of specific cultivars are limited to genomic analysis and visual discrimination. Despite 
genomics analysis only requiring a small amount of sample material, expensive equipment and 
expertise are needed to make the assessment. While, visual discrimination is possible with trained 
personnel, results among personnel and locations can vary due to plants of different age and localized 
effect of light, temperature and moisture.  

Remote sensing is a well-known non-destructive method that can play a critical role as a crop stress 
assessment tool, monitoring nutrient status, disease and weed and insect infestation. The basic concept 
of remote sensing is the ability to quantify variations due to space and size (spatial variations), 
variations in reflected or emitted radiation (spectral variations) and variations of reflected or emitted 
radiation, space and size over time (temporal variations) [8]. Radiation reflected by vegetation varies 
in different part of the spectrum due to the vegetation biophysical characteristics. In the visible part of 
the spectrum (400–700 nm) the amount of reflected or emitted radiation is controlled by the plant 
pigmentation the chlorophyll, carotenes and xanthophylls [8]. In the near infrared portion of the 
spectrum (700–1,350 nm) reflected or emitted radiation is controlled by the internal leaf structures. 
The middle infrared (Mid-IR) portion of the spectrum (1,350–2,500 nm) reflected or emitted radiation 
is controlled primarily by in vivo water content and secondarily by internal leaf structures [8]. The 
importance of these parts of the spectrum (Mid-IR) is the high resolution spectral response that is often 
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observed for a crop at leaf or canopy level at different stages of development. As a plant develops and 
interacts with environmental conditions, reflectance from these areas of the spectrum is affected. 
Reflectance tends to increase in the near-infrared (NIR; 725–900 nm) as the internal leaf structure of 
most plant species (i.e., cotton canopy) reflects more of the energy in this portion, and changes in 
green peak (550 nm) and in red region (650–690 nm) due to chlorophyll reflectance and adsorption 
respectively [9].  

The recent advances in ground-based high resolution multispectral, hyperspectral digital cameras, 
spectroradiometers and several other optical sensors can play a critical role towards a more intelligent 
crop production system. Narrowbands located in specific portions of the spectrum have been shown to 
significantly improve discrimination capabilities and classification accuracies for various vegetation 
and agricultural crops when compared to broadbands such as Landsat Thematic Mapper ™ and 
Systeme Pour L’Observation de la Terre (SPOT) [10]. Hyperspectral narrowbands and vegetative 
indices developed from them are capable of detecting small differences in percentage green cover [11], 
crop moisture variations [12] and discriminating among varieties [13,14]. Despite, the improvement of 
narrowbands over broadband, the large number of bands available with hyperspectral sensors makes 
analysis complex and time consuming [14]. Several approaches were used including reflectance from 
individual narrowbands, various ratios and indices, and multivariate statistical analysis to discriminate 
among varieties. The use of high resolution hyperspectral leaf reflectance with pigment profiles to 
discriminate among sugarcane varieties was investigated [13]. The hyperspectral reflectance data was 
collected at 350–800 nm at 0.4 nm intervals from the third youngest fully open leaf and plant pigment 
analysis was done from the same leaf. The authors reported that several single wavelengths ranging 
from 560 to 720 nm were able to discriminate between selected varieties, multivariate analysis resulted 
in a 95–100% correct classification for all varieties with leaf reflectance data in comparison to 76–81% 
correct classification with plant pigment data and 81–86% using vegetative indices [NDVI (Normalize 
Difference Vegetative Index) and WDRVI (Wide Dynamic Range Vegetative Index)]. Hyperspectral 
narrowband wavelengths from 375 to 1,075 nm and multiple discriminant analysis were used by 
Ray et al. [14] to identify nine bands (520, 560, 660, 690, 730, 760, 780 ,790 and 800 nm) and 
vegetative indices, simple ratio, ZTM (Zarco Tejada and Miller), Red edge 750/700 and Red edge 
740/720 for discriminating among four potato varieties. Likewise, Hatfield and Prueger [15] used 
different vegetative indices to quantify differences among varieties of corn and soybean at different 
growth stages during the growing season. The authors concluded that the ability to quantify differences 
among the varieties and crops was a function of growth stage and vegetative index.  

