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Abstract: MODerate Resolution Imaging Spectroradiometer (MODIS) aerosol retrievals 
over the North Atlantic spanning seven hurricane seasons are combined with the Statistical 
Hurricane Intensity Prediction Scheme (SHIPS) parameters. The difference between the 
current and future intensity changes were selected as response variables. For 24 major 
hurricanes (category 3, 4 and 5) between 2003 and 2009, eight lead time response variables 
were determined to be between 6 and 48 h. By combining MODIS and SHIPS data, 56 
variables were compiled and selected as predictors for this study. Variable reduction from 
56 to 31 was performed in two steps; the first step was via correlation coefficients (cc) 
followed by Principal Component Analysis (PCA) extraction techniques. The PCA reduced 
31 variables to 20. Five categories were established based on the PCA group variables 
exhibiting similar physical phenomena. Average aerosol retrievals from MODIS Level 2 
data in the vicinity of UTC 1,200 and 1,800 h were mapped to the SHIPS parameters to 
perform Multiple Linear Regression (MLR) between each response variable against six 
sets of predictors of 31, 30, 28, 27, 23 and 20 variables. The deviation among the 
predictors Root Mean Square Error (RMSE) varied between 0.01 through 0.05 and, 
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therefore, implied that reducing the number of variables did not change the core physical 
information. Even when the parameters are reduced from 56 to 20, the correlation values 
exhibit a stronger relationship between the response and predictors. Therefore, the same 
phenomena can be explained by the reduction of variables. 

Keywords: Atlantic hurricane; dust aerosol; humidity; optical depth; MODIS; SHIPS; 
intensity change 

 

1. Introduction 

Hurricane forces cause enormous natural disasters. Fortunately, the destruction capacity can be 
predicted ahead. Satellite measurements for hurricanes and the vast amount of data gathered by 
hurricane hunters; enable us to measure the force and to track hurricanes. National Oceanic and 
Atmospheric Administration (NOAA) hurricane hunter [1] airplanes fly directly into the hurricane eye 
to collect important data about the hurricane. Based on the wind speed, pressure and humidity received 
by the airplane, forecasters can explain whether the hurricane is weakening or intensifying. Factors 
such as vertical wind shear [2–5], atmospheric moisture [6,7], air temperature [6], sea surface 
temperature [8,9] and dust aerosols [6,7,10] may also impact the intensity [11,12] of the hurricane after 
it has formed. To sustain a strong hurricane, water temperature above 80°F and warm water depths of 
150 feet are needed while strong vertical shear in the atmospheric horizontal winds around the 
hurricane dampen its force [1]. Extremely dry conditions in the mid-atmosphere may act as an agent of 
taming hurricane force as well [6,10]. Also, Houze et al. [13] reported the dynamics of the internal 
structure of the vortex are responsible for hurricane intensity changes, and they suggested 
improvements on physical understanding in forecasting hurricane intensity modeling of the internal 
structure of the vortex. 

Satellite observations, hurricane hunters’ data collection and numerical weather predictions have 
advanced the forecasting of hurricane tracks over the last few decades. However, there have been 
limited improvements in forecasting hurricane intensity [1,14]. Among the models used in the National 
Hurricane Center (NHC) for hurricane intensity forecasting, the Statistical Hurricane Intensity Prediction 
Scheme (SHIPS) model is known as the most trusted in regard to intensity forecast models [15] based on 
the 2011 National Hurricane Center Forecast Verification Report. SHIPS database provides values of 
parameters related to Tropical Cyclones (TC), but there is a lack of information on dust aerosols which 
also affect hurricane intensity. 

Rosenfield et al. [7,16] described the relationship between the intensity change and the sum of 
anthropogenic aerosols which was calculated as the Aerosol Optical Thickness (AOT) for black carbon 
(BC), organic carbon (OC), dust (DU) and sulfate (SU). The sum of DU, BC and OC is called 
“Pollution” while and Total AOT (TAOT) as the sum of DU, BC, OC and SU [16]. Although studies 
demonstrated the roles of both the SHIPS parameters, aerosol related parameters on the TC intensity 
changes, the combining roles is not commonly investigated. In his study, the response variable 
(intensity change) was examined against the “pollution” and “TAOT” [16] and CCNO [7]. Zhang et al. 
proposed a new physical mechanism by conducting simulations with CCN added at the periphery of a 
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TC to demonstrate large amounts of CCN can influence the eyewall development [17]. Zipser et al. 
discussed an improved understanding of the linkage between AEWs, the SAL, and tropical 
cyclogenesis by pointing out (a) the difference between AEWs that develop into TCs and those that do 
not (b) the fate of the AEW by the roles of SAL and (c) vertical distribution, microphysical and optical 
properties characteristics in composition of the African dust [18]. Gao et al. [19] studied the influence 
of air pressure, temperature, relative humidity, and wind velocity on predicting air pollution from 
MODIS AOT data without employing SHIPS parameters. Braun, S.A. [20] concluded that the Saharan 
Air Layer (SAL) is just one of many possible influences and can be both positive and negative and 
emphasized that aerosol is not the major negative influence on hurricanes. Khain et al. [21] came up 
with an additional mechanism which is related to the TC circulation and described that aerosols 
significantly affect the spatial distribution of cloudiness and hydrometeor contents. It is imperative to 
know the intensity change of the hurricane force in advance based on temperature, moisture, vertical 
shear as well as aerosol retrievals. In this paper, therefore, we focused on the important relationship 
based on analyzing hurricane intensity change records and the combination of MODIS aerosol 
retrievals and SHIPS parameters over the North Atlantic spanning several hurricane seasons.  

The combination of SHIPS [22–24] and MODIS [25,26] variables created a large set of variables. It 
is difficult to clearly explain the physical processes with such a large number of variables. Therefore, a 
reduction of variables in two steps (1) Correlation Coefficients (cc) and (2) Principal Component 
Analysis (PCA) is introduced. Step 1 is a selection process for screening. The idea of step 2 is to 
describe the same meaningful physical phenomena by a smaller set of derived variables which will be 
linear combinations of the original variables. Reducing the number of variables may lead to some loss 
of original information of the dataset. However, PCA makes this loss minimal and will present a 
precise meaning without losing original information. 

