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Abstract: Tree species diversity is a key parameter to describe forest ecosystems. It is, for 
example, important for issues such as wildlife habitat modeling and close-to-nature forest 
management. We examined the suitability of 8-band WorldView-2 satellite data for the 
identification of 10 tree species in a temperate forest in Austria. We performed a Random 
Forest (RF) classification (object-based and pixel-based) using spectra of manually 
delineated sunlit regions of tree crowns. The overall accuracy for classifying 10 tree species 
was around 82% (8 bands, object-based). The class-specific producer’s accuracies ranged 
between 33% (European hornbeam) and 94% (European beech) and the user’s accuracies 
between 57% (European hornbeam) and 92% (Lawson’s cypress). The object-based 
approach outperformed the pixel-based approach. We could show that the 4 new 
WorldView-2 bands (Coastal, Yellow, Red Edge, and Near Infrared 2) have only limited 
impact on classification accuracy if only the 4 main tree species (Norway spruce, Scots 
pine, European beech, and English oak) are to be separated. However, classification 
accuracy increased significantly using the full spectral resolution if further tree species 
were included. Beside the impact on overall classification accuracy, the importance of the 
spectral bands was evaluated with two measures provided by RF. An in-depth analysis of 
the RF output was carried out to evaluate the impact of reference data quality and the 
resulting reliability of final class assignments. Finally, an extensive literature review on 
tree species classification comprising about 20 studies is presented. 
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1. Introduction 

Tree species diversity is a key parameter to describe forest ecosystems. It is a relevant parameter for 
various ecological issues such as wildlife habitat modeling and it is also becoming more and more 
important in sustainable forest management [1–3]. For example, in close-to-nature forest management 
pure stands are replaced by heterogeneous, mixed stands. Hence, spatially detailed tree species 
information is of high importance. Traditional forest inventories and other field-based data acquisition 
methods, such as stand estimation, are not suitable for such tasks. It is nearly impossible to acquire 
detailed tree species information over large areas purely on the basis of field assessments. Therefore, 
enhanced methods are required to get spatially-explicit information on the tree species composition 
and distribution patterns.  

Remote sensing is particularly useful for this task, as it provides a synoptic view and delivers 
information over large areas at a high level of detail [4]. There is a large variety of sensors with a wide 
range of spatial and spectral resolution. For tree species classification at crown scale in forests with 
high tree species diversity, data with both high spatial and spectral resolution are desirable (e.g., [4–7]). 
Airborne cameras provide data with the highest spatial resolution that is available at the moment. 
However, they are limited to the spectral bands Blue, Green, Red, and Near Infrared. Besides, due to 
their wide field of view, aerial photos show strong effects caused by the bi-directional reflectance 
characteristics of most land cover types. Depending on the sun-view-geometry, which varies with the 
position of the object within the image, the spectral signature of an object can differ significantly. 
Although these effects can be useful in special image analysis techniques [8], they are usually regarded 
as a limiting factor in automatized analysis of aerial images. Airborne hyperspectral sensors meet the 
requirements regarding spectral and spatial resolution. However, due to the high costs and their still 
limited availability, hyperspectral data have gained only limited acceptance for operational use yet. 
Satellite-borne multispectral sensors either have a high spatial resolution but provide only the 4 
standard bands (Blue, Green, Red, Near Infrared), such as IKONOS or QuickBird, or they provide 
more bands but only with lower spatial resolution, such as MODIS, Landsat, ASTER, and SPOT. 

In 2009, WorldView-2, a new satellite-borne sensor, was launched by DigitalGlobe. The very high 
spatial resolution (0.5 m in the panchromatic band and 2.0 m in the multispectral bands) and 4 new 
spectral bands (Coastal, Yellow, Red Edge and Near Infrared 2) additional to the 4 standard bands 
(Blue, Green, Red, and Near Infrared 1), give reason to expect that this sensor has a high potential for 
tree species mapping. The data provider postulates that all 4 new bands are strongly related to 
vegetation properties. For example, the reflectance measured in the Coastal band is related to the 
chlorophyll content of plants. The Yellow band is intended for the detection of ‘yellowness’ of targets, 
for example, of tree crowns caused by insect diseases. The Red Edge band is supposed to discriminate 
between healthy trees and trees that are impacted by disease and to enhance the separation between 
different species and age classes. The Near Infrared 2 band that partly overlaps the standard Near 
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Infrared 1 band but is less affected by atmospheric influence is expected to enable sophisticated 
vegetation analysis, such as biomass studies [9].  

In some recently published studies on tree species mapping with WorldView-2 data, promising 
results have been obtained [10–14]. However, studies in European forests are still missing. Therefore, 
for the present study an area located in Austria was chosen to test the suitability of WorldView-2 for 
tree species mapping. The area is ideally suited for this purpose, as it is very rich in tree species 
compared to other European forest biomes, such as boreal forests. 

Non-parametric methods are very attractive for classification purposes, as they can be used with 
arbitrary data distributions and without the assumption that the forms of the underlying densities are 
known [15]. They are, therefore, applicable to a huge variety of practical classification problems. 
Random Forest [16] is one of the most recent non-parametric methods. It is a very accurate classifier 
and robust against noise [16–18]. Compared to other non-parametric methods, the setup of a RF is 
simple, because no sophisticated parameter tuning is necessary. 

In the last decade, RF has become increasingly important in remote sensing. It has been used, for 
example, to classify land cover [18–22] and ecological zones [23], to identify spectral differences of 
tree species [24–27], to map landslides [28], to create forest canopy fuel maps for fire forecasting [29], 
to quantify aboveground forest carbon pools [30], and to analyze urban areas [31]. RF is often employed 
together with hyperspectral data, which provide a very large number of input variables [21,24–26]. 
That is because RF is, in contrast to parametric methods, relatively insensitive to the small sample size 
problem (i.e., the number of training samples per class is significantly smaller than the dimension of 
the feature space, also called ‘Hughes effect’) [32,33]. Besides, there are studies with multispectral 
satellite data with medium (Landsat) [21,22] and high spatial resolution (IKONOS, QuickBird) [28]. 
The RF classifier was also successfully used together with LiDAR (Light Detection and Ranging) data, 
either in combination with spectral data [25,31] or by itself [30].  

When image data is acquired at high spatial resolution, object-based image analysis approaches 
have proven to be superior to pixel-based approaches. This is true in particular, if the pixel size is 
significantly smaller than the average size of the objects of interest [34–36]. In our study, the sunlit 
regions of individual tree crowns are the objects of interest. Depending on the size of the tree and on 
the crown form (conical, spherical), the size of these regions varies in the 2 m multispectral image 
from a few (about 2 or 3) to several (about 10 to 20) pixels. As it is not known in advance, if the  
pixel-based or the object-based approach will perform better in tree species discrimination, a 
comparison of these two concepts of image analysis is required. 

This study aims at separating 10 tree species in a mid-European, submontane forest using spectral 
information provided by the WorldView-2 sensor applying Random Forest classification. We focus on 
the following research questions: (1) Which tree species can be separated by WorldView-2 data and 
which accuracies can be achieved? (2) Do the 4 additional bands of WorldView-2 improve the 
classification accuracy significantly compared to the 4 standard bands? (3) Is the classifier Random 
Forest suitable for detailed tree species classification, and (4) which approach performs better, an 
object-based or a pixel-based one? 
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2. Material 

2.1. Study Site 

The study site covers approximately 3000 ha and is located in the East of Austria (47°38′N, 
16°26′E) in the province of Burgenland. The terrain is hilly and lies in the submontane life zone with 
an elevation between 290 and 670 m above sea level. The annual rainfall is between 700 and 
1,100 mm, with a maximum in summer. The bedrocks are mainly base-poor silicates, quartz phyllite 
and gneiss. The potential natural forest community ranges from oak-hornbeam forest over pine-oak 
forest to fir-beech forest with admixture of oak, chestnut and Scots pine [37]. The privately owned 
forest is commercially used focusing on timber production and hunting. 

As a result of forest management, the area is dominated by Norway spruce (Picea abies, (L) Karst.), 
Scots pine (Pinus sylvestris, L.), European beech (Fagus sylvatica, L.) and English oak (Quercus 
robur, L.). Secondary tree species are Silver fir (Abies alba, Mill.), European larch (Larix decidua, 
Mill.), Douglas fir (Pseudotsuga menziesii, (Mirb.) Franco), Lawson’s cypress (Chamaecyparis 
lawsoniana, (A. Murr.) Parl.), Grand fir (Abies grandis, Lindl), Ponderosa pine (Pinus ponderosa, 
Douglas ex P. et C. Laws), European ash (Fraxinus excelsior, L.), European hornbeam (Carpinus 
betulus, L.), Turkey oak (Quercus cerris, L.), Silver birch (Betula pendula, Roth), European alder 
(Alnus glutinosa, L.), Persian walnut (Juglans regia, L.), Black locust (Robinia pseudoacacia, L.), 
European chestnut (Castanea sativa, Mill.), Sweet cherry (Prunus avium, L.), linden- (Tilia sp.), 
maple- (Acer sp.), elm- (Ulmus sp.) and poplar-species (Populus sp.). The tree species Douglas fir, 
Lawson’s cypress, Grand fir, Ponderosa pine, and Black locust are allochthonous species in Europe. 

