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Abstract: The ultimate goal of this multi-article series is to develop a methodology to 

generate continuous fields of tree height and biomass. The first paper demonstrated the 

need for Allometric Scaling and Resource Limitation (ASRL) model optimization and its 

ability to generate spatially continuous fields of tree heights over the continental USA at 

coarse (1 km) spatial resolution. The objective of this second paper is to provide an 

assessment of that approach at site scale, specifically at 12 FLUXNET sites where more 

accurate data are available. Estimates of tree heights from the Geoscience Laser Altimeter 

System (GLAS) waveform data are used for model optimization. Amongst the five 

possible GLAS metrics that are representative of tree heights, the best metric is selected 

based on how closely the metric resembles field-measured and Laser Vegetation Imaging 

Sensor tree heights. In the optimization process, three parameters of the ASRL model (area 

of single leaf, α; exponent for canopy radius, η; and root absorption efficiency, γ) are 

simultaneously adjusted to minimize the difference between model predictions and 

observations at the study sites (distances to valid GLAS footprints ≤ 10 km). Performance 

of the optimized ASRL model was evaluated through comparisons to the best GLAS 

metric of tree height using a two-fold cross validation approach (R
2
 = 0.85;  

RMSE = 1.81 m) and a bootstrapping approach (R
2
 = 0.66; RMSE = 2.60 m). The 

optimized model satisfactorily performed at the site scale, thus corroborating results 

presented in part one of this series. Future investigations will focus on generalizing these 

results and extending the model formulation using similar allometric concepts for the 

estimation of woody biomass. 

Keywords: tree height; allometric scaling law; resource limitation; GLAS;  

model optimization 

 

1. Introduction 

Forest height and biomass are important attributes required for quantifying the dynamics of the 

terrestrial carbon cycle [1–4]. Several recent articles have reported variations in regional and global 

forest structural attributes [5] (e.g., under decreasing [6], increasing [7–9], or relatively  

steady-state [10] conditions), but there remains large uncertainty [11–13]. Two conventional methods 

of mapping tree heights and biomass are the extrapolation methods using field-measured and/or remote 

sensing altimetry data (e.g., regression tree or random forest algorithms [14–16]) and the 

physical/physiological model based on allometric scaling laws (e.g., Allometric Scaling and Resource 

Limitations (ASRL) model [17]). 

The extrapolation methods well estimate forest structural attributes by exploiting advancements in 

remote sensing. Small footprint lidar, Terrestrial Laser Scanners [18,19] and Laser Vegetation Imaging 
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Sensor (LVIS) [20,21] are key to accurate estimation of tree heights and forest biomass. Global and 

regional maps of tree heights [14,15] and forest biomass [16,22,23] have been generated using lidar 

waveform data from the Geoscience Laser Altimeter System (GLAS) instrument onboard the Ice, 

Cloud and land Elevation Satellite (ICESat). The relatively large footprint and wide spatial coverage of 

the GLAS instrument have made large-scale mapping of forest heights feasible [24,25]. However, the 

physical/physiological mechanisms governing plant growth are often neglected in the extrapolation 

approaches. The ASRL model [17] alternatively uses allometric scaling rules, which relate tree heights 

and local energy budgets in the prediction of potential tree growth. Nevertheless, the premises of the 

ASRL model have an obvious limitation that the balance of internal flows (metabolic flow 

requirement, available flow, and evaporative flow) is independent of local landscape variations across 

different eco-climatic regimes and forest types of varying age classes, unlike a non-allometric scaling 

model (e.g., [26]). This results in disparities between observations and model predictions. 

Therefore, the parametric optimization of the ASRL model possibly brings significant progress in 

mapping tree heights and biomass by incorporating actual observations (i.e., GLAS waveform data) 

with the power of physical/physiological laws for scaling purpose. The feasibility of ASRL model 

optimization with high resolution remotely sensed altimetry data and its ability to predict tree heights 

are tested in the multi-article series with the ultimate goal of generating accurate spatially continuous 

fields of tree heights and biomass. Paper one in this series is focused on the application of the 

optimized ASRL model over the continental USA (CONUS) [27]. The forested lands in the CONUS 

were delineated into different eco-climatic zones based on dominant forest type, annual total 

precipitation amount and annual average temperature. The optimization involved finding the 

appropriate scaling parameters and exponents of the ASRL model in each of the eco-climatic zones 

using the Powell’s optimization method [28]. A spatially continuous map of tree heights over the 

CONUS was satisfactorily reproduced in the first paper, but at coarse spatial scales (1 km). The 

objective of this second article is to test the methodology underlying these large-scale mapping efforts 

at finer spatial scales, i.e., FLUXNET sites, where more accurate information is available. Future 

articles in this series will extend the allometric scaling and resource limitation concepts to estimation 

of woody biomass. 