2. Data Source 

In December 1999, a new generation multi-spectral satellite (Terra, EOS AM-1) was launched 
carrying the first MODIS sensor. The second MODIS sensor was launched on the Aqua (EOS PM-1) 
platform on May 2002. Both MODIS sensors onboard Terra and Aqua platforms have been used to 
monitor the environment continuously in a wide range of spectral frequencies from the blue to the 
thermal infra-red range. MODIS is an exceptional source for monitoring the Earth’s water cycle and 
environment as both Terra and Aqua satellites have a sun-synchronous orbit at 705 km height. Aqua in 
ascending mode crosses the equator daily at 1:30 p.m. while Terra, in descending mode, crosses the 
equator at 10:30 a.m. daily [27]. 

The MODIS aerosol product measured over the ocean [28,29] is retrieved based on an algorithm for 
the remote sensing of tropospheric aerosol, and it is different from the aerosol over land [30]. MODIS 
observed reflectances were matched to a lookup table of pre-computed reflectances for a wide range of 
normally observed aerosol conditions for both algorithms [30].  

The reflectance is calculated from the geometry pertaining to the state of the ocean [31]. Better 
ocean surface characterization enables [31] the use of reflectances at seven wavelengths (0.47, 0.56, 
0.65, 0.86, 1.24, 1.64, and 2.13 µm) in the retrieval algorithm. The retrieved aerosol products are then 
represented by the best fit between observed reflectance and the lookup table [31]. 
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Aerosol measurements from MODIS over the oceans, such as aerosol optical thickness and aerosol 
size distribution can be retrieved from the daily Level 2 data at the spatial resolution of a 10 km × 10 km 
pixel array at nadir from MODIS Atmospheric Product website [25]. These Level 2 aerosol data 
products, MOD04_L2 and MYD04_L2 [31] are collected from the Terra and Aqua platforms 
respectively [32]. 

SHIPS data was collected based on DeMaria et al. [22–24] and data files can be found via the 
Internet [33]. SHIPS model combines climatology, atmospheric environmental parameters, and sea 
surface temperature as its predictors to forecast intensity changes using a multiple regression  
scheme [16]. 

The National Hurricane Center (NHC) of National Weather Service (NWS) issues public advisories 
for Atlantic tropical cyclones every six hours. Based on the NHC website [34], Table 1 was compiled 
to describe the anatomy of the twenty four selected hurricanes between the years 2003 and 2009. The 
time frame for this selection was chosen for example only. Spatial and temporal data for all hurricanes 
were collected focusing on the hurricane center while it is moving towards the west and north-west 
above the ocean. Hurricanes near landfall were not in the scope of this study. 

Table 1. Twenty four hurricanes selected between 2003 and 2009 based on the category 3, 
4 and 5 and their lifespan. 

Year CAT Hurricane Life Span 
Wind Speed

(mph) 
Pressure 

(mb) 
Start 

[LAT LON] 
End 

[LAT LON] 
2003 4 Fabian  27 Aug–8 Sep 125  939 14.60–31.50 49.80–39.20 
2003 5 Isabel  6–19 Sep 140 920 14.00–34.00 42.00–80.70 
2003 3 Kate 25 Sep–7 Oct 110 952 11.70–38.30 49.30–45.80 
2004 3 Alex  31 Jul–6 Aug  105 957 30.60–78.60 47.50–34.60 
2004 4 Charley  9–15 Aug  124 941 11.70–61.10 43.00–69.00 
2004 4 Frances  25 Aug–9 Sep 125 935 11.20–36.00 41.40–79.40 
2004 5 Ivan  2–24 Sep  145 910 9.70–29.10 31.00–94.90 
2004 3 Jeanne  13–28 Sep  110 985 16.00–60.40 37.00–80.30 
2004 4 Karl  16–24 Sep 120 938 11.40–32.80 47.30–40.40 
2005 4 Dennis  5–13 Jul  130 930 12.50–63.10 38.60–86.80 
2005 4 Emily  11–21 Jul  135 929 10.80–42.90 25.00–101.20 
2005 5 Katrina  23–31 Aug  150 902 23.20–75.50 41.10–81.60 
2005 3 Maria  1–10 Sep  100 960 19.00–46.10 43.60–38.60 
2005 5 Rita  18–26 Sep  150 897 22.00–69.70 40.80–86.80 
2005 5 Wilma  15–25 Oct  150 882 17.60–78.80 41.70–62.80 
2006 3 Gordon  11–20 Sep 105 955 20.20–54.50 39.20–16.60 
2006 3 Helene  12–24 Sep 105 954 12.50–23.00 40.90–37.50 
2007 5 Dean  13–23 Aug  145 918 12.00–31.60 20.50–100.00 
2007 5 Felix  31 Aug–5 Sep  145 929 11.80–58.60 14.00–87.00 
2008 3 Bertha  3–20 Jul  105 948 12.60–22.70 51.30–35.70 
2008 4 Gustav  25 AUG–04 Sep 130 941 15.50–70.10 35.60–93.20 
2008 4 Ike  1–14 Sep  125 935 17.60–39.50 36.40–92.50 
2009 4 Bill  15–24 Aug  115 945 11.50–34.00 48.60–50.20 
2009 3 Fred  7–12 Sep  105 958 12.50–24.50 17.70–33.70 
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Table 2 has the selected aerosol retrievals (over the ocean only) for the MOD04_L2 and 
MYD04_L2 Scientific Data Set (SDS), List of Collection 051 [28]. 

Table 2. MODerate Resolution Imaging Spectroradiometer (MODIS) Aerosol retrievals. 