2.2. Reference Data 

For generating reference data we concentrated on pure and homogeneous stands identified by a 
forest stand map. A stand map is a common instrument in traditional forest management planning and 
contains key attributes for each stand, such as timber volume, basal area, age, and tree species 
composition. The tree species composition is estimated in the field by an evaluator (stand estimation). 
The procedure is quite fast and gives a good overview for each stand. However, in large and 
heterogeneous stands the stand description usually does not provide detailed information about the 
spatial distribution of all occurring tree species. For this reason we used inventory data (angle count 
sample plots in a regular 200 m grid) as additional information.  

The chosen stands were distributed over the whole study site (Figure 1). Within these stands, clearly 
identifiable tree crowns were selected on the image with 0.5 m pixel size. The selected trees belonged 
mainly to the middle and old age classes, where the crowns could be easily detected. For each 
reference tree we delineated the sunlit part of the crown to minimize shadow effects [5,38,39]. The 
manual delineation was done by setting points on all relevant crown pixels on the 2 m image 
(Figure 2). Then the points were converted into polygons following the pixel edges. To each tree 
crown the tree species information specified in the forest stand map or in the inventory data and the 
spectral information from the WorldView-2 image were assigned. For the object-based approach, we 
calculated the mean band values for each crown polygon using its within-crown pixel spectra. For the 
pixel-based approach, we used the individual pixel spectra. 
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Figure 1. Study site, test area and location of reference samples (homogeneous stands). 

 

Figure 2. Manual delineation of sunlit tree crowns exemplified for the test area:  
(a) selected tree crowns in the image with 0.5 m pixel size, and (b) derived tree crown 
polygons in the image with 2 m pixel size. 

    

We included the 4 main tree species Norway spruce, Scots pine, European beech and English oak 
and 6 secondary tree species in the analysis. For the other tree species listed in Section 2.1 we could 
not identify a sufficient number of individual tree crowns. Table 1 shows the tree species included in 
the study as well as the number of pixels and objects (tree crowns) per tree species. In total, 1,465 
reference polygons were delineated. In the sample, the distribution by tree species corresponds roughly 
to the distribution in the study site. In addition to classification of the 10 tree species we included also 
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the classification with only 4 (main) species (PA, PS, FS and QR) for comparability with studies that 
comprise only a few tree species, e.g. studies in boreal forests. 

Table 1. Common and scientific names, acronyms, and number of pixels and objects of the 
10 analyzed tree species. 

Common Name Scientific Name Acronym Type 
Leaf  

Phenology 

No. of  

Pixels 

No. of  

Objects 

Proportion1 

[%] 

Norway spruce Picea abies PA Conifer Evergreen 1,084 226 15.4 

Scots pine Pinus sylvestris PS Conifer Evergreen 807 235 16.0 

European larch Larix decidua LD Conifer Deciduous 472 122 8.3 

Douglas fir Pseudotsuga menziesii PM Conifer Evergreen 677 178 12.1 

Lawson’s cypress Chamaecyparis lawsoniana CL Conifer Evergreen 166 42 2.9 

European beech Fagus sylvatica FS Broadleaf Deciduous 1,519 247 16.9 

English oak Quercus robur QR Broadleaf Deciduous 1,770 152 10.4 

European hornbeam Carpinus betulus CB Broadleaf Deciduous 445 81 5.5 

Silver birch Betula pendula BP Broadleaf Deciduous 397 86 5.9 

European alder Alnus glutinosa AG Broadleaf Deciduous 387 96 6.6 

    7,724 1,465 100.0 
1 based on objects. 

2.3. Test Area 

For plausibility checks and for demonstrating the method on a continuous area, we selected a test 
area covered by an approximately 50 years old mixed forest characterized by a high tree species 
diversity (yellow area in Figure 1). The test area represents an independent data set as it does not 
contain any reference trees used for building the classifiers (Section 3.3). For the whole test area all 
visible tree crowns were delineated as described in Section 2.2 and illustrated in Figure 2. To assess 
classification results for this area, forest management data was consulted. However, as explained in 
Section 2.2 this data provides only rough information on the true tree species composition. Therefore, 
the classification results were also verified in the field. 

2.4. WorldView-2 Image 

The WorldView-2 image was recorded under cloudless conditions over the site in the middle of the 
growing season on 10 July 2010 (Processing Level: Ortho Ready Standard, Scan Direction: forward, 
Mean Satellite Elevation: 77.8°, Mean Satellite Azimuth: 76.6°, and Mean Off Nadir View Angle: 
11°). At this time of the year, the leaves of all tree species are fully developed, which provides good 
conditions for tree species classification. The WorldView-2 satellite provides high spatial resolution 
data with 8 spectral bands. At nadir the ground resolution (GSD) is 50 cm for the panchromatic band 
(0.46–0.80 µm) and 200 cm for the multispectral bands. In addition to the 4 standard bands Blue 
(0.45–0.51 µm), Green (0.51–0.58 µm), Red (0.63–0.69 µm), and Near Infrared 1 (0.77–0.90 µm), 
another 4 bands are available. The new bands are Coastal (0.40–0.45 µm), Yellow (0.59–0.63 µm), 
Red Edge (0.71–0.75 µm), and Near Infrared 2 (0.86–1.04 µm). Further details about the sensor can be 
found on the website of the provider (http://worldview2.digitalglobe.com/) and in [40]. WorldView-2 
data can be ordered either with the 4 standard bands or with all 8 bands. 
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The pixel gray values (digital numbers) were converted to ‘at-sensor’ radiance [40]. In addition, we 
performed an atmospheric correction with the ENVI module (ENVI 4.8) FLAASH resulting in  
top-of-canopy reflectance. This step was done to derive meaningful spectral reflectance signatures of the 
tree species. The settings were chosen iteratively by checking the resulting reflectance values for 
plausibility (final FLAASH settings: Atmospheric Model: Mid-Latitude Summer, Aerosol Model: Rural, 
Initial Visibility: 70 km). For pansharpening, the HCS algorithm (Hyperspherical Color Space algorithm) 
[41] was used. This algorithm is dedicated to WorldView-2 data and is implemented in ERDAS Imagine 
2010. With ERDAS Imagine the image was georectified by using a digital terrain model (5 m grid). The 
coordinates of the control point were taken from a color-infrared orthophoto (recorded in 2007, 0.5 m 
pixel size). The achieved average accuracy (RMSE) was 0.70 pixels on the 2 m image. 

3. Methods 

For tree species classification we applied object-based and pixel-based approaches using manually 
delineated sunlit regions of the tree crowns (Section 2.2). As input features, either the spectral 
information of the 8 WorldView-2 bands were used or only the 4 standard bands.  

3.1. Spectral Variability Within and Among Tree Species 

Figure 3 shows the mean spectral signatures for the 10 tree species. As expected, the reflectance 
values in the Red Edge band and in the two Near Infrared bands are higher for the broadleaf tree 
species than for the conifers [42–44]. European beech (FS) and European hornbeam (CP) show the 
highest values and differ significantly from the other tree species, whereas the differences between the 
other broadleaf tree species are much lower (Figure 3(a)). Among the conifers the Lawson’s cypress 
(CL) shows the highest reflectance values in the near infrared, followed by Douglas fir (PM), European 
larch (LD), Scots pine (PS) and Norway spruce (PA). In the visible (Figure 3(b)) the bands Green and 
Yellow show the largest differences, but the differentiation is not as clear as in the near infrared. 

Figure 3. Mean spectral signatures of the 10 tree species derived from the 8 WorldView-2 
bands using the reference polygons (for sample size see Table 1): (a) full spectrum, and  
(b) wavelength range of visible light (detail of the full spectrum). 
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Figure 4. Box-whisker-plots of median reflectance values of the 8 WorldView-2 bands for 
the 10 tree species derived from the reference polygons. 
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The box-whisker-plots in Figure 4 show the spectral variability among and within the 10 tree 
species. The conifers and the broadleaf trees are well distinguishable by the bands in the near infrared. 
Within these tree species groups the separation is not so clear. Partly, there are considerable spectral 
overlaps. Some tree species differ clearly from the other species in particular bands, for example Scots 
pine (PS) in the bands Coastal and Blue, Silver birch (BP) in the band Yellow, and European beech (FS) 
in the bands Near Infrared 1 and Near Infrared 2. The tree species show band-specific within-species 
variance. For example for European hornbeam (CB) the variance in the Red band is quite large 
compared to the other broadleaf trees and that in the Coastal band is relatively small. 