The use of hyperspectral remote sensing techniques, with high spectral resolutions, in combination 
with plant pigment analysis may significantly improve the ability to discriminate between and among 
switchgrass cultivars and ecotypes. The dominant plant pigments are the chlorophylls. These 
compounds exhibit pronounced absorption in the bluish (400–500 nm) and reddish (600–700 nm) 
wavelengths of the magnetic spectrum. Other plant pigments such as carotenoids produces yellow or 
orange reflectance centered at about 450 nm wavelength of the spectrum. Knowledge of pigment pools 
including those associated with UV-B absorption could improve our understanding of plant stress 
responses to light, temperature and water, and could also be used to discriminate between species, 
cultivars and varieties of switchgrass. The objective of this study was to compare the use of 
hyperspectral narrowbands, hyperspectral narrowband vegetation indices and leaf pigmentation 
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(Chlorophyll a, Chlorophyll b, Carotenoids) to discriminate between 12 switchgrass cultivars and five 
nitrogen treatments for one of the cultivars (Alamo) at different times during the growing season.  

2. Materials and Methods 

2.1. Experimental Design 

2.1.1. Switchgrass Cultivars 

An experiment consisting of twelve cultivars of switchgrass (Figure 1) with known difference in 
ecotype, and origin (Table 1) was established at the Stillwater Agronomy Research Station (36.12°N, 
97.09°W) in April 2009 to evaluate biomass yield production among the cultivars. Switchgrass 
cultivars were planted by seed in plots (6.10 m wide × 7.62 m long) in a randomized complete block 
design with three replications. Plots were seeded at a rate of 5.04 kg·ha−1 of pure live seed using a  
no-till planter. Leaf samples were collected on 24 May, 20 June, 25 July, 24 August and 30 September 
2011 from which the spectral and pigment data was obtained (Table 2). 

Figure 1. Twelve switchgrass cultivars grown in Stillwater Oklahoma (OK) for Biomass 
yield potential, (A) Carthage; (B) Alamo; (C) Kanlow; (D) Southlow; (E) Cave-In-Rock;  
(F) Forestburg; (G) Blackwell; (H) Nebraska 28; (I) Shelter; (J) Shawnee; (K) Sunburst;  
(L) Cimarron. 
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Table 1. Twelve switchgrass cultivars grown in OK for biomass yield potential and their 
ecotype designation and origin. 

Cultivars Ecotype Origin 
Cimmaron Lowland Oklahoma 
Alamo Lowland South central Texas 
Kanlow Lowland East central Oklahoma 
Blackwell Upland North east Oklahoma 
Carthage Upland Carthage, North Carolina 
Cave-In-Rock Upland Southern Illinois 
Forestburg Upland East central South Dakota 
Nebraska 28 Upland North east Nebraska 
Shelter Upland North west, West Virginia 
Sunburst Upland Southeastern South Dakota 
Shawnee Upland Shawnee National Forest, Illinois 
Southlow Upland Michigan 

2.1.2. Nitrogen Treatments 

An experiment consisting of five nitrogen treatments (winter legume (hairy vetch), 0, 84, 168 and 
252 kg·N·ha−1) was established at the Stillwater Agronomy Research Station (EFAW Site, 36.13°N, 
97.10°W) in a one year old established stand of switchgrass “Alamo” to evaluate the effect of nitrogen 
treatment on biomass production. Experimental design is a randomized complete block and replicated 
three times. No nitrogen fertilizer was applied in the establishment year. Plots were fertilized with the 
different rates of N on 3 June 2011. Leaf samples were collected on 17 June, 27 July and 27 August 
2011 from which the spectral and pigment data was obtained (Table 2). 

Table 2. Summary of sampling intervals and total number of samples per spectral and 
pigment measurements. Nine spectral samples were taken at each interval for each cultivar 
and nitrogen treatment. Three pigment measurements were taken for each cultivar and 
nitrogen treatment per sampling interval.  

Sampling Dates # of Spectral Samples # of Pigment Samples 
Switchgrass Cultivars 

24 May 108 36 
20 June 108 36 
25 July 108 36 

24 August 108 36 
30 September 108 36 

Nitrogen Treatments 
17 June 45 15 
27 July 45 15 

27 August 45 15 
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2.2. Leaf Sampling  

Top most fully expanded leaf (6th or 5th) was excised from 6 random plants in each plot and sealed 
in a plastic bag in an ice chest and transported to the laboratory for spectral and pigment measurements. 
These samples were collected between 10:00 and 15:00 h local time. 