Description Name 

Effective Optical Depth Best Ocean AOT 

Mass Concentration for Best and Average Solutions MCO 

Effective Radius of Both Solutions at 0.55 µm ERO 

Column Number of Cloud Condensation Nuclei (CCN) of Both Solutions at 0.55 µm CCNO 

Asymmetry Factor for Best Solution 1 AFBO 

Backscattering Ratio of Best Solution 1 BRBO 

Mean Reflectances 1 MRO 

1 at 7 bands 0.47, 0.55, 0.66, 0.86, 1.24, 1.63, and 2.13 µm. 

3. Methodology 

Pixels close to the hurricane center are usually covered by clouds, making it impossible to retrieve 
AOT with MODIS measurements. Thus, for this study, a unique technique was developed to select 
spatial coordinates to investigate aerosol retrievals as shown in Table 2 around each hurricane. Two 
concentric circles with radii r1 and r2, as shown in Figure 1(a), were drawn with a common center. 
These circles were drawn to be approximately at the hurricane eye. The spatial regions for this analysis 
were chosen between the two concentric circles called an annulus. The concentric circle annulus 
thickness can be adjusted by varying the radii r1 and r2. In this study r1 and r2 were selected as 8 and 5 
degrees respectively to produce a ring with 3 degrees annulus size. The selected region is far away 
from the center of the hurricane, but still around the hurricane edge, and can generate enough valid 
remote sensing measurements for analysis. 

Figure 1. (a) MODIS data was collected within the annulus of the two concentric circles 
with radii r1 and r2. (b) Data collection following the motion of a hurricane (for example). 

 
(a) (b) 
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The phenomena being investigated are three-dimensional in case of the variables such as Relative 
Humidity and Temperature where data is available between sea level and top of the atmosphere 
(between 100 to 1,000 mb). Vertical Shear and Wind are also three-dimensional phenomena. Although 
the MODIS sensor on both the Aqua and Terra satellites provides a measure of the vertically integrated 
dust concentration [20], the vertical distribution of the dust frequency was not considered in this study. 
In this study we selected MODIS Atmospheric retrievals as two-dimension at seven wavelengths (0.47, 
0.56, 0.65, 0.86, 1.24, 1.64, and 2.13 µm), therefore, circles were used instead of spheres. Therefore, 
for this investigation of aerosol, retrievals around a hurricane that involves “concentric circles” with 
the hurricane eye is appropriate.  

We investigated whether the 3 to 4 degrees of annulus size would be an appropriate spatial 
coordinate selection process because aerosol parameters were retrieved around each hurricane by 
following the direction of motion of a hurricane. Since linear motion of a hurricane is very slow, for 
example a hurricane’s forward speed averages around 15–20 mph [35], selecting a large annulus size 
would mostly overlap the spatial region while retrieval happens every day at 1,200 and 1,800 h. Again, 
selecting a narrow annulus size such as 1 to 2 degrees would introduce significant error while 
averaging the values within the annulus. Therefore, 3 degrees is the best selection for this study. 

MODIS aerosol data at 0.55 µm was averaged in the vicinity of 1,200 and 1,800 h and associated 
with the corresponding SHIPS data at 1,200 and 1,800 for each day. This technique was employed on a 
spatial area for studying all 24 hurricanes between the day they formed and the day they dissipated. 
The center of the concentric circle corresponds to the approximate location of the hurricane core. The 
angle within this region was spaced out into 36 segments of 10° each. Data for each 10° segment was 
retrieved and averaged resulting 36 data points at a particular time and date. The readings from these 
36 segments were then further averaged to present a final average to demonstrate the values between 
0° and 360°. For this analysis, this concentric circles center was programmed to move with the 
hurricane center for 1,200 and 1,800 h.  

Aerosol retrieval variables (Table 2) were retrieved around each hurricane by following the 
direction of motion of a hurricane as illustrated in Figure 1(b).The response variables “Future 
Difference (FD) or Intensity Change” has been calculated based on the following formula: FDfuture = 
VMAXfuture − VMAXcurrent, for example, FD06 = VMAX06 − VMAXcurrent, where VMAX is the 
maximum 1-min wind speed. Similarly, FD12, FD18, FD24, FD30, FD36, FD42 and FD48 are calculated. 
We started our analysis by combining the 49 SHIPS parameters from DeMaria et al. [22–24] with the 
7 aerosol retrievals as shown in Table 2. Correlation analysis was performed for the intensity change 
lead time at 06, 12, 18, 24, 30, 36, 42 and 48 h (which are basically the eight response variables 
between FD06 and FD48). For each FDfuture set, correlation analysis will be performed with each of the 
56 variables to determine the correlation coefficient (cc) between each variable and the FDfuture. 
Variables having small correlation (|cc| < 0.165) were filtered out. These correlation based filtering 
create the first set of predictor, Predictor_1 which comprised 31 variables. 

As the second step of data reduction, PCA is carried out on selected variable groups. The reduction 
of variables for each group by PCA is described in Table 3. Prior to carrying out PCA on the five 
categories, variables were normalized to avoid skewness caused by units of the variables. 
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Table 3. Reduction of Variables by Principal Component Analysis (PCA). 

Category Variables before PCA Variables after PCA 

Aerosol AOT MCO CCNO Aero-PC1 Aero-PC2 

Wind V20C U200 U20C TWAC TWXC Wind-PC1 Wind-PC2 Wind-PC3  

Relative Humidity RHLO RHMD R000 RH-PC1 RH-PC2 

Shear 
SDDC SHDC SHGC SHRD SHRG SHRS SHTD 

SHTS 
Shear-PC1 Shear-PC2 Shear-PC3 Shear-PC4 

Temperature SST T250 T200 RD20 ENEG ENSS Temp-PC1 Temp_PC2 Temp-PC3 

PCA is known as a variable reduction procedure and is useful when variables are significantly 
correlated. In each group, the variables describe the same physical mechanisms. The numbers of some 
group variables were shrunk to a reduced number of principal components. Although the details may 
be different among variables, their overall trends are the same based on their values. Therefore, using 
PCA to identify a reduced number of variables in the same group is a natural step. In this case, AOT, 
MCO, CCNO variables reduced to Aero-PC1 and Aero-PC2 for the Aerosol group and presented in the 
combination as Predictor_2. Similarly, for the Wind group, V20C U200 U20C TWAC TWXC are 
reduced to Wind-PC1 Wind-PC2 Wind-PC3 and presented as a combination of Predictor_3. 