3.2. Band Correlations 

On the basis of the correlation matrix computed from the reference samples (Table 2), we could 
identify 3 groups of bands: (A) Coastal, Blue, (Red), (B) Green, Yellow, (Red), and (C) Red Edge, 
Near Infrared 1, and Near Infrared 2. Within each group the correlations between the bands are high. 
The Red band is put in brackets, because it shows high correlation with Blue (Group A) as well as with 
Green and Yellow (Group B). Each group contains 1 or 2 bands from the 4 standard bands and from 
the 4 new bands respectively. Thus, the standard bands and the new bands are partly highly correlated 
providing redundant information. 

Table 2. Pairwise correlations between the 8 bands computed from the reference samples 
(the names of the new bands are printed in cursive letters, correlations >0.70 in bold letters). 

Group Band  Coastal Blue Green Yellow Red Red Edge Near Infrared 1 Near Infrared 2

A 
Coastal - 0.88 0.36 0.48 0.64 0.11 0.08 0.06 

Blue 0.88 - 0.48 0.57 0.77 0.05 −0.02 −0.04 

B 

Green 0.36 0.48 - 0.90 0.72 0.61 0.44 0.45 

Yellow 0.48 0.57 0.90 - 0.82 0.51 0.33 0.35 

Red 0.64 0.77 0.72 0.82 - 0.26 0.14 0.16 

C 

Red Edge 0.11 0.05 0.61 0.51 0.26 - 0.95 0.95 

Near Infrared 1 0.08 −0.02 0.44 0.33 0.14 0.95 - 0.98 

Near Infrared 2 0.06 −0.04 0.45 0.35 0.16 0.95 0.98 - 

3.3. Random Forest and Linear Discriminant Analysis 

For classification we used Random Forest (RF) [16], a non-parametric ‘ensemble learning’ 
algorithm. It is an enhancement of traditional decision trees and consists of a large number of trees. For 
the construction of each decision tree an individual bootstrap sample is drawn from the original data 
set (sampling with replacement). The split determination at each node is based on the Gini criterion. In 
standard decision trees, the nodes are split by the variable that gives the best split, i.e., the highest 
decrease in Gini. In RF, a subset of variables is randomly selected at each node, and from this subset 
the best-splitting variable is chosen. New data are classified by taking the majority vote among the 
classification outcomes of all constructed decision trees. For estimating the classification error, the 
samples not in the bootstrap sample (out-of-bag data, OOB), approximately 36.8% of the original data 
set at each bootstrap iteration, are used. Each decision tree is used to classify the samples in the 
corresponding OOB data set. Then for each sample in the original data set the majority vote among the 
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classification outcomes of the involved decision trees is compared with the true class label giving an 
estimate of the misclassification rate. 

RF provides two measures to assess the explanatory power of the input variables, i.e., mean 
decrease in accuracy (MDA) and mean decrease in Gini (MDG). To calculate the MDA of a variable, 
the values of this variable are randomly permuted for the OOB data, while keeping the values of the 
other variables constant. The importance of the variable is obtained by comparing the resulting 
misclassification rate with the rate achieved without randomly permuting the values of the variable. 
This procedure is repeated for each variable [16]. To calculate the MDG of a variable, the decreases in 
the splitting criterion Gini related to this variable are summarized in the forest and normalized by the 
number of trees [45]. A detailed description of RF can be found in [16,17] and in particular for remote 
sensing applications in [18,22]. 

To run a RF classifier, two parameters have to be set: the number of classification trees (number of 
bootstrap iterations) and the number of input variables used at each node. We varied both parameters 
across a wide range of values (number of trees: 1 to 2,500; number of random split variables at each 
node: 1 to 5). The overall accuracy (object-based, 10 tree species, 8 bands) averaged over 20 repetitions 
increased sharply until reaching a plateau of 250 trees with accuracies remaining almost constant 
beyond this point (Figure 5). Using 1 or 2 randomly selected input variables per node delivered better 
results than using 3, 4 or 5 variables. For this reason and for comparability with other studies, we chose 
the default settings of 500 trees and 2 (the square root of the number of input variables) variables at 
each node [17,46]. 

Figure 5. Effect of the number of trees and the number of random split variables at each 
node (mtry) on the overall accuracy for the object-based RF classification of 10 tree 
species using the 8 bands of WorldView-2 (mean overall accuracy from 20 repetitions). 

 

For comparison, we applied also Linear Discriminant Analysis (LDA), which is an established and 
widely used parametric statistical classifier that is also used in remote sensing [5,47–52]. It estimates 
linear decision boundaries to separate the classes. As a prerequisite, the classes should be 
approximately Gaussian distributed and should have equal covariance [17]. The classification 
accuracies were determined by bootstrapping [53] with 500 bootstrap iterations. The test-datasets of all 
iterations were identical with the respective RF OOB datasets.  
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To evaluate the results of RF and LDA we produced confusion matrices with the majority vote from 
all bootstrap iterations and calculated the producer’s and user’s accuracies for each class, the overall 
accuracy (correct classification rate), and Cohen’s Kappa coefficient [54]. For the comparison of 
different methods we used Kappa and its variance to implement Z-Statistic [55]. 

3.4. Explanatory Power of the Spectral Bands 

For a better understanding of the whole classification process we wanted to figure out, which input 
variables (bands) are most relevant for tree species classification and particularly to investigate the role 
of the 4 new WorldView-2 bands Coastal, Yellow, Red Edge, and Near Infrared 2.  

Both RF and LDA provide measures for assessing variable importance. In RF we used the measures 
MDA and MDG (Section 3.3). In addition we computed Wilks’ Lambda that is a product of the 
ANOVA performed prior to LDA and measures the univariate separation power of the variables. In the 
LDA the multivariate explanatory power of the variables was obtained from the mean discriminant 
function coefficients (MDFC). For this measure the coefficients of the discriminant functions are 
standardized and their weighted averages over the discriminant functions are computed [56]. In 
addition to these measures we determined the overall accuracy for all possible combinations with 4 
bands (in total 70 combinations) both with RF (averaged over 20 repetitions) and LDA (with all 
samples), and identified the 4-band combination that gave the highest classification accuracy. Then we 
compared the best classification result of RF and LDA, respectively, with the results achieved with the 
4-band combinations proposed by MDA, MDG, MDFC, and Wilks’ Lambda.  

3.5. Classification Stability 

The Random Forest classifier is an ensemble method that combines several individual classification 
trees (e.g., 500) and is therefore able to adjust for the instabilities of the individual classification trees. 
Each classification tree outputs a class and the class that is the majority vote is assigned to the instance 
to be classified (Section 3.3). Hence, in addition to the final class decision, i.e., the majority vote, the 
class distribution among the votes of all trees is also known. It shows how ambiguous the decision is 
and which classes are involved. By examining this information, further insights can be gained both in 
the context of validation and of prediction. 

In the validation phase, the number of votes for the most frequent class divided by the number of 
times the sample appears in the out-of-bag (OOB) dataset serves as a measure of ambiguity: ܷ௏ ൌ ܰ௠௔௝௢௥௜௧௬ைܰை஻  (1)

UV           Unambiguity for a reference sample (validation); 
Nmajority    Number of votes for the most frequent class; 
NOOB        Number of times the sample appears in the out-of-bag (OOB) dataset. 

Three cases of validation outcome can be distinguished (Table 3). We computed the unambiguity 
for each reference sample and from this we derived for each case (a, b, and c) and for each tree species 
the distribution of unambiguity. This information can, for example, be used for locating outliers in the 
reference dataset. Samples that are misclassified with a high unambiguity (case b or c) are outlier 
candidates and should be verified. 
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Table 3. Cases of validation outcome. 

Case Majority vote Reference Classified as 
a correct tree species i tree species i 
b wrong tree species i not tree species i 
c wrong not tree species i tree species i 

In the prediction phase, the unambiguity of a new sample is computed by dividing the number of 
votes for the most frequent class by the number of trees in the RF model (Equation (2)) as each new 
sample is classified by all classification trees of the RF model.  ܷ௉ ൌ ܰ௠௔௝௢௥௜௧௬௧ܰ௥௘௘௦  (2)

UP           Unambiguity for a new sample (prediction); 
Nmajority    Number of votes for the most frequent class; 
Ntrees        Number of trees in the RF model. 

In combination with the ordinary class-specific user’s accuracies derived in the validation phase, the 
unambiguity gives an estimate of the achieved classification reliability for each new sample to be 
classified: ܴ௉ ൌ ܷ௉ כ (3) ܿܿܣܷ

RP          Reliability for a new sample (prediction); 
UP          Unambiguity for a new sample (prediction); 
UAcc     User’s accuracy of the most frequent class. 

In addition, the retrieved classification ambiguities computed for new samples offer the possibility 
to compute the class-specific probabilities for each sample to be classified, enabling a soft 
classification (not implemented in the paper). 

All analysis in this study were carried out with the statistic software R 2.15 [57] with the additional 
packages graphics [57], fmsb [58], MASS [59] and randomForest [46]. 