2.3. Spectral Data  

Hyperspectral reflectance data was collected using an ASD Field Spec Pro spectroradiometer 
(Analytical Spectral Devices Inc., Boulder, CO, USA) that consisted of a spectral range of 350–2,500 nm 
and a 25° field of view. The spectrometer is equipped with three sensors [(visible (400–750 nm) and  
near infrared-NIR (750–1,100 nm), shortwave infrared-SWIR1 (1,000–1,800 nm) and SWIR2  
(1,800–2,500 nm)] with spectral sampling of 3, 10 and 10 nm, respectively. The instrument was 
periodically calibrated using a standard Spectralon white reference panel (Labsphere Inc., North 
Sutton, NH, USA). The white reference was measured at 15 min intervals to check the instrument 
stability for 100% reflectance. To measure leaf reflectance, two leaves were place beside each other to 
provide a large enough surface area, and sandwiched between the non-reflecting, black body and the 
light probe. This ensured that no extraneous light entered the sensor during these measurements. Care 
was taken in placing the leaves beside each other, to ensure that no space or overlapping occurred. 
Three replicated measurements were made on leaves collected from each plot. Built-in spectral 
resolution output of the data from the ASD operating system is 1 nm along the whole spectrum. To 
reduce the amount of data for analysis, spectral data were averaged at 10-nm wavelength intervals 
(e.g., a band center at 400 was the averaged value between 395–405 nm) giving a total of 211 spectral 
bands between 400–2,500 nm. Spectral data at start of spectrum due to noise (350–395 nm) and in the 
atmospheric water absorption spectral regions (1,350–1,420 and 1,800–1,960 nm) were deleted from 
the data before analysis leaving 186 spectral bands for analysis. 

2.4. Pigment Analysis 

After reflectance measurements, five of the leaves used for hyperspectral measurements were 
sampled for plant pigment analysis. The photosynthetic pigments (Chlorophyll a, Chlorophyll b and 
Carotenoids) were extracted by placing five 38.5 mm2 leaf discs in a vial with 5 mL of dimethyl 
sulfoxide and extracting after incubating in a dark room for 24 h. The absorption of the extracts was 
determined at 664, 648 and 470 nm using the spectrophotometer. The equations by Lichtenthaler [16] 
were used to derive the pigment concentrations.  

The UV-B absorbing compounds were determined using methods described in Kakani et al. [17]. 
UV-B absorbing compounds were extracted from placing five 38.5 mm2 leaf discs in a vial with 10 mL 
of aliquot consisting of a methanol, water and hydrochloric acid in the proportion of 79:20:1 ratio. The 
vials were incubated at room temperature for 24 h in dark to allow for complete extraction of UV-B 
absorbing compounds. The absorbance of the extracts from the different cultivars was measured at 330 nm. 
The content of UV-B absorbing compounds was calculated using the equation [17], C = 16.05 × A, where 
A is absorbance at 330 nm and C is concentration of UV-B absorbing compound (µg·mL−1 of extract). 
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2.5. Data Analysis  

The optimal wavebands that were able to discriminate the target as affected by time of collection 
were determined based on a comprehensive analysis using principal component analysis (PCA). The 
goal of the PCA is to identify underlying variables, or factors that explain the pattern of correlations 
within a set of observed variables. The PCA tends to achieve this by deriving a new set of uncorrelated 
variables called principal components, thereby reducing the number of variables. The PCA was carried 
out using the PRINCOMP procedure in SAS [18]. 

To evaluate the effect of time of collection in differentiating among the cultivars and N treatments a 
linear discriminant analysis with cross validation was done for each month. Discriminant function 
analysis (DA) is a qualitative tool often used to discriminate between two or more groups. To classify 
observations into a group, a mathematical rule or discriminant function is used to determine to which 
group an observation belongs based on knowledge of the quantitative variables only. In this study, DA 
was used to classify the twelve cultivars and five N treatments, by computing a sample’s distance from 
each class center in Mahalanobis distance (MD) units [19]. The MD is the parameter that is calculated 
and used to determine how close to the center of its group is an individual spectrum sample. The MD 
was calculated using the following equation [19]: 

 =   (1) 

where  denotes the MD between the cultivars i and j, cov−1denotes the inverse covariance matrix, 
and Av(xi) and Av(xi) denote the mean reflection for cultivars i and j, respectively. The smallest MD is 
used to pick the group that the individual fits best. The equation assumes a common variance for the 
populations from which the groups are derived. Discriminant function analysis was carried out on the 
first five PCAs resulting from the PCA as they covered most of the variation (99% of variation 
explained) contained in the raw spectral data. 