There will be some loss of information when a variable reduction was performed, therefore, when 
this technique was applied we made sure to select group of variables which exhibit similar physical 
phenomena to minimize loss of information. We have analyzed MODIS aerosol retrievals and SHIPS 
parameters for 24 hurricanes spanning 7 hurricane seasons. By combining MODIS and SHIPS data, 56 
variables were compiled and selected as predictors. Variable reduction from 56 to 31 was performed 
via correlation coefficients. Among these 31 variables, some are highly correlated or “redundant” with 
one another. For example, Sea Surface Temperature, Air Temperature and Ocean depth of the (20 and 
26 °C) isotherm for the Temperature group are usually very strongly correlated. Therefore, one or two 
of these variables or the combination of the variables (potentially for a newly defined, more 
representative variable) could be used as a substitution for all the others. For our study we selected the 
variable which is most likely to be the direct cause of categorical response and relevant to the 
hurricane intensity studies and of course highly correlated.  

Identification and comparison of the impact of our approach on uncorrelated and correlated 
variables described in Table 4 by considering, for example, Aerosol and Temperature components. 
Among the original set of Aerosol variables (AOT AFBO BRBO MRO MCO ERO CCNO) only 
(AOT MCO CCNO) were highly correlated. We have excluded (AFBO BRBO MRO ERO) variables 
because they were not correlated as highly as (AOT MCO CCNO). Similarly, the original temperature 
set of variables was (E000 EPOS EPSS T000 RD26 T150 SST T250 T200 RD20 ENEG ENSS) and 
only (SST T250 T200 RD20 ENEG ENSS) were highly correlated. Uncorrelated variables (E000 
EPOS EPSS T000 RD26 T150) were excluded from this analysis. For comparison we performed PCA 
on both correlated and uncorrelated variables followed by Multiple Linear Regression (MLR) by the 
Predictor_2 and Predictor_6 at FD48 and presented in the Table 4.  
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Table 4. Multiple Linear Regression (MLR) results for uncorrelated aerosol and 
temperature variables. 

Response  Predictors R2 Adjusted R2 F value RMSE Residual Error 

FD48 

Uncorr_Predictor_2 64.80% 60.90% 16.85 20.43 417.30 

Corr_Predictor_2 65.00% 61.10% 17.00 20.37 414.90 

Uncorr_Predictor_6 63.40% 60.80% 24.69 20.45 418.00 

Corr_Predictor_6 63.70% 61.20% 25.02 20.36 415.00 

When comparing the results we see for Predictor_2 and Predictor_6, R2, Adjusted R2 and F Values 
had decreased for uncorrelated case while RMSE had creased increased. This illustrated that 
uncorrelated variables had lost more information than the correlated variables. 

Figure 2. Average root mean square error (RMSE) for each future difference (FD). 

 

For the Relative Humidity group, RH-PC1 RH-PC2 principal components were extracted from the 
variables RHLO RHMD R000 and presented as Predictor_4. Predictor_5 and Predictor_6 were 
presented similarly for the Shear and Temperature groups. For each predictor the combination of 
variables along with the principal components are shown in Table 5. The PEFC REFC Z850 PENC 
MSLP PSLV was excluded from PCA because they described diverse physical processes. The PCA 
technique can only produce outcomes with very limited benefits from such a data set.  

The average RMSE for the six Predictors for 06, 12, 18, 24, 30, 36, 42 and 48 h was found to be 
8.33, 12.28, 14.76, 16.27, 17.96, 19.28, 19.69 and 20.38 respectively as illustrated in Figure 2. The 
RED line is the logarithmic fit for the eight data points showing significant R2 value. The variation 
among the Predictors RMSE varied between 0.01 through 0.05. This small variation suggests that 
reducing the number of variables did not change the core physical information. Therefore, the same 
phenomena can be explained by the reduction of a variable. 
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Table 5. Reduction of variables.  

Predictor 
Set Name 

Variable Set Action Performed 

Original Set 

MSLP INCV SST DTL PHCN U200 U20C V20C E000 EPOS 
ENEG EPSS ENSS RHLO RHMD RHHI PSLV Z850 D200 REFC 
PEFC T000 R000 Z000 TWAC TWXC PENC SHDC SDDC SHGC 
DIVC T150 T200 T250 SHRD SHTD SHRS SHTS SHRG PENV 

VMPI VVAV VMFX VVAC IR00 IRM3 RD20 RD26 RHCN AOT 
AFBO BRBO MRO MCO ERO CCNO 

From the 56 variables, less 
correlated predictors (|cc|<=0.165) 

were filtered out to present 
Predictor_1 (31 variables) 

Predictor_1 

AOT MCO CCNO PENC V20C MSLP PEFC PSLV U200 U20C 
Z850 REFC RHLO RHMD R000 SDDC SHDC SHGC SHRD 

SHRG SHRS SHTD SHTS SST T250 TWAC TWXC T200 RD20 
ENEG ENSS 

PCA on AOT MCO CCNO to 
reduce them into Aero-PC1 Aero-

PC2 make Predictor_2 (30 
variables) 

Predictor_2 

Aero-PC1 Aero-PC2 PENC V20C MSLP PEFC PSLV U200 U20C 
Z850 REFC RHLO RHMD R000 SDDC SHDC SHGC SHRD 

SHRG SHRS SHTD SHTS SST T250 TWAC TWXC T200 RD20 
ENEG ENSS  

PCA on V20C U200 U20C TWAC 
TWXC to reduce them into Wind-
PC1 Wind-PC2 Wind-PC3 make 