4. Results 

4.1. Object-Based Classification Results for 4 Tree Species 

Table 4 shows the results for the object-based classification of the 4 main tree species using all 8 
bands of the WorldView-2 image. All user’s and producer’s accuracies were over 90% without any 
misclassifications between coniferous and broadleaf tree species. From the 860 samples only 36 were 
misclassified, resulting in an overall accuracy of 95.9% (Kappa 0.945). 

If only the 4 standard bands instead of the 8 bands were used, the results degraded only slightly (not 
shown). The user’s and producer’s accuracies of the individual trees species and also the overall 
accuracy with 95.5% (Kappa 0.939) were almost the same as the results achieved with all 8 bands. 
This shows that the new WorldView-2 bands have no positive influence on classifying only a small 
number of tree species. 
  



Remote Sens. 2012, 4            
 

 

2673

Table 4. Confusion matrix for the 4 main tree species using the 8 bands of WorldView-2 and 
object-based RF classification (horizontal line separates coniferous and broadleaf trees). 

 Reference Data  
User’s acc. Classified as PA PS FS QR Σ 

PA 211 12 0 0 223 0.946 
PS 15 223 0 0 238 0.937 
FS 0 0 243 4 247 0.980 
QR 0 0 4 148 152 0.974 
Σ 226 235 247 152 860  

Prod. acc. 0.934 0.949 0.984 0.974  0.959 

4.2. Object-Based Classification Results for 10 Tree Species 

The confusion matrix in Table 5 summarizes the results for classifying 10 tree species using all 8 
bands. The overall accuracy was 82.4%, 81.2% of the conifers and 83.8% of the broadleaf trees were 
classified correctly. The separation into coniferous and broadleaf trees (computed after post-classification 
grouping) was achieved with an overall accuracy of 99.2%.  

Large differences between the 10 tree species were observed. The producer’s accuracies ranged 
from 33.3% (European hornbeam, CB) to 94.3% (European beech, FS), and the user’s accuracies from 
57.4% (European hornbeam, CB) to 92.1% (Lawson’s cypress, CL). The European larch (LD) shows 
with 66.4% the lowest producer’s accuracy and with 70.4% also the lowest user’s accuracy among the 
conifers. Among the broadleaf tree species, the European hornbeam (CB) shows the lowest accuracies. 
The best agreements were obtained for European beech (FS), Silver birch (BP), Scots pine (PS) and 
Lawson’s cypress (CL). 

Table 5. Confusion matrix for the 10 tree species using the 8 bands of WorldView-2 and 
object-based RF classification (horizontal line separates coniferous and broadleaf trees). 

 Reference Data    

Classified as PA PS LD PM CL FS QR CB BP AG  Σ User’s acc. 

PA 181 8 18 17 1 0 0 0 0 0  225 0.804 

PS 11 211 18 8 0 0 0 0 0 0  248 0.851 

LD 10 14 81 8 1 0 0 0 0 1  115 0.704 

PM 24 2 4 144 0 0 0 0 0 1  175 0.823 

CL 0 0 0 0 35 0 0 0 1 2  38 0.921 

FS 0 0 0 0 0 233 1 28 3 3  268 0.869 

QR 0 0 1 0 0 2 135 15 0 5  158 0.854 

CB 0 0 0 0 0 11 9 27 0 0  47 0.574 

BP 0 0 0 0 1 1 0 6 78 2  88 0.886 

AG 0 0 0 1 4 0 7 5 4 82  103 0.796 

Σ 226 235 122 178 42 247 152 81 86 96  1465  

Prod. acc. 0.801 0.898 0.664 0.809 0.833 0.943 0.888 0.333 0.907 0.854   0.824 

If only the 4 standard bands instead of the 8 bands were used for the differentiation of the 10 tree 
species, the classification accuracy decreased. Table 6 shows that the producer’s and user’s accuracies 
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for all tree species (except English oak, QR) were significantly lower than the corresponding values 
achieved with 8 bands (Table 5). The overall accuracy was reduced by 4.9 percentage points. 

Table 6. Confusion matrix for the 10 tree species using the 4 standard bands of 
WorldView-2 and object-based RF classification (horizontal line separates coniferous and 
broadleaf trees). 

 Reference Data    
Classified as PA PS LD PM CL FS QR CB BP AG  Σ User’s acc. 

PA 167 7 20 29 1 0 0 0 0 0  224 0.746 
PS 10 204 24 8 0 0 0 0 0 0  246 0.829 
LD 11 17 63 14 1 0 0 1 0 1  108 0.583 
PM 38 7 12 124 3 0 1 0 0 0  185 0.670 
CL 0 0 0 2 33 0 0 0 0 3  38 0.868 

FS 0 0 0 0 0 227 1 31 1 3  263 0.863 
QR 0 0 1 1 0 2 140 15 0 5  164 0.854 
CB 0 0 1 0 0 17 6 24 1 0  49 0.490 
BP 0 0 0 0 0 1 0 5 75 5  86 0.872 
AG 0 0 1 0 4 0 4 5 9 79  102 0.775 

Σ 226 235 122 178 42 247 152 81 86 96  1465  
Prod. acc. 0.739 0.868 0.516 0.697 0.786 0.919 0.921 0.296 0.872 0.823   0.775 

4.3. Pixel-Based Classification Results for 10 Tree Species 

The results of the pixel-based classification are presented in Table 7 (10 tree species, 8 bands). 
Comparing the results with the corresponding results of the object-based classification (Table 5) 
revealed that the results of the pixel-based approach were significantly worse than those of the  
object-based approach. This finding was evident for all tree species included in the study, except two 
tree species. For English oak (QR) the producer’s accuracy was slightly higher and for European 
hornbeam (CB) the user’s accuracy did not change.  

Table 7. Confusion matrix for the 10 tree species using the 8 bands of WorldView-2 and 
pixel-based RF classification (horizontal line separates coniferous and broadleaf trees). 

 Reference Data    
Classified as PA PS LD PM CL FS QR CB BP AG  Σ User’s acc. 

PA 755 125 143 186 4 3 12 1 6 9  1244 0.607 
PS 109 629 51 30 0 0 4 1 0 0  824 0.763 
LD 41 28 202 35 5 1 11 5 9 2  339 0.596 
PM 141 21 48 393 12 0 21 0 5 5  646 0.608 
CL 4 0 1 6 103 1 2 1 17 8  143 0.720 

FS 0 0 1 0 0 1330 89 165 6 19  1610 0.826 
QR 27 3 15 22 15 154 1589 167 16 86  2094 0.759 
CB 0 0 0 0 0 26 15 70 6 4  121 0.579 
BP 0 1 3 2 15 0 1 23 310 15  370 0.838 
AG 7 0 8 3 12 4 26 12 22 239  333 0.718 

Σ 1084 807 472 677 166 1519 1770 445 397 387  7724  
Prod. acc. 0.696 0.779 0.428 0.581 0.620 0.876 0.898 0.157 0.781 0.618   0.728 
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4.4. Summary of RF Classification Results and Comparison with LDA 

The tree specific classification results (user’s accuracies) are summarized in Figure 6 (RF, 10 tree 
species). Figure 6(a) shows the effect of using the full spectral resolution (i.e., 8 bands) in relation to 
the sole use of the 4 standard bands. Only three tree species (European larch (LD), Douglas fir (PM), 
and European Hornbeam (CB)) benefited from the additional bands significantly with an increase in 
user’s accuracies between 8 and 15 percentage points, i.e., the tree species that had the lowest user’s 
accuracies using only 4 bands. For the remaining tree species the improvements were moderate (ranging 
between 1 and 6 percentage points).  

By classifying objects instead of pixels the user’s accuracies could be raised significantly for most 
tree species (Figure 6(b)). Only for European Hornbeam (CB) no improvements could be found. In 
general, the positive impact was higher for conifers, ranging between 9 and 22 percentage points, than 
for broadleaf trees, ranging between 4 and 10 percentage points. 

Comparing the two charts, it is remarkable that the positive impact of the 4 additional bands 
(Figure 6(a)) was considerably lower than the improvements that were achieved by using the  
object-based instead of the pixel-based approach (Figure 6(b)). 

Figure 6. Spider charts representing the user’s accuracies for the following classification 
approaches (RF, 10 tree species): (a) 8 versus 4 bands (object-based), (b) object-based 
versus pixel-based (8 bands). 

         

An overview of all classification results is provided in Table 8. The following models are 
compared: 4 versus 10 tree species, pixel-based versus object-based classification and RF classification 
versus LDA. The detailed LDA results are shown in the online supplementary file (Tables S1–S4). 

The Kappa values show moderate (below 0.80) to strong (up to 0.95) agreement between the 
classification results and the reference data. For all Kappa values the single Z-Value was higher than 
3.29 denoting that all results were most significantly better than random. 