Selected hyperspectral narrowband vegetation indices that take into account leaf structure, 
pigmentation and red edge characteristics were computed for each set of spectral data. The vegetation 
indices computed are shown in Table 3. Stepwise discriminant analysis (SDA) was carried out to find 
the best indices which can differentiate switchgrass cultivars and nitrogen treatments at each sampling 
interval. The SDA is a procedure that reduces the data set to those variables that maximize between 
statistical group variability while minimizing within group variability. The difference between PCA 
and SDA is that the PCA creates a new set of uncorrelated variables that defines the axes of greatest 
variability in the data, while SDA identifies from among the original variables, the best variables that 
describes differences between given groups. The Wilk’s lambda statistics was used to select the best 
vegetation indices for differentiating the cultivars and N treatments. Low Wilk’s Lambda valve 
suggests a great degree of separation. Therefore, index with the lowest Wilk’s lambda value resulted in 
the greatest separation among the cultivars and N treatments.  

Similarly, PCA and DA were performed at each sampling date for the pigment content to determine 
degree of discrimination. Discriminant analysis was carried out on the two first PCAs as they contain 
most of the variation (99% of variation explained). The results were compared to determine the 
approach and the sampling interval that provided the greatest separation. All statistical analyses were 
performed using SAS (Statistical Analysis System) [18]. 
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Table 3. Narrowband hyperspectral vegetation indices used in the study. 

Index Wavebands References 
Structural Indices 

Simple Ratio (SR) SR = RNIR/Rred [20] 

Normalized Difference Vegetation Index (NDVI) 

Red NDVI = (RNIR − Rred)/(RNIR + Rred) [21] 
Green NDVI(RNIR − Rgreen)/(RNIR + Rgreen) [22] 

Red Edge NDVI = (RNIR − Rred edge)/(RNIR + Rred 

edge) 
[22] 

Renormalized Difference Vegetation Index 
(RDVI) 

RDVI = (R800 − R670)/(R800 + R670)0.5 [23] 

Enhanced Vegetation Index (EVI) EVI = 2.5(RNIR − Rred)/(RNIR + 6Rred − 7.5Rblue + 1) [24] 
Plant Senescence Reflectance Index (PSRI) PSRI = (R660 − R510)/R760 [15,25] 

Chlorophyll/Pigment Related Indices 

Chlorophyll Indices 
Clgreen = (RNIR/Rgreen) − 1 [22,26] 

Clred edge = (RNIR/Rred edge) − 1 [22,26] 
Normalized Pigment Chlorophyll Ratio Index 
(NPCI) 

NPCI = (R660 − R460)/(R660 + R460) [25] 

Modified CARI (MCARI) 
MCARI = [(R700 − R670) − 0.2(R700 − R500) 

(R700/R670)] 
[27] 

Transformed CARI (TCARI) 
TCARI = 3[(R700 − R670) − 0.2(R700 − R500) 

(R700/R670)] 
[28] 

Triangular Vegetation Index (TVI) TVI = 0.5[120(R750 − R550) − 200(R670 − R550) [29] 
Structural Insensitive Pigment Index (SIPI) SIPI = (R800 − R430)/(R800 + R680) [30] 

Red Edge Indices 
Red edge (750–700) R750 − R700 [31] 
Red edge (740–720) R740 − R720 [32] 
Zarco Tejada and Miller (ZTM) ZTM = (R750/R710) [33] 

3. Results 

3.1. Principal Component Analysis 

It is evident from Figure 1 that there was a difference in reflectance at the different sampling dates 
and among the cultivars. Clear varietal and sampling interval differences were visible in reflectance in 
almost all the regions of the spectrum. The most distinct differences among the cultivars were 
observed for the June and September sampling date in the visible, near infrared and early short-wave 
infrared regions of the spectrum (Figure 2). Small differences in reflectance were also observed in the 
different regions of the spectrum for the nitrogen treatments (Figure 3). Similar to the cultivars, the 
most distinct differences were observed in the visible, near infrared and early short-wave infrared 
regions of the spectrum. In general, reflectance showed an increasing trend with time throughout the 
growing season. However, to quantify the wavebands having the greatest influence on separating the 
cultivars and nitrogen treatments at the different sampling dates, principal component analysis was 
used to reduce the 186 wavebands hyperspectral data to a few bands that explain most of the 
variability. The first three principal components (Eigen values greater than 1) explained 93–97% of the 
variability for the five collection months. Therefore, to explain more than 90% of the variability, the 
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186 wavebands can be reduced to two to three new principal components wavebands (PC1 to PC3). 
Table 4 provides the five wavebands with the highest factor loading for each principal components 
resulting in 15 bands in three different regions of the spectrum. The order in which the bands are listed in 
Table 4 indicates the magnitude or ranking for that band based on its factor loadings. Therefore, for 
PC1 waveband centered at 1,670 has the highest factor loading followed by 1,660, 1,680, 1,690 and 
1,700 nm.  