Predictor_3 (28 variables) 

Predictor_3 

Aero-PC1 Aero-PC2 Wind-PC1 Wind-PC2 Wind-PC3 PENC MSLP 
PEFC PSLV Z850 REFC RHLO RHMD R000 SDDC SHDC SHGC 

SHRD SHRG SHRS SHTD SHTS SST T250 T200 RD20 ENEG 
ENSS 

PCA on RHLO RHMD R000 to 
reduce them into RH-PC1 RH-PC2 

Predictor_4 (27 variables) 

Predictor_4 

Aero-PC1 Aero-PC2 Wind-PC1 Wind-PC2 Wind-PC3 PENC MSLP 
PEFC PSLV Z850 REFC RH-PC1 RH-PC2 SDDC SHDC SHGC 
SHRD SHRG SHRS SHTD SHTS SST T250 T200 RD20 ENEG 

ENSS 

PCA on SDDC SHDC SHGC 
SHRD SHRG SHRS SHTD SHTS 

to reduce them into Shear-PC1 
Shear-PC2 Shear-PC3 Shear-PC4, 

Predictor_5 (23 variables)  

Predictor_5 
Aero-PC1 Aero-PC2 Wind-PC1 Wind-PC2 Wind-PC3 PENC MSLP 
PEFC PSLV Z850 REFC RH-PC1 RH-PC2 Shear-PC1 Shear-PC2 

Shear-PC3 Shear-PC4 SST T250 T200 RD20 ENEG ENSS 

SST T250 T200 RD20 ENEG 
ENSS reduce to Temp-PC1 

Temp_PC2 Temp-PC3 make 
Predictor_6 (20 variables). 

Predictor_6 
Aero-PC1 Aero-PC2 Wind-PC1 Wind-PC2 Wind-PC3 PENC MSLP 
PEFC PSLV Z850 REFC RH-PC1 RH-PC2 Shear-PC1 Shear-PC2 

Shear-PC3 Shear-PC4 Temp-PC1 Temp_PC2 Temp-PC3 
 

Each parameter used in this Table 4 is provided in the Appendix based on [33]. 

4. Results and Discussion  

As shown in Table 6 PCA for AOT, MCO and CCNO the cumulative results explain the variability 
for the first two components as 80.4% and 98.4%. For V20C U200 U20C TWAC TWXC, the top three 
principal components demonstrate a variability of 52.8%, 82.8% and 98.4%. When PCA was 
performed on RHLO RHMD R000, we have the cumulative variability for the first two components as 
66.67% and 95.20%. PCA for SDDC SHDC SHGC SHRD SHRG SHRS SHTD SHTS gives 
variability for the four components as 50.7%, 72.0%, 81.4% and 88.8%. For SST T250 T200 RD20 
ENEG ENSS, PCA results give variability for the first three components as 58.5%, 76.1% and 91.2%. 

Dimensionality reduction infers loss of information; therefore, the goal is to preserve as much 
information as possible by minimizing difference between the higher (original) and lower dimensional 
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variables representation. One of the commonly used methods to determine lower dimensional variables 
is the principal component analysis (PCA), in which the principal components, linear combination of 
the originals, ranked based on the contribution to the total variance, are chosen as new variables. The 
first few new variables are responsible for interpreting most of the physical phenomena described by 
the original variables that have been reduced. 

Table 6. Principal components for Aerosol, Wind, Relative Humidity, Vertical Shear and 
Temperature. 

Category Component Cumulative % Variability 

Aerosol  
Aero-PC1 80.40% 
Aero-PC2 98.40% 

Wind 
Wind-PC1 52.80% 
Wind-PC2 82.80% 
Wind-PC3 98.40% 

Relative Humidity 
RH-PC1 66.67% 
RH-PC2 95.20% 

Vertical Shear 

Shear-PC1 50.70% 
Shear-PC2 72.00% 
Shear-PC3 81.40% 
Shear-PC4 88.80% 

Temperature 
Temp-PC1 58.50% 
Temp-PC2 76.10% 
Temp-PC3 91.20% 

Two Aerosol principal components explain 98.4% (loss = 1.6%) variability when variable reduction 
happened from three to two. For Wind, five variables were reduced to three principal components 
which resulted in a cumulative variability of 98.4% (loss = 1.6%). When PCA was performed on three 
Relative Humidity variables, it gave us cumulative variability for the two principal components as 
95.20% (loss = 4.8%). PCA for eight Shear variables gives variability for the four reduced components 
as 88.8% (loss = 11.2%). Six Temperature variables were reduced to three components with 91.2% 
(loss = 8.8%) cumulative variability. 

Reducing the variables does not always lead to a better result, but it is expected that the result 
should be comparable to that with original variables. Reduction of variables removes irrelevant 
features and dampens noise; it also leads to more comprehensible model because the model involves 
fewer variables [36].  

For the aerosol category the first two components have the proportionality of 0.80 and 0.18 
respectively. Most of the weight is on the Aero-PC1 component which is about four times larger than 
Aero-PC2. For the Wind category, the first component is less than two times the second component 
and over three times larger than the third component. The proportion for Humidity shows that the first 
component is twice as large as the second component. Shear has a proportion of about 51% for the first 
component. The first component of the temperature has about 59% weight. When comparing the first 
component of the Aerosol, Wind, Relative Humidity, Shear and Temperature we found that aerosol 
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had the highest proportion followed by Humidity, Temperature, Wind and Shear. Therefore, aerosol 
might have some influence based on the first component comparison. 

In Table 6, the cumulative variability percentage for each extracted component is presented, where 
the cumulative % threshold was set at 88%. 