2. Data 

2.1. Field Measurements 

In this study, we used four different sources of field-measured tree heights. Data from 82 plots were 

assembled from seven field sites (Table 1) [20,21,29–35]. These data came from different 

measurement campaigns, or census, and are comprised of different acquisition dates with varying sizes 

and numbers of subplots as shown in Section S1 and Figure S1 of the Supplementary Material. 

2.2. LVIS Data 

LVIS is an airborne laser altimeter sensor that records the intensity of returned signals from a target 

surface [36]. An LVIS standard data product, RH100, was used in this study (Section S2.1). Lidar tree 
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heights could be influenced by topography and footprint size. Therefore, topographic effects were 

corrected from LVIS tree heights taking into account its footprint size (~20 m) [37]. 

LVIS datasets used in this study were categorized into two groups. The first dataset was used to 

compare LVIS heights with concurrent field-measured tree heights in seven different locations  

(Table 1 and Figure S1). In a separate exercise, the second dataset was used for comparisons between 

LVIS tree heights and GLAS height metrics. Except for the 2008 Sierra Nevada campaign, acquisition 

dates of the second dataset mostly overlapped with GLAS waveform acquisition dates (from 2003 to 

2006; Table 2 and Figure S2). 

Table 1. Datasets for inter-comparisons between field measured and Laser Vegetation 

Imaging Sensor (LVIS) waveform derived heights. There are 82 measurement plots 

spanning seven field sites in this study. 

Sites 
Field Measured Data LVIS Data [38] 

Subplots Acquisition Year Plot Size (m) References Acquisition Year 

La Selva Biological Station, 

Costa Rica 
30 2006 10 × 100 [20,21] 2005 

Barro Colorado Island, 

Panama 
20 2000 100 × 100 [29–31] 1998 

Penobscot Experimental Forest, 

Maine, USA 
12 2009 50 × 200 [32,33] 2003 

Sierra National Forest, 

California, USA 
8 2008 100 × 100 

[34,35] 

2008 

Harvard Forest, 

Massachusetts, USA 

2 2007 100 × 100 
2003 

2 2009 50 × 50 

Howland Research Forest, 

Maine, USA 

2 2007 100 × 100 
2003 

2 2009 50 × 50 

Bartlett Experimental Forest, 

New Hampshire, USA 

2 2007 100 × 100 
2003 

2 2009 50 × 50 

Table 2. Datasets for inter-comparisons between LVIS derived heights and Geoscience 

Laser Altimeter System (GLAS) height metrics (six different sites used in this study).  

Sites 
LVIS Data [38] GLAS Data [39] 

Acquisition Year 

White River Wildlife Refuge, AR, USA 2006 2003–2006 

Sierra Nevada, CA, USA 2008 2003–2006 

Harvard Forest, MA, USA 2003 2003–2006 

Patapsco Forest, MD, USA 2003 2003–2006 

Howland Research Forest and Penobscot Experimental Forest, ME, USA 2003 2003–2006 

Bartlett Experimental Forest, NH, USA 2003 2003–2006 
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2.3. GLAS Data 

The latest release of GLAS laser altimetry data (Release 33) available from the National Snow and 

Ice Data Center was used in this study. GLAS waveform data provide information on land elevation 

and vegetation cover within its ellipsoidal footprints at ~170 m spaced intervals [40,41]. We used 

GLAS Level-2 Land Surface Altimetry (GLA14) product, which includes geolocation of footprints and 

waveform parameters such as signal beginning and echo energy peaks [40]. It is difficult to estimate 

the dimension and shape of every single GLAS footprint. Therefore, all GLAS footprints were 

assumed to have a circular diameter of 70 m [42] in this study. 

Figure 1 depicts the sequential preprocessing/filtering steps for selecting valid GLAS waveforms. 

Data from May to October of each year were considered, as this period best approximates the growing 

season. GLAS data were further screened by applying several preprocessing filters, such as atmospheric 

forward scattering and signal saturation, background noise level correction and landcover mask 

conditions (Section S2.2, S2.3, S3, and Figure S3 for preprocessing datasets). GLAS footprints have a 

coarser spatial resolution (70 m) than some preprocessing datasets (e.g., National Land Cover Database 

is at 30 m spatial resolution). A GLAS footprint is possibly located over heterogeneous forest types and 

topographic conditions. This study used preprocessing data values of nearest pixels to the center of a 

GLAS footprint as the normalized lidar intensity of GLAS data peaks at the center of footprint [37]. 