Figure 2. Mean leaf spectral profile of twelve switchgrass collected in May, June, July, 
August and September of 2011. (Top left) figure shows leaf spectral profile for the month 
of May; (Top right) figure for the month of June; (Middle left) figure shows for the month 
of July; (Middle right) figure shows for month of August, and (Bottom left) figure shows 
the month of September. Nine spectral measurements were taken per cultivar at each 
sampling interval. 
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Figure 3. Mean leaf spectral profile for five nitrogen treatments collected in June, July and 
August of 2011. (Top) figure shows leaf spectral profile for the month of June; (Center) 
figure shows for month of July, and (Bottom) figure shows for the month of August. N1-0:  
0 kg·N·ha–1, N2-84: 84 kg·N·ha–1, N3-168: 168 kg·N·ha–1, N4-252: 252 kg·N·ha–1, and  
N5-WL: Winter legume (hairy Vetch). Nine spectral measurements were taken per N 
treatment at each sampling interval. 

 

 

 

The PC1 was dominated by the middle infrared (Mid-IR) bands explaining 63% of the variability, 
PC2 by middle infrared (Mid-IR) bands explaining 22% of the variability, and PC3 by the red region 
of the spectrum explaining 11% of the variability for the switchgrass cultivars. Similarly, PC1 for 
nitrogen treatments was dominated by Mid-IR bands explaining 53% of the variability, PC2 by NIR 
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bands explaining 29% of the variability (Table 4). However, PC3 was dominated by green bands 
explaining 14% of the variability.  

Table 4. Shows PCA results with five wavebands with the highest factor loadings (Eigen 
vectors) and the percent variability explained by each principal component for 
characterizing 12 switchgrass cultivars and five nitrogen treatments. 

 
Wavelength Centered (nm) with First 15  

Highest Factor Loadings 
Percent Variability 

Explained 

Cumulative 
Variability 

of three PCs 
Switchgrass Cultivars 

 PC1 PC2 PC3 PC1 PC2 PC3  
1 24-May-2011 1670;1660;1680;

1690;1700 
780;800;790; 

770;810 
670;680;660;

690;500 
58 23 14 95 

Dominating 
waveband 

Mid-IR NIR RED     

1 20-June-2011 1730;1710;1720; 
1700;1740 

1440;1460; 
1430; 

1450;2050 

520;570;530; 
540;590 

74 14 9 97 

Dominating 
waveband 

Mid-IR Mid-IR GREEN     

1 25-July-2011 1750;1740;1720;
1730;1760 

2020;2030; 
2010;2000; 

2040 

630;620;610;
700;600 

64 20 11 95 

Dominating 
waveband 

Mid-IR Mid-IR RED     

1 24-August-2011 1700;1740;1720;
1710;1730 

740;2040; 
2030;2020; 

2050 

700;600;610;
620;590 

62 24 10 96 

Dominating 
waveband 

Mid-IR Mid-IR RED     

1 30-September-
2011 

1750;1760;1740;
1770;1730 

840;890;800; 
880;810 

520;530;510;
540;550 

56 27 10 93 

Dominating 
waveband 

Mid-IR NIR GREEN     

Dominating 
waveband for 
Switchgrass 

Cultivars 

Mid-IR Mid-IR RED     

Mean (%)    63 22 11 95 
Nitrogen Treatments 

1 17-Juny-2011 1770;1660;1670;
1760;1650 

2000;2010; 
1990;1980; 

2020 

520;510;580;
610;600 

50 32 15 97 

Dominating 
waveband 

Mid-IR Mid-IR GREEN     
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Table 4. Cont. 

 Wavelength Centered (nm) with First 15  
Highest Factor Loadings 

Percent Variability 
Explained 

Cumulative 
Variability 

of three PCs 
1 27-July-2011 1620;1600;1650;  

1610;1630 
780;790;800;  

770;810 
500;490;510; 

480;470 
54 32 10 96 

Dominating 
waveband 

Mid-IR NIR BLUE     

1 26-August-2011 1730;1620;1740;  
1600;1720 

950;990;980;  
930;970 

520;510;640; 
620;630 

55 23 17 95 

Dominating 
waveband for  
N treatment 

Mid-IR NIR GREEN     

Mean (%)    53 29 14 96 
2 Dominating 

waveband for all of 
the above 

Mid-IR NIR/Mid-IR GREEN     

Overall Mean (%)    58 26 13 96 
Blue (400–520 nm); Green (520–590); Red (600–690 nm); NIR: near infrared (700–1300 nm); Mid-IR: 
Middle infrared (1350–2500 nm). 1 Date of data collection; 2 Dominant waveband portions in all switchgrass 
cultivar and N treatments. 