MLR technique was applied for the model forecast lead time of 06, 12, 18, 24, 30, 36, 42 and 48 h. 
For each FDfuture, six predictor sets (Predictore_1 through Predictor_6) variables were analyzed. 
Table 7 shows the common measures of MLR, and from this table, we can see for FD06, R2 varied 
between 15.0% and 18.8% which is about 25.3% variation. For FD12, R2 varied between 24.4% and 
27.8% which is about 22.7% variation. The smallest variation for FD48 is 9.3% between the highest 
and lowest values. 

Table 7. Response and Predictor Variables. 

Response  Predictors R2 Adjusted R2 F value RMSE Residual Error 

FD06 

Predictor_1 18.80% 9.60% 2.05 8.32 69.23 
Predictor_2 18.80% 9.90% 2.12 8.31 68.98 
Predictor_3 17.70% 9.40% 2.13 8.33 69.38 
Predictor_4 17.60% 9.60% 2.20 8.32 69.26 
Predictor_5 16.40% 9.60% 2.41 8.32 69.22 
Predictor_6 15.00% 9.10% 2.52 8.35 69.64 

FD12 

Predictor_1 27.80% 19.60% 3.40 12.27 150.50 
Predictor_2 27.80% 19.90% 3.52 12.25 150.10 
Predictor_3 26.90% 19.50% 3.63 12.28 150.90 
Predictor_4 26.80% 19.70% 3.77 12.27 153.40 
Predictor_5 25.40% 19.30% 4.17 12.30 151.20 
Predictor_6 24.40% 19.10% 4.60 12.31 151.60 

FD18 

Predictor_1 37.90% 30.80% 5.39 14.76 217.70 
Predictor_2 37.90% 31.10% 5.59 14.73 217.00 
Predictor_3 37.10% 30.80% 5.84 14.77 218.00 
Predictor_4 37.10% 31.00% 6.08 14.74 217.20 
Predictor_5 36.10% 30.80% 6.91 14.76 217.80 
Predictor_6 34.90% 30.30% 7.63 14.81 219.40 

FD24 

Predictor_1 45.40% 39.30% 7.36 16.27 264.60 
Predictor_2 45.40% 39.40% 7.62 16.24 263.80 
Predictor_3 44.70% 39.10% 7.99 16.29 265.30 
Predictor_4 44.60% 39.20% 8.29 16.27 264.80 
Predictor_5 43.80% 39.30% 9.57 16.27 264.60 
Predictor_6 43.10% 39.10% 10.78 16.29 265.40 

FD30 

Predictor_1 50.90% 45.40% 9.18 17.92 321.10 
Predictor_2 50.90% 45.50% 9.50 17.90 320.30 
Predictor_3 50.20% 45.10% 9.96 17.97 322.70 
Predictor_4 49.70% 44.90% 10.19 18.01 324.20 
Predictor_5 49.40% 45.20% 11.96 17.94 322.00 
Predictor_6 48.30% 44.70% 13.31 18.04 325.40 
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Table 7. Cont. 

Response  Predictors R2 Adjusted R2 F value RMSE Residual Error 

FD36 

Predictor_1 54.90% 49.80% 10.76 19.25 370.40 
Predictor_2 54.60% 49.90% 11.14 19.22 369.50 
Predictor_3 54.10% 49.40% 11.64 19.32 373.40 
Predictor_4 53.70% 49.20% 11.95 19.36 374.80 
Predictor_5 53.40% 49.60% 14.07 19.27 371.70 
Predictor_6 53.00% 49.70% 16.04 19.28 371.60 

FD42 

Predictor_1 61.80% 57.50% 14.31 19.64 385.80 
Predictor_2 61.70% 57.50% 14.75 19.64 385.80 
Predictor_3 61.20% 57.20% 15.59 19.70 388.10 
Predictor_4 60.70% 56.90% 15.92 19.78 391.10 
Predictor_5 60.60% 57.30% 18.82 19.68 387.30 
Predictor_6 60.20% 57.40% 21.51 19.67 387.10 

FD48 

Predictor_1 65.10% 61.10% 16.46 20.38 415.30 
Predictor_2 65.00% 61.10% 17.00 20.37 414.90 
Predictor_3 64.80% 61.20% 18.20 20.35 414.00 
Predictor_4 64.30% 60.80% 18.55 20.45 418.20 
Predictor_5 64.00% 61.10% 21.84 20.38 415.30 
Predictor_6 63.70% 61.20% 25.02 20.36 415.00 

Let us select FD48 as the response and explanatory variables as Original set of 56, Predictor_1 as 
31 and Predictor_6 as 20. For the Original variables, 55 degrees of freedom (DF) provide us with 
RMSE = 19.47, R2= 71.1%, R2 (adj) = 64.5%, F = 10.72 and P = 0.000. For Predictor_1, DF = 30, 
RMSE = 20.38 R2= 65.1%, R2 (adj) = 61.1%, F = 16.46 and P = 0.000. For Predictor_6, DF = 19 
RMSE = 20.36 R2 = 63.7% R2 (adj) = 61.2% F = 25.02 P = 0.000. One interesting finding is that the 
adjusted R2 with 20 variables is larger (or equal to) the corresponding value with 31 variables. At least 
in this special case, reducing the number of variables does not reduce the effectiveness of the MLR 
model but increases the efficiency. 

Figures 3–5 illustrates the contribution factor based on the MLR performed between FD48 and the 
55 original variables (MSLP was taken out from the analysis because its contributing factor was high), 
Predfictor_1 of 31 variables and Predictor_6 of 20 variables respectively. We found aerosol, wind, 
humidity, shear and temperature all contributing factors in the regression equation. Based on Figure 5, 
the Predictor_6 plot, the ranking for the contribution was found as (1) Wind, (2) Aerosols, (3) Shear,  
(4) Relative Humidity, and (5) Temperature components. Further breakdown, as in Figure 4, showed 
that U200 and PHCN has the highest contribution then V20C followed by SST. 