Using only the 4 standard bands (Red, Green, Red, Near Infrared 1) instead of the 8 available 
bands, the classification accuracies for 10 tree species declined. For example, in the object-based 
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approach, Kappa decreased significantly from 0.799 to 0.743 for RF (Z-test, Z = 47.7, P < 0.01) and 
from 0.811 to 0.756 for LDA (Z-test, Z = 49.41, P < 0.01). However, if only a few tree species (i.e., 
the 4 main tree species Norway spruce (PA), Scots pine (PS), European beech (FS) and English oak 
(QR)) were considered, the Kappa values, derived with 8 and 4 bands respectively, differed only 
slightly. With RF it decreased from 0.945 (8 bands) to 0.939 (4 bands) (Z-test, Z = 71.70, P < 0.01), 
and with LDA it increased from 0.925 (8 bands) to 0.931 (4 bands) (Z-test, Z = 63.25, P < 0.01). 

Table 8. Classification results with 4 and 8 bands for the 4 main tree species (PA, PS, FS, 
QR) and all 10 tree species (PA, PS, LD, PM, CL, FS, QR, CB, BP, AG), for the pixel-based 
and the object-based approach and for the two classification algorithms (RF and LDA). 

Tree Species Approach WorldView-2 Bands1  RF  LDA 
 Overall acc. Kappa  Overall acc. Kappa 

4 
pixel-based 

4 (B,G,R,NIR1)  0.868 0.819  0.849 0.793 
8 (C,B,G,Y,R,RE,NIR1,NIR2)  0.881 0.837  0.862 0.810 

object-based 
4 (B,G,R,NIR1)  0.955 0.939  0.949 0.931 

8 (C,B,G,Y,R,RE,NIR1,NIR2)  0.959 0.945  0.944 0.925 

10 
pixel-based 

4 (B,G,R,NIR1)  0.690 0.634  0.657 0.593 
8 (C,B,G,Y,R,RE,NIR1,NIR2)  0.728 0.678  0.700 0.645 

object-based 
4 (B,G,R,NIR1)  0.775 0.743  0.786 0.756 

8 (C,B,G,Y,R,RE,NIR1,NIR2)  0.824 0.799  0.835 0.811 
1 C: Coastal, B: Blue, G: Green, Y: Yellow, R: Red, RE: Red Edge, NIR1: Near Infrared 1, NIR2: Near Infrared 2. 

Using the pixel-based instead of the object-based approach led to a significantly lower classification 
performance. In the classification of 10 tree species with all 8 bands, Kappa decreased from 0.799 to 
0.678 (Z-test, Z = 62.77, P < 0.01) in case of RF and from 0.811 to 0.645 (Z-test, Z = 64.53, P < 0.01) 
in case of LDA. Also for 4 tree species, the pixel-based accuracies were significantly lower. The  
RF-Kappa decreased from 0.945 to 0.837 (Z-test, Z = 86.23, P < 0.01) and the LDA-Kappa from 0.925 
to 0.810 (Z-test, Z = 74.51, P < 0.01). 

In general, the overall accuracy and the tree species-specific results (online supplementary file, Table 
S5 and S6) for RF and LDA were quite similar. For example for 10 tree species (8 bands, object-based) 
LDA performed slightly better than RF (RF: 0.799, LDA: 0.811, Z-test, Z = 50.56, P < 0.01) and for 
the 4 main tree species (8 bands, object-based) RF achieved a slightly better result (RF: 0.945, LDA: 
0.925, Z-test, Z = 67.91, P < 0.01).  

4.5. Classification Stability 

The tree species-specific classification unambiguities (RF, object-based, 10 tree species, 8 bands) 
are presented in form of histograms in Figure 7. The 10 tree species show different patterns. The first 
row in each figure illustrates the correctly classified samples (case a, Section 3.5). For Norway spruce, 
Scots pine, European beech, English oak, and Silver birch, the highest frequencies occur at the highest 
unambiguity values and the frequencies decrease continuously with decreasing unambiguity. In the 
second and third rows (case b and c, respectively), showing the misclassified samples, these tree 
species have medium to low unambiguity values for most samples. 
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Figure 7. Histograms based on the classification unambiguity for (a) coniferous and (b) 
broadleaf trees ranging from 0 to 1 with an interval of 0.1 for the three cases (case a: 
correctly classified samples of the specified tree species, case b: samples of the specified 
tree species classified as another tree species, and case c: samples of other tree species 
classified as the specified tree species). 

 

 



Remote Sens. 2012, 4            
 

 

2678

European larch and European hornbeam, which are the tree species with the lowest classification 
accuracies according to the confusion matrix (Table 5), do not show this pattern. For these tree species, 
two characteristics are remarkable. Firstly, there are no correctly classified samples (first row in 
Figure 7(a) and 7(b), respectively, case a) that have high unambiguity values (0.9–1.0). Instead, the 
medium unambiguity values occur with high frequencies. Secondly, among the misclassified (second 
rows, case b) an unexpected high number of samples appears in the columns representing the highest 
unambiguity values. This can be explained by spectral similarities to other tree species or by 
misattributions in the reference samples (i.e., outliers). Before these samples are used in the prediction 
of new samples, their class attributions should be verified. For example, there are 4 crowns of 
European larch that were misclassified with high unambiguity (case b). According to our records, 1 of 
them was classified as Norway spruce and 3 were classified as Scots pine, both with high unambiguity 
(case c). Besides there are 4 Norway spruce reference samples that were classified as Scots pine, again 
with high unambiguity. This adds up to 7 Scots pine entries with high unambiguity in the third row 
(case c). 

4.6. Test Area 

We classified the test area (Section 2.3) with the object-based RF approach (10 tree species, 8 bands). 
The classification results (majority votes) are shown in Figure 8(a). According to the forest stand map 
and our field observations, the test area is covered by a very heterogeneous mixed forest with equal 
proportions of coniferous and broadleaf tree species. The southwest is dominated by Scots pine and 
Norway spruce, and the eastern part is dominated by European beech. English oak, Silver birch, 
European alder, European hornbeam and European larch are also present serving as accompanying tree 
species. The classification results were plausible and corresponded quite well to this description. 
Likewise, the proportions of broadleaf and coniferous tree species were correctly determined. 

The classification of Scots pine corresponded well to the observations in the field, whereas Norway 
spruce was underrepresented and European larch was overrepresented. According to the bootstrap 
results (Table 5), European larch showed one of the lowest classification accuracies due to confusion 
with Norway spruce and Scots pine. The tree crowns classified as Douglas fir were in fact Norway 
spruce. The Lawson’s cypress that was not present in the field, occurred only occasionally in the tree 
species map (<1%) showing that the classifier was mostly right regarding this tree species. 

The classified crowns of European beech could be confirmed in the field to a very high degree. 
However, in total this tree species was underrepresented in the map. Furthermore, we observed that the 
proportion of English oak and European hornbeam in the map was higher than expected from the field 
observations. In some cases, this was due to confusion with European alder. The proportion of Silver 
birch corresponded well to our observations in the field. 

For the reliability map presented in Figure 8(b) we computed the unambiguities and reliabilities 
according to Equations (2) and (3) using the classification results shown in Figure 8(a) and the user’s 
accuracies from Table 5. As shown in the histograms, the conifers were classified with a bit higher 
reliabilities (mean: 0.59) than the broadleaf trees (mean: 0.54). Among the conifers Scots pine was 
classified with the highest reliability (0.61) and European larch with the lowest (0.32). Among the 
broadleaf trees, European beech was classified with the highest reliability (0.58) and European 
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hornbeam with the lowest (0.26). The tree species that were classified with a high reliability showed 
good agreement of the mapping results and the observations in the field. 

Figure 8. Classification of the test area (RF, 10 tree species, 8 bands): (a) tree species map, 
(b) reliability map derived from the species-specific user’s accuracies and the individual 
unambiguities. 
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4.7. Explanatory Power of the Spectral Bands 

We examined the explanatory power of the 8 spectral bands in the classification of the 10 tree 
species using the following measures of variable importance: MDA, MDG, MDFC, and Wilks’ 
Lambda. For further interpretations, the measures of variable importance were evaluated in 
combination with the pairwise correlations shown in Table 2 and particularly under consideration of 
the 3 groups of bands identified on the basis of the correlation matrix. If a band is added to the set of 
variables that highly correlates with one of the bands that is already part of the variable set, only little 
additional information is provided by the new band, which may have an impact on the computed 
measures of variable importance. 

Table 9 shows the explanatory power of the 8 bands according to the measures of variable 
importance derived from RF and LDA and the resulting band rankings. 

Table 9. Explanatory power of the 8 bands in the classification of the 10 tree species from 
different statistical analysis (MDA & MDG: RF, MDFC: LDA, Wilks’ Lambda: ANOVA) 
with the corresponding ranks in parentheses. The horizontal lines separate the 3 groups 
identified on the basis of the correlation matrix (new bands are printed in cursive letters). 