The result of the principal component analysis of the pigment profiles showed that over 98% of the 
variability could be explained using the first two principal components. Table 5 summarizes the result 
of the PCA for the pigment profiles. The PC1 was dominated equally by total chlorophyll and 
carotenoid concentrations explaining 70 and 72% of the variability and PC2 by phenolics compounds 
concentration explaining 29 and 27% of the variability for switchgrass cultivars and nitrogen 
treatments respectively. Photosynthetic pigments were better able to discriminate among the cultivars 
and N treatments than UV-B absorbing compounds. 

Table 5. Shows PCA results with pigments in order of the highest factor loadings (Eigen 
vectors) and the percent variability explained by each principal for characterizing 12 
switchgrass cultivars and five nitrogen treatments. 

 
Wavelength Centered (nm) Pigments and 

Factor Loadings in Parenthesis 
Percent Variability 

Explained 
Cumulative Variability 

of PCs 
Switchgrass Cultivars 

 PC1 PC2 PC1 PC2  

1 24-May-2011 
Tchl (0.68) Cart 

(0.68) Phen (−0.26) 
Phen (0.97) Tchl 
(0.19) Cart (0.17) 

68 31 99 

Dominating 
Pigments 

Tchl & Cart Phen    

1 20-June-2011 
Tchl (0.68) Cart 

(0.67) Phen (−0.31) 
Phen (0.95) Cart 

(0.26) Tchl (0.17) 
70 30 100 

Dominating 
Pigments Tchl & Cart Phen    
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Table 5. Cont. 

 
Wavelength Centered (nm) Pigments 
and Factor Loadings in Parenthesis 

Percent Variability 
Explained 

Cumulative 
Variability of PCs 

1 25-July-2011 
Tchl (0.68) Cart 

(0.68) Phen 
(−0.28) 

Phen (0.96) Cart 
(0.22) Tchl (0.18) 

68 30 98 

Dominating Pigments Tchl &Cart Phen    

1 24-August-2011 
Tchl (0.65) Cart 

(0.65) Phen 
(−0.40) 

Phen (0.92) Tchl 
(0.30) Cart (0.26) 

74 26 100 

Dominating Pigments Tchl & Cart Phen    

1 30-September-2011 
Tchl (0.66) Cart 

(0.66) Phen 
(−0.36) 

Phen (0.93) Tchl 
(0.27) Cart (0.24) 

72 28 100 

Dominating Pigments Tchl & Cart Phen    
Dominating Pigments for 

Switchgrass Cultivars 
Tchl & Cart Phen    

Mean (%)   70 29 99 
Nitrogen Treatments 

1 17-June-2011 
Tchl (0.64) Cart 

(0.63) Phen 
(−0.43) 

Phen (0.90) Cart 
(0.33) Tchl (0.26) 

76 24 100 

Dominating Pigments Tchl & Cart Phen    

1 27-July-2011 
Tchl (0.66) Cart 

(0.65) Phen (0.37) 

Phen (0.90) Cart 
(−0.30) Tchl 

(−0.24) 
73 27 100 

Dominating Pigments Tchl & Cart Phen    

1 26-August-2011 
Tchl (0.70) Cart 

(0.70) Phen (0.08) 
Phen (1.0) Tchl 

(−0.06) Cart (−0.06)
66 33 99 

Dominating Pigments for 
N treatment 

Tchl & Cart Phen    

Mean (%)   72 27 100 
2 Dominating Pigments 

for all above 
Tchl & Cart Phen    

Overall Mean (%)   71 28 99 
Tchl: total chlorophyll; Cart: carotenoids; Phen: phenolics. 1 Date of data collection; 2 Dominant pigments in 
all switchgrass cultivar and N treatments. 