Figure 3 tells us about the effect of the SHIPS and MODIS variables used on the FD48. R2 = 71.1% 
indicating that about 71% of the variation in FD48 can be accounted for by the 56 predictors. Based on 
the results of the Sequential Sum of Squares we can see components such as zonal winds, estimated 
ocean heat content and sea surface components are the greatest contributors to the MLR. This is also 
true for the intensity changes at 06, 12, 18, 24, 30, 36 and 42 h. 

In Figure 4, R2 = 65.1% indicating that about 65% of the variation in FD48 can be accounted for by 
the 31 explanatory variables. The contribution factor in this case is mainly governed by the same 
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variables as shown in Figure 4 except we see Aerosol Optical Thickness (AOT) and relative humidity 
are playing significant roles as well. We also see Shear and Eddy play important roles in the case  
of Predictor_1. 

Figure 3. Contribution Factors on the MLR between the FD48 and Original set of 55 
variables. MSLP was removed from the analysis. 

 

Figure 4. Contribution Factors on the MLR between the FD48 and Predictor_1 which has 
31 variables.  

 

Figure 5. Contribution Factors on the MLR between the FD48 and Predictor_6 which has 
20 variables.  
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The effect of the SHIPS and MODIS variables used on the FD48 as illustrated in Figure 5,  
R2 = 63.7% indicating that about 64% of the variation in FD48 can be accounted for by the 20 
explanatory variables. The contribution factor in this case is governed by tangential and zonal wind in 
addition to AOT and RH. 

Figure 6 shows the R2 and adjusted R2 values along with the RMSE and the Residual Errors for the 
MLR performed between the eight response variables and six predictor sets. 

At 48 h forecast intervals as in Figure 6, R2, adjusted R2 and RMSE are the largest and at 06 h, the 
smallest was recorded. The range of values of R2, adjusted R2 and RMSE between 06 and 48 h for 
Predictor_6 were found to be (15.0% and 63.7%), (9.1% and 61.2%), (8.35 and 25.02) and (69.64 and 
415.0) respectively. The RMSE and Residual errors found negligible for all six predictors. However, 
significant R2 values were found to be larger when considering the 42 and 48 h lead time for longer 
forecast intervals. This may be due to the results of discretization of the intensity of values as per 
DeMaria et al. [22,23] and the regressions for the shorter forecast intervals may have been exposed to 
some noise [22,23].  

In Figure 7 “Residuals vs. fits” are presented to show the residuals vs. the fitted values at FD06 and 
FD48. Residuals varied between ±10 for FD06 whereas for FD48 its ±50 and FD06 has lesser outlier 
than FD48. 

In addition, for this study MODIS Aerosol Retrievals were averaged, therefore, it is important to 
articulate the statistical uncertainty for the three variables used in the Aerosol PCA. For example, the 
quoted uncertainties for Fabian 2003 found for AOT (0.23 ± 0.02), MCO (15.54 ± 1.89) and CCNO 
(3.98 ± 0.781) × 108 when 95% confidence interval was considered. 

Figure 6. R2 values and RMSE at eight lead time positions 06, 12, 18, 24, 30, 36, 42 and 48 h. 
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Figure 7. Residual plots for FD06 and FD48. 

 

5. Conclusions 

By combining MODIS and SHIPS data, 56 variables were compiled and selected as predictors for 
this study. Variable reduction from 56 to 31 was performed via correlation coefficients (cc) followed 
by Principal Component Analysis (PCA) extraction techniques to further reduce these 31 variables to 
20. Among the 31 variables, PCA candidates were selected for the variables describing the same 
physical mechanism and the PCA procedure reduces the numbers from 3–8 to 1–4 for each group of 
variables. Five categories: wind, aerosols, shear, relative humidity, and temperature components were 
established by reducing 56 variables to 20. Aerosol, wind, humidity, shear and temperature are all 
contributing factors in the regression equation with the ranking for the contribution found to be  
(1) Wind, (2) Aerosols, (3) Shear, (4) Relative Humidity, and (5) Temperature components. Indicating 
that aerosols predictor surpass the other predictors especially shear. However, from a dynamics point 
of view, it is impossible for aerosol to be more important than shear and temperature.  The aerosol rank 
preceded the shear, which could be because our sample size was too small (306 data points) when 
compared to the original SHIPS dataset (over 6,000 data points) and inadvertently the value ranges of 
shear and temperature are not large. As a result, the limited variance in those parameters makes it is 
difficult to demonstrate the importance of those parameters. This is practically similar to a study with 
other parameter values being controlled. When the coefficient of variations (cv) was calculated we 
found cv for AOT 40.29%, Wind 37.61%, Shear 35.50%, SST 3.65% and Relative Humidity (RH) 
6.8%. SST and RH cv values are so low that we can consider the experiment to be controlled at a 
specific value. In the same sense, it is not surprising to that AOT was the second dominated factor in 
this study because AOT are of the largest variability. When MLR is performed on all 56 variables 
(without any variable reduction) as illustrated in Figure 3, interestingly, we see that aerosol is ranked 
in the last place. The original parameter describing aerosol effects are not a good choice. The linear 
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combination of the original variables gives a much better description because of the much higher 
variance in the derived variable. As a result, although the AOT role is not among the first few 
parameters in the MLR model with all variables, the combined aerosol parameter plays a dominant 
role in the limited model. 

There are plenty of benefits for overcoming the curse of dimensionality. Original variables may 
demonstrate better results but the reduced variables gave similar results with much lower 
dimensionality and improved efficiency. For computational purposes, improved efficiency is much 
more important than highly precise results. 

One interesting finding is that the adjusted R2 with Predictor_6, 20 variables is larger than (or equal 
to) the corresponding value with Predictor_1 of 31 variables. At least in this special case, reducing the 
number of variables does not reduce the effectiveness of the MLR model but increases the efficiency. 

The variation among the Predictors RMSE varied between 0.01 through 0.05. This implies that 
reducing the number of variables did not change the core physical information because variation is 
from the mean for all sets of predictors and very small. Therefore, the same phenomena can be 
explained by the reduction of the variable. R2 values were found to be larger when considering the 42 
and 48 h lead time. R2, adjusted R2, RMSE and residual error among Predictor 1 through 6 was 
negligible. The RMSE and residual errors difference among the six predictor groups were found to  
be negligible. 
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Appendix 

Selected SHIPS parameters based on the website at [33]. 