Figure 1. Preprocessing/filtering steps for determining valid GLAS waveform data. 

Ancillary datasets required include National Land Cover Database (NLCD) Landcover, 

Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Continuous Fields 

(VCF) and National Elevation Dataset (NED)-derived Digital Elevation Model (DEM). 

 

2.4. Input Data for the ASRL Model 

The ASRL model predicts potential tree heights. The model combines statistical allometric scaling 

laws with local energy budgets constrained by resource limitations such as water, radiation, wind and 

air temperature [17]. The model is driven by input climatic variables and tree trait parameters. Input 
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climatic variables are annual incoming solar radiation, annual total precipitation, annual average 

temperature, annual average wind speed and annual average relative humidity. Additionally, Leaf Area 

Index (LAI) and Digital Elevation Model (DEM) are required for initializing the model. Table S1 lists 

the input datasets (climatic and ancillary data). 

2.4.1. FLUXNET Data 

The analysis in this paper is focused on sites from the FLUXNET network [43]. We chose 12 sites, 

amongst the 71 sites over the CONUS, based on distance between a site and valid GLAS footprints  

(≤10 km radius; Figure 2 and Table 3). Annual total precipitation and annual average temperature data 

(from 2001 to 2006) were obtained from the selected sites. 

Figure 2. (a) The 12 selected FLUXNET sites (red triangles) based on the distance from 

valid GLAS footprints (≤ 10 km radius). (b) An example site (ID: US-Syv) located at the 

Sylvania Wilderness Area of Michigan. Purple polygons represent Landsat TM imagery for 

the retrieval of Leaf Area Index (LAI). Blue dots refer to valid GLAS footprints 

corresponding to the FLUXNET site. 

  

(a) (b) 

2.4.2. DAYMET Data 

The FLUXNET datasets do not contain all the input climatic variables required by the ASRL 

model. Annual incoming solar radiation, annual average wind speed and annual average vapor pressure 

were therefore obtained from the DAYMET database [44] at a spatial resolution of 1 km. DAYMET 

climatic values were extracted from pixels nearest to our study sites. Annual vapor pressure was 

converted into annual relative humidity using a formula provided by the World Meteorological 

Organization (WMO) [45]. 

2.4.3. Ancillary Data for the ASRL Model (LAI and DEM) 

The ASRL model requires two ancillary variables: (a) LAI and (b) DEM. Several Landsat TM 

scenes (Figure 2(a)) were obtained for the period 2003 to 2006 with near-similar acquisition dates 

(June to September) as the GLAS waveform data. The Landsat Ecosystem Disturbance Adaptive 

Processing System [46] and a physically-based algorithm [47] were used to retrieve LAI values. As 
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with the DAYMET data, we extracted LAI and DEM values of the pixels nearest to the study sites. 

Neighboring pixels in a 3 × 3 window showed minimal variability in both LAI and DEM at 30 m 

spatial resolution (absolute variation coefficients <5%). 

Table 3. The 12 FLUXNET sites selected for analysis in this study based on the distance 

between a site and valid GLAS footprints (≤10 km radius). The three dominant forest types 

at these sites are Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), 

and Mixed Forests (MF). Percent tree cover values were derived from the MODIS  

VCF product. 

FLUXNET 

SITE ID 
Site Name Location 

Temporal Range 

of Data 

Forest 

Types 

% Tree 

Cover 

Valid GLAS 

Footprints 

US-Me1 Metolius Eyerly Burn OR, USA 2004–2005 ENF 63 29 

US-Syv Sylvania Wilderness Area MI, USA 2001–2006 MF 52 33 

US-Ha1 Harvard Forest EMS Tower MA, USA 1992–2006 DBF 74 68 

US-Ho1 Howland Forest (main tower) ME, USA 1996–2004 ENF 73 33 

US-MMS Morgan Monroe State Forest IN, USA 1999–2006 DBF 70 18 

US-Bar Bartlett Experimental Forest NH, USA 2004–2006 DBF 93 12 

US-Ha2 Harvard Forest Hemlock Site MA, USA 2004 ENF 74 67 

US-MOz Missouri Ozark Site MO, USA 2004–2007 DBF 51 64 

US-Ho2 Howland Forest (west tower) ME, USA 1999–2004 ENF 74 31 

US-LPH Little Prospect Hill MA, USA 2003–2005 DBF 73 68 

US-SP3 Slashpine-Donaldson-mid-rot-12yrs FL, USA 2008 ENF 51 30 

US-WCr Willow Creek WI, USA 1999–2006 DBF 51 9 

3. Methods 

3.1. GLAS Metric Selection 

Prior to the optimization of the ASRL model with GLAS tree heights, we perform an exercise 