3.2. Discriminant Analysis  

Discriminant analysis of the first five PC of the spectral data resulted in an overall classification 
accuracy of 14, 14, 3, 3 and 81% with cross-validation for data collected in the months of May, June, 
July, August and September respectively, for switchgrass cultivars. In contrast, DA of the pigment data 
resulted in an overall classification accuracy of 6, 0, 23, 17 and 11% with cross-validation for the five 
collection dates in chronological order. The greatest difficulty was in classifying Kanlow (44%) which 
was misclassified as either Southlow or Cimarron. Cultivars Sunburst, Alamo, Southlow and Nebraska 
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28 were classified with 67% accuracy into the correct group. Carthage, Shawnee, Cave-In-Rock, 
Forestburg, Blackwell and Shelter were classified with 100% accuracy into the correct group. Contrary 
to the switchgrass cultivars, classification of the N treatment based on pigment data was 20% greater 
than spectral data. Classification of nitrogen treatment based on spectral data ranges from 7 to 27% at 
the different sampling dates. The most accurate classification was achieved in the August sampling. 
While, classification of N treatments based on pigment data ranged from 7 to 47% for the different 
sampling dates. Likewise, the most accurate classification was achieved in the August sampling. These 
results indicate that the accuracy of discriminating among the twelve switchgrass cultivars and five N 
treatments was highest towards the end of the growing season. It must be pointed out, that it was clear 
from the charts in Figure 2 and 3 that there was little difference among N treatments and clear 
difference in the month of September for the cultivars. Therefore, the statistical analysis substantiates 
what can be deduced from those figures. The inability to discriminate among the five N treatments 
could be attributed to late application of the N in early June at the time when switchgrass cultivars 
were over 1.2 m tall compounded with the severe drought condition experienced during the 2011 
growing season in Oklahoma. Response of switchgrass grown for biomass to N fertilization has been 
reported in studies across the USA [34–36]. Thomason et al. [35] found limited response to N with N 
rate up to 448 kg·N·ha−1 in Oklahoma and Vogel et al. [36] and Lemus et al. [34]reported switchgrass 
response to N fertilization to be dependent on location.  

3.3. Selection of the Best Vegetation Indices 

Stepwise discriminant analysis was carried out to identify the best indices at each sampling interval, 
from the list of indices in Table 3, for discrimination. The results of the SDA for the twelve 
switchgrass cultivars showed the optimal Wilk’s lambda values were achieved with different indices at 
each sampling intervals. The values of Wilk’s lambda were indicative of discriminatory power of the 
vegetation indices, with the lesser the Wilk’s lambda the greater the degree of differentiation between 
the cultivars and nitrogen treatments. The optimal Wilk’s lambda values were achieved using two 
(0.184), one (0.564) and thirteen (0.000) vegetation indices for sampling intervals in June, July and 
September, respectively, in differentiating the twelve switchgrass cultivars and with one (0.443), four 
(0.024) and two (0.12) vegetation indices for sampling interval June, July and August, respectively, for 
the five N treatments. The Wilk’s lambda was lowest for the months of September and July for 
switchgrass cultivars and N treatments, again indicating that sampling interval was critical in 
discriminating among the twelve switchgrass cultivars and N treatments. The Wilk’s lambda for the 
model with only PSRI (0.050) in the month of September was relatively smaller in comparison to the 
overall Wilk’s lambda for the models at the other sampling intervals. Therefore, PSRI was found to be 
the best indices and the month of September the best time for data collection for discriminating among 
the twelve cultivars. For nitrogen, the lowest Wilk’s lambda was achieved for the July sampling with 
TCARI, MCARI, SIPI, EVI, in the model. The Wilk’s lambda with only the TCARI (0.250) in the 
model for the month of August was smaller in comparison to Wilk’s lambda for June with TVI. These 
results indicate that TCARI was the best index and the month of July was the best time for data 
collection for discriminating among the five N treatments.  
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4. Discussion 

Optimal wavebands are those bands that have the least correlation among them, high information 
content and are able to discriminate the target. Currently there is no best approach available to 
determine the optimal number of bands required to discriminate vegetation characteristics [10]. 
Researchers in the past have used various approaches from incorporating reflectance from individual 
narrowbands, various indices derivatives of reflectance spectra, or combinations of these. Using 
discriminant analysis of reflectance data resulted with correctly grouping the twelve cultivars into their 
respective grouping with an accuracy of 80% using cross-validation and 100% using re-substitution 
methods for the September sampling. Pigment data was unable to discriminate among the cultivars. 
However, in discriminating among N treatments pigment data was found to be better than the spectral 
data. Likewise, Johnson et al. [13] found greater accuracy (95–100%) in classifying sugarcane varieties 
with leaf spectral reflectance data in comparison to 76–81% accuracy with plant pigment data. The 
ability to use spectral reflectance data obtained from a spectroradiometer to discriminate or identify plant 
varieties or cultivars is based on the leaf spectral characteristics that are related to the leaf pigment profile 
and structure. The leaf spectral characteristics of plants is affected by many factors such as plant species, 
leaf maturity, microclimate position of the leaf on the plant [37], environmental condition in which plant 
is grown and time of data collection. The amount of light reflected, absorbed or transmitted in the visible 
(400–700 nm), near infrared (700–1,350 nm) and middle-infrared (1,350–2,500 nm) is primarily 
controlled by the leaf pigment profile, internal leaf structure, and in vivo water content respectively [8]. 
The PCA found middle infrared to be the dominant waveband for PC1 explaining 63% of the 
variability, NIR wavebands in May and September, and middle infrared wavebands in June, July and 
August to be the dominant wavebands for PC2 explaining 22% variability and red wavebands in May, 
July and August and green wavebands in June and September for PC3 explaining 11% of the 
variability. Thenkabail et al. [10] also found middle infrared wavebands to be the dominant waveband 
for PC 1 and accounting for a similar 62% of the variability. The middle infrared region of the 
spectrum dominated the PC1 with a 63% frequency of occurrence suggests that in vivo water content 
within leaf was the dominant characteristic for discriminating among the cultivars.  