Name Description 
SST Climatological SST (deg C × 10) vs. time 
RHLO 850–700 mb relative humidity (%) vs. time (200–800 km) 
RHMD 700–500 mb relative humidity (%) vs. time (200–800 km) 
RHHI 500–300 mb relative humidity (%) vs. time (200–800 km) 
SHRS 850–500 mb shear magnitude (kt × 10) vs. time  
VMAX The current maximum wind intensity in kt 
MSLP Mean sea level pressure (hPa) 
INCV Intensity change (kt) −18 to −12, −12 to −6, ... 114 to 120 hr. 
SST SST (deg C × 10) vs. time 
DTL Distance to nearest major land mass (km) vs. time 
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Cont. 

Name Description 

PHCN 
Estimated ocean heat content (kJ/cm2) from climo OHC and current SST anomaly. Designed to fill in 
for RHCN when that is missing.  

U200 200 mb zonal wind (kt × 10) vs. time (r = 200–800 km) 
U20C Same as U200 but for r = 0–500 km) 
V20C Same as U20C, but for the v component of the wind 
E000 1,000 mb theta_e (r = 200–800 km) vs. time (deg K × 10) 

EPOS 
The average theta_e difference between a parcel lifted from the surface and its environment 
(200–800 km average) vs. time (deg C × 10). Only positive differences are included in the average 

ENEG Same as EPOS, but only negative differences are included. The minus sign is not included. 
EPSS Same as EPOS, but the parcel theta_e is compared with the saturated theta_e of the environment 
ENSS Same as ENEG, but the parcel theta_e is compared with the saturated theta_e of the environment 

PSLV 
Pressure of the center of mass (mb) of the layer where storm motion best matches environmental flow 
(t = 0 only)  

Z850 850 mb vorticity (sec−1 × 107) vs. time (r = 0–1,000 km) 
D200 Same as above for 200 mb divergence 
REFC Relative eddy momentum flux convergence (m/sec/day, 100–600 km avg) vs. time 
PEFC Planetary eddy momentum flux convergence (m/sec/day, 100–600 km avg) vs. time 
T000 1,000 mb temperature (dec C × 10) (200–800 km average) 
R000 1,000 mb relative humidity (200–800 km average) 
Z000 1,000 mb height deviation (m) from the US standard atmosphere 
TWAC 0–600 km average symmetric tangential wind at 850 mb from NCEP analysis (m/sec × 10) 
TWXC Maximum 850 mb symmetric tangential wind at 850 mb from NCEP analysis (m/sec × 10) 
PENC Azimuthally averaged surface pressure at outer edge of vortex ( (mb − 1,000) × 10) 

SHDC 
Same as SHRD but with vortex removed and averaged from 0–500 km relative to 850 mb vortex 
center 

SDDC Heading (deg) of above shear vector 

SHGC 
Same as SHRG but with vortex removed and averaged from 0–500 km relative to 850 mb vortex 
center 

DIVC Same as D200, but centered at 850 mb vortex location 
T150 200 to 800 km area average 150 mb temperature (deg C × 10) vs. time 
T200 Same as above for 200 mb temperature (deg C × 10) 
T250 Same as above for 250 mb temperature (deg C × 10) 
SHRD 850–200 mb shear magnitude (kt × 10) vs. time (200–800 km) 
SHTD Heading (deg) of above shear vector 
SHTS Heading of above shear vector 
SHRG Generalized 850–200 mb shear magnitude (kt × 10) vs. time (takes into account all levels 
PENV 200 to 800 km average surface pressure ((mb − 1,000) × 10) 
VMPI Maximum potential intensity from Kerry Emanuel equation (kt) 

VVAV 

Average (0 to 15 km) vertical velocity (m/s × 100) of a parcel lifted from the surface where 
entrainment, the ice phase and the condensate weight are accounted for. Note: Moisture and 
temperature biases between the operational and reanalysis files make this variable inconsistent in the 
2001–2007 sample, compared 2,000 and before.  

VMFX Same as VVAV, but a density weighted vertical average. 
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Cont. 

Name Description 
VVAC Same as VVAV but with soundings from 0–500 km with GFS vortex removed 

IRXX 
Same as IR00 below, but generated from other predictors (not satellite data). These should only be 
used to fill in for IR00 as needed. 

IR00 

Predictors from GOES data (not time dependent). The 17 values in this record are as follows: 
(1) Time (hr × 10) of the GOES image, relative to this case 
(2) Average GOES ch 4 brightness temp (deg C × 10), r = 0–200 km  
(3) Stan. Dev. of GOES BT (deg C × 10), r = 0–200 km  
(4) Same as (2) for r = 100–300 km 
(5) Same as (3) for r = 100–300 km 
(6) Percent area r = 50–200 km of GOES ch 4 BT < −10 C  
(7) Same as (6) for BT < −20 C 
(8) Same as (6) for BT < −30 C 
(9) Same as (6) for BT < −40 C 
(10) Same as (6) for BT < −50 C 
(11) Same as (6) for BT < −60 C 
(12) max BT from 0 to 30 km radius (deg C × 10) 
(13) avg BT from 0 to 30 km radius (deg C × 10) 
(14) radius of max BT (km) 
(15) min BT from 20 to 120 km radius (deg C × 10) 
(16) avg BT from 20 to 120 km radius (deg C × 10) 
(17) radius of min BT (km) 

IRM3 Same as IR00 but at three hours before initial time 
RD20 Ocean depth of the 20 deg C isotherm (m), from satellite altimetry data 
RD26 Ocean depth of the 26 deg C isotherm (m) from satellite altimetry data 
RHCN Ocean heat content (kJ/cm2) from satellite altimetry data 
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