finding the best GLAS metric that closely corresponds to field-measured and LVIS derived tree 

heights. This analysis is based on two premises: (a) canopy height derived from LVIS data is related to 

field-measured tree height as reported in previous studies [2,37,48–50] and (b) the best GLAS metric, 

inferred from comparison of five GLAS metrics with LVIS tree heights, improves model optimization. 

Several recent articles have evaluated GLAS tree heights directly with field data [14,51–53] and/or 

with airborne lidar data [37,54–56].  

The root mean square error (RMSE) and R
2
 (from the linear-regression) are used to determine how 

well tree heights are related to each other in the inter-comparisons among field-measured, LVIS, and 

GLAS derived tree heights. Systematic errors related to biases in measurements are additionally 

considered in the interpretation of results. 

3.1.1. Comparison between Field-Measured and LVIS Tree Heights 

Field-measured datasets used in this study differed in their sampling methodologies and plot 

designs. Also, the coordinates of individual trees were not recorded in every measurement 

campaign/census. This precluded a footprint-level comparison between field-measured and LVIS tree 
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heights, unlike in some previous studies [2,48]. Therefore, we performed comparisons at the plot-level 

by calculating representative tree height values from field measurements and LVIS data, which were 

defined as the average of the top 25% tree heights in each of the subplots (e.g., Figure S4). This 

approach minimizes overestimations (e.g., using only three highest values [37]) or underestimations 

(e.g., using all values [2]) if there are large numbers of field-measured trees and LVIS footprints in a 

subplot. The RMSE is calculated using Equation 1.  

 

n

HH

RMSE

n

i

iLVISimeasuredfield

LVISvsfield






 1

2

 , , 

 .  
(1)  

here H̄ field-measured is the mean height of top 25% of field-measured trees in a subplot, H̄ LVIS refers to the 

mean value of top 25% LVIS tree heights in the same subplot and i corresponds to the sample subplot 

(n = 82) as shown in Table 1. 

3.1.2. Comparison between LVIS Tree Heights and GLAS Height Metrics 

Three standard altimetry variables are available from the GLA14 product based on the Gaussian 

decomposition approach [57]: (a) signal begin range increment, SigBegOff, (b) signal end range 

increment, SigEndOff and (c) centroid range increment for the last Gaussian Peak, gpCntRngOff 1. 

Theoretically, gpCntRngOff 1 and SigEndOff are assumed to represent the ground level elevation 

within a GLAS field-of-view, while SigBegOff refers to the highest point of a surface. In practice, 

(SigBegOff − SigEndOff) and (SigBegOff − gpCntRngOff 1) may not be identical due to topographic 

and roughness effects [37]. There are five possible GLAS metrics representative of tree heights based 

on the Gaussian decomposition approach and topographic effect correction (HA–E in Table 4 and  

Section S4).  

Table 4. Five possible GLAS height metrics based on Gaussian decomposition approach 

and topographic effect correction. Statistical analysis examining the full GLAS waveform 

extents [24,55,58,59] is beyond the scope of this study. 

GLAS Height  

Metrics  
Applied GLAS Waveform Parameters 

Topographic Effect  

Correction 
References 

HA SigBegOff − gpCntRngOff 1 No [22,51,60] 

HB SigBegOff − SigEndOff No [52] 

HC SigBegOff − gpCntRngOff 1 Yes [14,37,56] 

HD SigBegOff − SigEndOff Yes - 

HE SigBegOff − 2 × gpCntRngOff 1 + SigEndOff No - 

The spatial correspondence between LVIS and GLAS footprints was determined using the 

maximum distance from the center of a GLAS footprint to any LVIS footprint (within ~45 m;  
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Figure S5). The RMSEs between LVIS heights and five possible GLAS height metrics were obtained 

from Equation (2):  

 

EA

n

i

iLVISiEAGLAS

EA
n

HH
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2

 , ,:

 
(2)  

here H̄ LVIS is the mean value of top 25% of LVIS heights within a GLAS footprint, HGLAS is GLAS tree 

heights, A–E refers to the five possible GLAS height metrics (Table 4), and i represents the sample 

GLAS footprint (n = 133). 