The information generated from vegetation indices depends upon the phenological stage and plant 
parameter to which the index is most closely related [15]. This study identified SDA models with 
different vegetation indices for discriminating among the cultivars at different sampling intervals, 
Chlorophyll red edge index and EVI in June, red edge ratio in July and PSRI in September, which is 
indicative of an index influenced by the phenological or plant parameter to which it is most closely 
related. The PSRI an index proposed to be sensitive to the senescence phase of plant development had 
the lowest Wilk’s lambda value in differentiating among the cultivars. This index was most sensitive to 
the senescence phase in being able to discriminate among the cultivars at leaf level. The PSRI defined 
as (Red660 − Green510)/NIR760, takes advantage of the reflectance relationships in red, green and near 
infrared regions of the spectrum [15]. The relatively large Wilk’s lambda value also suggests that the 
degree of separation was poor in the months of June and July. The low accuracy in classifying the 
cultivars during these months confirms this. Furthermore, chlorophyll/pigment related indices that 
most closely match to the leaf chlorophyll content were most dominant in discriminating among the N 
treatments. Nitrogen concentration in green plants is related to chlorophyll content [38]. Studies have 
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shown that leaf chlorophyll content can indicate N stress in corn [39], rice [40,41], and sorghum [42]. 
The indices identified that discriminated among the N treatments were dominated by 
chlorophyll/pigment related computed indices (SIPI, MCARI and TCARI), again showing relation to 
the parameter the index is most closely related. TCARI an index that is sensitive to changes in 
chlorophyll concentrations takes advantage of the reflectance relationships in the red, red edge and 
green regions of the spectrum occurred in both July and August model for discrimination. The 
dominant plant pigments were the chlorophyll and carotenoids explaining over 70% of the variability 
in PC1 (Table 4). In general, chlorophyll reflectance and absorption is associated with a green peak 
(~550 nm) followed by a decrease in red reflectance (~650–690 nm). High spectral resolution 
measurements of chlorophyll in the red edge region (700–795 nm) was found to detect trace quantities 
of green vegetation [43]. A leaf simulated reflectance analysis using PROSPECT model was conducted 
by Haboudane et al. [38]. They reported a negative correlation between TCARI and chlorophyll 
concentration over a range of (10–70 µg/cm2), and a positive one at concentration below 10 µg/cm2. 
This indicates that TCARI is highly sensitive to low concentration of chlorophyll.  

5. Conclusions 

Hyperspectral narrowbands leaf reflectance was able to better discriminate among switchgrass 
cultivars with 80% accuracy in the month of September in comparison to pigment data. Separation of 
the nitrogen treatments was more difficult from leaf reflectance data (27% correct classification) than 
with leaf pigment data (47% correct classification) for the month of August. Hyperspectral 
narrowbands indices that take leaf structure into account were found to be most dominant in 
discriminating the cultivars, while chlorophyll pigment based indices were most dominant for the N 
treatments. The result showed greater success in separating the cultivars using leaf spectral data close 
to the end of the growing season or harvesting. This finding could be beneficial in development of 
prediction models for estimating biomass yield for the different cultivars. However, the real benefit in 
discriminating among cultivars is the ability to discriminate at canopy level in the field. The use of 
non-destructive techniques to discriminate among cultivars and N treatments at field level could 
provide an opportunity to evaluate cultivar performance with more detailed genomic or production 
yield studies and N management in real time. Additional research work is required to determine the 
ability to discriminate among switchgrass cultivars at canopy level. 
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