Band Group MDA MDG MDFC Wilks’ Lambda 

Coastal 
A 

0.896 (5) 117.8 (8) 0.295 (5) 0.580 (8) 

Blue 0.899 (3) 130.9 (6) 0.407 (3) 0.507 (7) 

Green 

B 

0.909 (1) 145.2 (4) 0.470 (2) 0.392 (4) 

Yellow 0.876 (7) 118.0 (7) 0.257 (6) 0.471 (5) 

Red 0.898 (4) 132.0 (5) 0.256 (7) 0.495 (6) 

Red Edge 

C 

0.858 (8) 184.0 (3) 0.183 (8) 0.154 (3) 

Near Infrared 1 0.903 (2) 238.3 (1) 0.650 (1) 0.096 (1) 

Near Infrared 2 0.887 (6) 219.1 (2) 0.361 (4) 0.099 (2) 

The ranking according to MDG was similar to the ranking according to Wilks’ Lambda. Both 
measures ranked the bands Near Infrared 1, Near Infrared 2, Red Edge, and Green as the four most 
important variables. The ranking according to MDA and MDFC showed also some similarities. These 
two measures ranked the bands Green, Near Infrared 1, and Blue as the three most important variables. 
The bands Red and Near Infrared 2 were in the fourth position, respectively. As we can see from 
Table 9, one band per group was picked at a time. In this way, the band correlations were taken into 
account adding as much new spectral information as possible with each band. 

We evaluated the measures of variable importance by simulating a feature selection procedure 
(Section 3.4). We compared the best classification result that could be achieved with 4 spectral bands 
(derived by trying out all 70 possible 4-band combinations) with the results achieved with the 4-band 
combinations proposed by MDA, MDG, MDFC, and Wilks’ Lambda (Table 10). 

From the results presented in Table 10 we conclude that the feature selection according to MDA led 
to the best classification performance. Compared to the 4-band combination that gave the best 
classification result, the differences in overall accuracy were 1.5 percentage points with RF and 
0.0 percentage points with LDA. The feature selection according to MDG and Wilks’ Lambda led to 
worse classification results. The poor classification performance of these 4-band combinations can be 
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explained by the fact that in both cases 3 out of the 4 selected bands were highly correlated belonging 
to the same group (C) and that the spectral information represented by group A (Coastal, Blue) was 
missing. Wilks’ Lambda measures the explanatory power of the variables univariately. It does not 
consider the other variables in the feature set. Thus, if the feature set contains correlated variables, as it 
is the case in this study, Wilks’ Lambda is not suited for feature selection. Obviously, the same is valid 
for MDG, as it led to nearly the same band ranking. In contrast to Wilks’ Lambda, MDFC rates the 
variables multivariately (as it does MDA), but it led to a poorer classification performance than MDA 
(with a difference in overall accuracy of 3.9 percentage points with RF and 2.3 percentage points with 
LDA compared to the 4-band combination that gave the best classification result). 

Table 10. Overall accuracies for RF (mean overall accuracy from 20 repetitions) and LDA 
(with all samples) derived by different 4-band combinations (new bands are printed in cursive 
letters) based on MDA, MDG, MDFC, and Wilks’ Lambda (10 tree species, object-based). 

Basis of the 4-Band Combination 4-Band Combination1 Overall acc. RF Overall acc. LDA 

best classification result RF C, G, R, NIR1 0.792 0.782 

best classification result LDA B, G, R, NIR1  0.777 0.790 

MDA B, G, R, NIR1  0.777 0.790 

MDG G, RE, NIR1, NIR2 0.726 0.746 

MDFC B, G, NIR1, NIR2 0.753 0.767 

Wilks’ Lambda G, RE, NIR1, NIR2 0.726 0.746 
1 C: Coastal, B: Blue, G: Green, Y: Yellow, R: Red, RE: Red Edge, NIR1: Near Infrared 1, NIR2: Near Infrared 2 

5. Discussion 

5.1. Spectral Separability of Tree Species 

The study shows that WorldView-2 satellite data are highly suitable to separate the investigated tree 
species. The distinction between coniferous and broadleaf tree species (RF, object-based, 10 tree 
species, 8 bands) was excellent (99% correct). The achieved user’s accuracies of the various tree 
species ranged between 57% and 92%, and the producer’s accuracies ranged between 33% and 94%. 
The lowest values were found for European hornbeam (CB) and European larch (LD). For these tree 
species it was difficult to find reliable reference samples, as they usually do not occur in pure stands in 
our study site. Therefore, some of the misclassifications maybe due to errors in the reference data set. 
Another possible reason for the observed misclassifications are spectral overlaps. The fact that some 
tree species reveal significantly lower accuracies, while other species show balanced classification 
results, are also found in other studies that considered a high number of tree species [12,60–64]. 

The classification of the test area showed some limitations. Concluding from our observations in the 
field, a great deal of the identified misclassifications could be explained by the very complex forest 
structure in the test area. Most stands were multi-storied and the tree crowns were small as the thinning 
was done only recently. Both characteristics lead to mixed pixels that may cause misclassifications. 

In general, it was difficult to gather suitable data in the field for verification. Due to the described 
stand structure it was quite difficult to measure or estimate the tree species composition in the field in 
such a way that it was comparable with the one assessed from the image. The tree composition one can 



Remote Sens. 2012, 4            
 

 

2682

see and measure from the ground can vary significantly from the one seen from above. For this reason, 
we recommend visual (stereo) photo interpretation to obtain reliable quantitative data for verification 
rather than measurements in the field. 

5.2. The Role of the 8 WorldView-2 Bands in Tree Species Classification 

The 4 main tree species (Norway spruce (PA), Scots pine (PS), European beech (FS), and English oak 
(QR)) could be separated very accurately by using only the 4 standard bands (Blue, Green, Red, and 
Near infrared 1). Adding the 4 new bands (Coastal, Yellow, Red Edge, and Near infrared 2) to the set of 
explanatory variables had hardly any impact on the classification accuracy. This finding corresponds to 
the results of [10], where 4 bands and 8 bands performed almost equally in a two-class-problem using 
various classification algorithms (LDA, Quadratic Discriminant Analysis, Support Vector Machine 
and RF). 

However, when we classified 10 tree species, the use of the 4 additional bands led to a significant 
improvement of classification accuracy. For example, in the object-based classification the Kappa 
value increased from 0.74 (4 bands) to 0.80 (8 bands). For two tree species (European larch (LD) and 
Douglas fir (PM)) the producer’s accuracies could be improved by more than 10 percentage points 
using all bands. Even stronger improvements could be achieved by [14]. They simulated WorldView-2 
data from high spatial resolution hyperspectral data (High-fidelity Imaging Spectrometer, HiFIS) and 
reported an increase in Kappa from 0.55 to 0.71 (8 savanna tree species, maximum likelihood 
classification) by adding the 4 additional bands.  

By including the 4 new bands in the set of explanatory variables, the number of variables used in 
the classification is doubled. From this, one may expect a stronger effect on classification accuracy 
than the one observed in our study. The small positive effect of the new bands can be explained by the 
pairwise band correlations. Each of the new bands correlated with one or more standard band(s) with a 
correlation coefficient higher than 0.85 (Coastal and Blue: 0.88, Yellow and Green: 0.90, Red Edge 
and Near Infrared 1: 0.95, Near Infrared 1 and Near Infrared 2: 0.98). Also the two new bands Red 
Edge and Near Infrared 2 showed a high correlation (0.95), whereas among the standard bands the 
correlations are low to moderate (0.02 to 0.77). Therefore adding the 4 new bands to the 4 standard 
bands introduced a lot of redundant information. One advantage of RF is that it can handle this 
collinearity [65]. 

An extensive analysis of the explanatory power of the bands revealed that in the classification with 
all 8 bands, the bands Green, Near Infrared 1, and Blue were most important. The bands Red 
(according to MDA) and Near Infrared 2 (according to MDFC) were in the fourth position. By 
checking all possible 4-band combinations, the combinations with the bands Coastal, Green, Red, and 
Near Infrared 1 (RF) and Blue, Green, Red, and Near Infrared 1 (LDA) yielded the best classification 
results. In all mentioned 4-band combinations at least 3 standard bands appear. From this we conclude 
that the new bands play only a minor part in tree species classification, but they are helpful especially 
when a larger number of tree species has to be separated or when the tree species show substantial 
spectral overlaps. The 4 measures of variable importance led to different 4-band combinations. With 
MDA, followed by MDFC, we could find the 4-band combinations that were closest to the optimal  
4-band combination, whereas MDG and Wilks’ Lambda were not suitable for feature selection, as they 
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score the bands without considering the information that the other variables in the feature set 
contribute. The superiority of MDA compared with MDG corresponds to the findings of [66,67]. They 
conclude that the MDA measure may be preferred, when within-predictor correlation exists. 

5.3. Quality Checks 

We introduced two new measures derived from the RF procedure for quality checking, the 
classification ambiguity and the classification reliability. Both indices were found very useful for 
interpreting the tree species map of the test site. The classification ambiguity permits to detect oddly 
behaving reference samples, i.e., outliers, very easily (validation phase). In the prediction phase it can 
be used in combination with the user’s accuracies to assess the classification reliability individually for 
each classified pixel or object. These measures are not restricted to tree species discrimination but can 
be helpful also for other problems such as land cover classification. 