The result analyses were stratified into three groups, based on topographic conditions over the 

GLAS footprint, as low (slope ≤ 5°), intermediate (5° < slope ≤ 10°) and high (10° < slope ≤ 20°). All 

outliers were removed in this comparison exercise, i.e., only GLAS tree heights within two standard 

deviations from the mean height were considered (~95%; 5 m < HA-E ≤ 100 m). 

3.2. ASRL Model Optimization 

3.2.1. Initial ASRL Model Predictions (Potential Tree Heights) 

The initial model runs are driven by input datasets and result in potential tree heights at each study 

site. Key climate input data (temperature and precipitation) are derived from FLUXNET sites. 

DAYMET, LAI, and DEM grids nearest to the study sites provide other climatic variables and 

ancillary data for the model runs. The unoptimized ASRL model predicts only potential tree heights 

considering hydraulic limits to tree growth. These differ from observations due to the fact that the 

unoptimized model applies homogeneous steady-state allometric scaling laws across different 

environmental conditions and forest types with varying age classes [27]. 

3.2.2. Optimized ASRL Model Predictions 

Remote sensing based altimetry data, which provide actual tree heights, can alleviate the limitation 

of the unoptimized ASRL model related to different growing conditions and forest types with varying 

age classes. The model optimization is detailed in the first paper of this series [27]. Model optimization 

is aimed at minimizing the difference between GLAS tree heights and model predictions (Figure 3) 

based on the Powell’s optimization methodology [28]. A merit function was formulated and 

implemented from Press et al. [61] and Kuusk and Nilson [62]. It finds the maximum likelihood 

estimates of each parameter that result in minimizing the merit function. Amongst the five GLAS 

height metrics, the model optimization uses the best GLAS metric that is closest to the field-measured 

and LVIS tree heights. 

Three model parameters are iteratively adjusted during optimization: (a) area of single leaf, α, 

(b) exponent for canopy radius, η, and (c) root absorption efficiency, γ. The respective initial values 

are 13 cm
2
, 1.14, and 0.33 [17]. α is related to the collection of solar radiation for plant growth, and it 

is used to calculate the coefficients for canopy transmissions. In the ASRL model, energy budget in a 

single leaf is accumulated to a canopy-level budget [17]. The geometry of canopy is associated with η 

controlling the scaling of canopy radius with tree height. This derives the rate of absorbed solar 
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radiation in the ASRL model [17]. γ determines the available flow rate given the incoming rate of 

precipitation within the root capture area. Local γ varies depending on soil type and hydrology [17]. To 

achieve convergence, the following ranges were used: 1 cm
2
 ≤ α < 100 cm

2
, 0.8 ≤ η < 1.5, and  

0.1 ≤ γ < 0.8 (as in the TRY database [63]). Kempes et al. [17] tested η and γ individually in a 

sensitivity analysis. This study added α to the optimization scheme because the area of a leaf 

significantly varies across different eco-climatic regimes and forest types [64,65]. Also, α is an 

important parameter determining net radiation and fluxes of sensible and latent heat (e.g., [66]). 

Figure 3. Diagram showing ASRL model optimization. The model predicts potential tree 

heights (initial prediction) using climatic and ancillary data. Three allometric scaling 

parameters of the model (area of single leaf, α; exponent for canopy radius, η; and root 

absorption efficiency, γ) are simultaneously adjusted to find the minimum of the difference 

between GLAS tree heights and model predictions. GLAS tree heights are estimated using 

the best GLAS metric that closely resembles field-measured and LVIS tree heights 

amongst five GLAS height metrics (Table 4). 

 

Our approach has constraints due to a limited number of scaling parameters (α, η, and γ) explored in 

the model optimization and an assumption that allometric scaling laws at individual tree level are 

applicable at larger scales. In addition, a limitation of this study is that the model does not directly 

account for variation in forest stand age in the optimization process. Tree heights and growth rates are 

clearly related to forest stand ages [67,68], varying across different forest types and growing 

conditions. However, it does not necessarily mean that our methodology neglects forest stand ages in the 

estimation of tree heights. GLAS waveform data indirectly brings age information of forests into the 

ASRL model for the parametric optimization, as actual heights are associated with forest stand ages. 