5.4. Non-Parametric versus Parametric Classification 

The non-parametric RF classifier performed almost equally well as the established and widely used 
parametric LDA classifier. Comparing RF and LDA regarding their requirements on the data, we see 
the following advantages of RF for tree species classification: (1) In contrast to LDA, the non-parametric 
RF classifier does not make any assumptions about data distribution. Therefore it can handle also 
possibly occurring multi-modal data distributions. In our study the classes were mostly normally 
distributed leading to similar results with RF and LDA. However, this may not always be the case in 
image analysis. In tree species classification the robustness against non-normally distributed data sets 
can be helpful, for example, if only the most relevant tree species are mapped individually while 
pooling the secondary tree species in a single class. (2) RF is more flexible than LDA regarding class 
homogeneity. In contrast to LDA, RF does not require that the classes have a common covariance 
matrix, which often is not the case in tree species classification and hence limits the use of LDA and 
other parametric classifiers. (3) RF provides a reliable measure of variable importance, i.e., mean 
decrease in accuracy (MDA) that is very helpful for feature selection, as demonstrated in the paper. 
Altogether, RF offers a powerful alternative to traditional parametric methods.  

5.5. Performance of the Pixel-Based and the Object-Based Approach 

The object-based classification results outperformed the pixel-based results (10 tree species) in 
terms of overall accuracy by about 10 percentage points. These differences are notable especially 
considering that the results derived by the pixel-based approach might be positively biased due to 
spatial autocorrelation. 

The advantage of classifying crown objects instead of individual pixels (both sunlit) corresponds to 
the findings in [5,10,38,39]. We assume that the average over a couple of pixels captures species-specific 
differences in crown structure and transmissivity very effectively and compensates for mixed pixels. 
The improvements achieved by object-based classification were higher for coniferous than for 
broadleaf trees (Figure 6(b)). This can be explained by differences in the crown form. Due to the 
conical shape of conifer crowns the sunlit regions are smaller and therefore more affected by mixed 
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pixels compared to broadleaf trees with rather spherical crowns. Scots pine differs from other conifers 
showing an intermediate crown form. For this reason, the increase in accuracy observed for this tree 
species was least among the conifers.  

As our tree crowns were usually covered only by a few 2 m pixels (multispectral), we could not 
take advantage of textural and/or n-dimensional co-variance information, as it is quite common in 
object-based classification. This approach proved already to be very efficient in physically-based 
retrievals of canopy LAI and other biophysical variables [68]. 

The performance of an object-based classification depends strongly on the quality of the segments. 
In this study, the crown delineation was done manually resulting in objects (i.e., tree crowns) that 
were ideally suited for classification. Reproducing this kind of delineation by using an 
automated segmentation algorithm is challenging but essential for an operational large-scale 
application of the method. The delineation of tree crowns can, for example, be done by auxiliary 3-D 
information [52,61,63,69–72], for example obtained from Canopy Height Models. Such datasets can 
either be derived from LiDAR data [52,61,69,71,73] or from the spectral images themselves [74] 
providing that they cover the area of interest stereoscopically. Other crown delineation approaches 
employ only spectral information and use different segmentation algorithms, such as (enhanced) 
watershed algorithms [75–77], multiresolution segmentation [11,63], or custom-built algorithms 
(e.g., [74,78–81]). A detailed overview of the different methods can be found for example in [82,83]. 
All studies use images with very high spatial resolution, preferably aerial photos. Therefore we expect 
that such approaches will also be suitable for WorldView-2 data that provide a panchromatic band with 
a pixel size of 0.5 m. The automatic tree crown delineation based on WorldView-2 data will be subject 
of further investigations. 

Also for the pixel-based approach a procedure has to be established that automatically separates 
crown and non-crown pixels properly either during or previous to classification. 

5.6. Comparison with Other Studies 

The accuracies obtained in this study are in line with or higher than the accuracies reported in 
comparable studies. Table 11 presents an overview of studies on tree species classification in 
temperate and boreal forests carried out within the last 10 years using data from sensors with different 
spatial and spectral resolution. The applied classification algorithms range from parametric methods, 
such as logistic regression and the widely-used maximum likelihood classification, to nonparametric 
methods such as Support Vector Machines. The overall accuracies, reported in the listed studies, range 
between 45% and 96%. The highest values were generally achieved by analyzing only a small number 
of tree species and/or by using additional input data (e.g., LiDAR). In our study, the 4 main tree 
species Norway spruce, Scots pine, European beech and English oak were correctly classified with an 
overall accuracy of about 95%. This result is significantly better than the results reported in similar 
studies with 4 or 5 tree species. Also the classification of 10 tree species with an overall accuracy of 
82% with RF and 84% with LDA respectively outperforms most of the other studies that included 
more than 5 tree species (Table 11).  
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Table 11. Results from tree species classifications in temperate and boreal forests with 
spectral remote sensing data using different sensors and classification methods from the 
last 10 years (ordered by the number of tree species and overall accuracy). 
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A M DMC Jun x ML OI 3 96 0.93 Picea abies, Pinus sylvestris & broadleaf trees [69]

A M DMC Oct  ML OI 3 91 0.87 Picea abies, Pinus sylvestris & broadleaf trees [69]

A M Wild RC 20 May & 
Jul  MD OI 3 91 0.86 Picea abies, Pinus sylvestris & Betula pendula [84]

A M DMC Oct  LDA OI 3 89 0.82 Picea abies, Pinus sylvestris & broadleaf trees [50]

A M ADS40-SH52 Aug  SVM OI 3 88 n.s. Pinus sylvestris, Picea abies & Betula sp. [85]

H M DCRTRV20 Oct  ML OS 3 87 n.s. Larix sp., Cryptomeria japonica, Fagus sp. [75]

A M DMC Jun  ML OI 3 84 0.76 Picea abies, Pinus sylvestris & broadleaf trees [69]

A M n.s. n.s. x DT OI 3 84 n.s. Fagus sylvatica, Quercus sp. / Carpinus betulus & conifers [73]

A M Wild RC 20 Jun  LDA OI 3 78 n.s. Picea abies, Pinus sylvestris & broadleaf trees [47]

A M DMC Sep  LDA OI 3 68 n.s. Picea abies, Pinus sylvestris & Betula sp. [52]

A M ADS40-SH52 Sep  ANN OI 4 84 0.73 Picea abies, Pinus sylvestris, Larix decidua & Betula sp. [61]

A M Wild RC30/4 Aug  DT OI 4 77 n.s. Picea abies, Pinus sylvestris, Betula pubescens & Populus tremula [86]

A M n.s. Aug  LDA OI 4 67 n.s. Picea abies, Pinus sylvestris, Betula pubescens & Populus tremula [49]

S M ASTER Apr & 
Jun  ACA OS 5 87 0.83 Picea abies, Pinus sylvestris, Pseudotsuga menziesii, Fagus sylvatica, & Quercus sp.  [87]

S M ASTER Apr & 
Jun  ML OS 5 82 0.77 Picea abies, Pinus sylvestris, Pseudotsuga menziesii, Fagus sylvatica, & Quercus sp. [87]

A M CASI Sep  ML OI 6 93 n.s. Pseudotsuga menziesii, Abies grandis, Abies amabilis, Thuja plicata, Tsuga heterophylla & 
hardwood [88]

A M ATM Oct  ML OI 6 84 0.79 Fraxinus excelsior, Quercus robur, Acer campestre, Betula pendula, Populus tremula & Ulmus 
minor [89]

A M ATM Mar, Jul 
& Oct  ML OI 6 71 0.63 Fraxinus excelsior, Quercus robur, Acer campestre, Betula pendula, Populus tremula & Ulmus 

minor [89]

A H AISA Jul x NN OI 6 57 n.s. Pinus strobus, Picea glauca, Gleditsia triacanthos, Acer saccharum, Tilia Americana & 
Quercus palustris [63]

A H AISA Jul  NN OI 6 48 n.s. Pinus strobus, Picea glauca, Gleditsia triacanthos, Acer saccharum, Tilia Americana & 
Quercus palustris [63]

A H AISA Oct  NN OI 6 45 n.s. Pinus strobus, Picea glauca, Gleditsia triacanthos, Acer saccharum, Tilia Americana & 
Quercus palustris [63]

S M IKONOS Jun  ML P 7 86 0.84 Pinus sylvestris, Pinus nigra subsp. Laricio, Larix decidua, Pseudotsuga menziesii, Fagus 
sylvatica, Fagus sylvatica purpure & Quercus sp. [60]

A H AISA Jul x SVM OI 7 83 0.77 Picea abies, Abies alba, Pinus mugo, Pinus sylvestris, Larix decidua, Fagus sylvatica, & other 
broadleaf (& non forest) [27]

S M IKONOS May  ML PA 7 77 0.73 Pinus rigida, Pinus koraiensis, Larix leptolepis, Quercus mongolica, Quercus variabilis, 
Quercus acutissima & Castanea crenata [90]

A M ADS40-SH40  
& RC30 Sep  ANN OI 7 76 0.70 Picea abies, Pinus sylvestris, Abies alba, Larix decidua, Fagus sylvatica, Fraxinus excelsior, 

Acer sp., Alnus sp., & Betula sp. [61]

A H MIVIS Jul  ML OI 7 75 0.67 Pinus sp., Castanea sativa, Alnus sp., Salix sp., Populus sp., Quercus sp. & Alien species [91]

A H AISA Jul  SVM OI 7 74 0.66 Picea abies, Abies alba, Pinus mugo, Pinus sylvestris, Larix decidua, Fagus sylvatica, & other 
broadleaf (& non forest) [27]

A M DMC Aug  LR OI 8 88 0.86 Picea abies, Pinus sylvestris, Acer sp., Fagus sp., Fraxinus sp., Populus sp., Salix sp. &  
Quercus sp. [62]

A H AISA Jul  SVM P 11 n.s. 0.75 
Picea abies, Pinus sylvestris, Pinus mugo, Abies alba, Larix decidua, Fagus sylvatica, 
Fraxinus excelsior, Acer pseudoplatanus, Ostrya carpinifolia, Quercus petraea, Ulmus glabra 
(& non forest) 

[92]

A H AISA Jul x SVM OI 11 74 0.60 
Abies grandis, Thuja plicata, Pseudotsuga menziesii, Tsuga heterophylla, Pinus contorta, 
Populus balsamifera, Populus tremuloides, Alnus rubra, Acer macrophylum, Quercus 
garryana & Arbutus menziesii, 

[64]

A H AISA Jul  SVM OI 11 72 0.60 
Abies grandis, Thuja plicata, Pseudotsuga menziesii, Tsuga heterophylla, Pinus contorta, 
Populus balsamifera, Populus tremuloides, Alnus rubra, Acer macrophylum, Quercus 
garryana & Arbutus menziesii,  

[64]

S M GeoEye-1 Sep  SVM P 11 n.s. 0.51 
Picea abies, Pinus sylvestris, Pinus mugo, Abies alba, Larix decidua, Fagus sylvatica, 
Fraxinus excelsior, Acer pseudoplatanus, Ostrya carpinifolia, Quercus petraea, Ulmus glabra 
(& non forest) 

[92]

S M IKONOS Jul  ML P 16 58 0.50 

Abies concolor, Abies magnifica, Juniperus occidentalis, Pinus albicaulis, Pinus contorta, 
Pinus jeffreyi, Pinus monticola, Tsuga mertensiana, Populus tremuloides, Alnus incana, 
Arctostaphylos patula, Artemesia tridentate, Ceanothus cordulatus, Ceanothus velutinus, 
Quercus vaccinifolia, Salix sp. (& 3 grass species; results without class ‘water’) 

[39]

1 A: Airplane, H: Helicopter, S: Satellite; 2 H: Hyperspectral, M: Multispectral; 3 Additional information for the tree species classification; 4 ACA: Adaptive Classification 
Approach, DT: Decision Tree, LDA: Linear Discriminant Analysis, LR: Logistic Regression, MD: Minimum Distance, ML: Maximum Likelihood, NN: Nearest Neighbor, 
ANN: Artificial Neural Network, SVM: Support Vector Machine; 5 OI: object-based classification of individual trees or clusters of some trees, OS: object-based classification 
of stands, P: pixel-based classification, PA: pixel-based classification and aggregation of classified pixels to objects; 6 n.s: not specified. 

We assume that the reasons for our relatively high classification accuracies were the spectral and 
spatial properties of the WorldView-2 sensor being very suitable for the task of tree species 
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classification. Besides, the large sample size per class certainly had a positive impact on the 
classification results. Furthermore, we suppose that considering only the sunlit regions of the tree 
crowns in the classification process, as demonstrated also for other sensors [38,39,61,86], significantly 
contributed to high classification accuracies. In this way, the within-species spectral variability was not 
increased by varying illumination conditions within the tree crown. Finally, as we delineated the 
crowns manually, very accurate object boundaries were obtained. By this, the fusion of neighboring 
tree crowns in the reference polygons was avoided to a great extent resulting in almost unmixed 
reference samples. 

6. Conclusion 

The study focused on the suitability of single-date WorldView-2 data for tree species mapping at 
crown level in a mid-European forest test site located in Austria. For testing the sensor’s potential in 
forest mapping, a large number of individual tree crowns from 10 tree species were manually 
delineated. The retrieved spectral signatures were analyzed with the Random Forest (RF) classifier. 
For comparison the parametric Linear Discriminant Analysis (LDA) was also tested.  

With an overall accuracy of 82% (RF, object-based, 10 tree species, 8 bands) we could demonstrate 
the high potential of WorldView-2 data for tree species mapping. The four new (additional) bands 
proved to be useful for classifying the full set of (10) tree species. However, the added-value of the 
new bands was species-dependent. Achieving improvements in user’s accuracy of 8 percentage points 
and higher, some tree species, such as Douglas fir and European larch, were much better separated 
with 8 bands, compared to the sole use of the 4 standard bands. For other tree species, such as Scots 
pine, European beech, Silver birch, and European alder, the improvements were only marginal (below 
2 percentage points). As the 4 additional bands double the already very high (4-band) WorldView-2 
data costs, users need to evaluate carefully, if the 4 new bands are beneficial in relation to the extra costs.  

A few tree species showed significantly lower producer’s and user’s accuracies than the other 
species. For European hornbeam, for example, the user’s accuracy was only 57% (RF, object-based, 10 
tree species, 8 bands), while for 8 of the 10 tree species it was 80% and higher. The relatively low 
accuracies were obtained despite the fact that the full spectral resolution of the WorldView-2 sensor 
was used and that the shadow effects were minimized by focusing only on the sunlit parts of the tree 
crowns. The observed spectral overlap is the result of the many structural and biochemical/biophysical 
variables determining the tree reflectance. This can yield similar spectral signatures with quite 
different combinations of structural and biochemical/biophysical properties. Perhaps, additional bands 
in the SWIR (reflectance spectra) or the TIR (emissivity spectra) would be needed for a better 
discrimination of these species. Hence, the WorldView-3 satellite, launching in 2014, with 8 new 
SWIR bands may improve the capabilities for tree species mapping. Alternatively, temporal and/or 
directional signatures could be analyzed in addition to the spectral data. Both additional dimensions are 
in principle obtainable from WorldView-2 data, but were not available for the present study. 

RF and LDA can be considered representative and state-of-the-art classifiers for non-parametric and 
parametric algorithms. Both algorithms were similarly effective for the classification purpose. The 
main advantage of LDA is its straightforward interpretability. On the other hand, RF is probably more 
robust and theoretically more flexible regarding intra-class data distributions. In addition, the Mean 
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Decrease in Accuracy (MDA) criterion, delivered as an output of RF, proved to be very efficient for 
feature selection. It performed slightly better than the corresponding metrics from LDA (Mean 
Discriminant Function Coefficient, MDFC) to identify the best 4-band combination out of all available 
8 bands. The overall accuracy (RF, object-based, 10 tree species) that was achieved with the 4-band 
combination identified by MDA was only 1.5 percentage points lower than that achieved with the best 
4-band combination. For this reason we recommend RF for similar studies and MDA for feature 
selection. 

Our study clearly demonstrated the utility of deriving tree species related statistics reflecting the 
ambiguity of the class assignment. Benefits of such statistics were demonstrated for identifying 
possible misclassifications and outliers (e.g., erroneous and/or questionable references samples). Maps 
were produced indicating the unambiguity of the class assignment for each individual tree crown. 
Through field verification the usefulness of this quality measure was confirmed. Research in this 
direction should be continued. 

Following a range of similar studies, our study focused on an object-based approach, where 
the pixel spectra within a delineated tree crown were averaged before analysis. For comparison, also 
pixel-based classification was tested and we could confirm the superiority of the object-based 
approach. We attribute the significant increase in overall accuracy of up to 10 percentage points (RF, 
10 tree species, 8 bands) to the fact that the negative impact of mixed pixels was minimized by 
averaging the individual (pixel) signatures over the area covered by the sunlit tree crown. This 
interpretation is supported by the fact that the accuracy increase was most noticeable for conifers 
having relatively small sunlit regions per crown due to the conical shape of the crown. Small sunlit 
crown regions increase the risk of selecting mixed pixels affected by shadow effects. For similar 
studies, we therefore recommend object-based approaches. 

As the WorldView-2 satellite was launched only in 2009, studies employing this new sensor for 
vegetation analysis are still rare. Only little information about the benefits and limitations of the 8 
spectral bands are available. With this study we could contribute to fill this gap regarding tree species 
mapping. Our findings and conclusions refer to regions with forest conditions comparable with those 
in the presented study. Without additional studies, the results cannot be generalized. Further studies 
that cover different vegetation types within diverse bio-geographical settings are needed to confirm the 
potential of WorldView-2 data for tree species classification in other environments.  
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