3.3. Evaluation of the Optimized ASRL Model Predictions 

3.3.1. Two-Fold Cross Validation Approach 

The performance of the optimized ASRL model is evaluated through comparisons against GLAS 

tree heights in this study. The two-fold cross validation technique is a common statistical approach that 
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randomly divides original samples into two equal sets of training and test data. The first half of GLAS 

tree heights was used as a training dataset to optimize the model at a site. The test dataset was prepared 

by averaging the remaining half of GLAS tree heights at the same site. Training and test GLAS data 

are completely separated in the cross validation (i.e., no overlapping each other). The RMSE is 

estimated to interpret the relationship between GLAS tree heights and optimized model predictions 

(Equation (3)) along with R
2
 from the linear regression. 

 

n

HH

RMSE

n

i

itrainingASRLoptitestGLAS

IASRL


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

 1

2

 ,   , 

  
(3)  

here Hopt ASRL training is the optimized model prediction using the GLAS training data at a site, H̄ GLAS test 

represents the mean of tree heights computed from the GLAS test data at the same site, and i refers to 

the site (n = 12). 

3.3.2. Bootstrapping Approach 

A second evaluation of the optimized ASRL model was performed at the eco-climatic zone 

scale [27]. Individual FLUXNET sites were grouped into eco-climatic zones (Figure S6). Each zone 

consisted of 1 to 2 FLUXNET sites at the most. We neglected zones where GLAS footprints were less 

than 50 based on the need for model optimization. Selected sites include Harvard Forest EMS Tower 

(US-Ha1), Howland Forest Main Tower (US-Ho1), Howland Forest West Tower (US-Ho2), Harvard 

Forest Hemlock Site (US-Ha2), Missouri Ozark Site (US-MOz), and Little Prospect Hill (US-LPH) 

within a total of five eco-climatic zones (Table S2). 

A bootstrapping approach [69] was applied to evaluate the optimized model predictions for the five 

zones. Corresponding GLAS footprints were randomly divided into two groups (training and test 

datasets). The bootstrapping generated extra comparison sets (subsamples, N = 100) to examine the 

stability of the results. Training subsamples of the GLAS tree heights were used for model 

optimization. The optimized ASRL model predictions were then compared to the average of tree 

heights derived from test subsamples by calculating the RMSE (Equation 4). R
2
 from the linear 

regression is additionally provided for the interpretation. Two groups of subsamples (training and test) 

also have no overlaps in each other. 
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(4) 

here Hopt ASRL training is the optimized model prediction using bootstrapping subsamples of training 

GLAS waveform data for a zone, H̄ GLAS test represents the mean of tree heights derived from test GLAS 

subsamples within the same zone, i refers to the sample eco-climatic zone (n = 5), and j corresponds to 

the bootstrapping subsample (a total of 100 sets for a climatic zone). 
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4. Results and Discussion 

4.1. Best GLAS Height Metric from Inter-Comparisons with Field-Measured and LVIS Tree Heights 

We first performed a plot-level comparison between LVIS tree heights and field measurements 

(Figure 4). The statistical significance of this relationship (R
2
 = 0.76 and RMSE = 4.13 m) is 

comparable to previous reports (footprint-level comparison [50] and plot-level comparison [37]). Some 

disagreements are due to differences in data acquisition times. For example, field measurements for the 

Penobscot Experimental Forest (Maine, USA) were conducted in 2009, while the LVIS data were 

acquired in 2003. Similarly, the LVIS acquisition date is six years prior to field measurements of the 

2009 New England Campaign (Table 1).  

Figure 4. Comparison of LVIS tree heights with field measurements. A total of 82 plots 

from seven different sites are considered in this analysis. Regression analysis indicates a 

statistically significant relationship between LVIS tree heights and field measurements  

(p < 0.01). 
#
 In Sierra National Forest, there is one extremely influential observation due to 

old growth forests (ages > 150; [70]). 

  

The average tree growth rates in study regions can be approximated using an equation of  

Shugart et al. [67]. The map of forest age distribution in North America [70] shows that forest stands 

are aged from 41 to 80 in New England (Maine, Massachusetts, and New Hampshire). We expect that 

tree growths in New England can be made roughly up to 1.3 m for 6 years. 

Relatively large deviation is found in the results of Barro-Colorado Island. Two plausible reasons 

are associated with (a) tree growth rates of tropical forest and (b) terrain features and densely vegetated 

environment of the study area. Tropical forests increase more in size [71] compared to USA forests for 

a similar period. This explains that field measured tree heights (year 2000) are larger than LVIS tree 

heights (year 1998). Another plausible reason for disagreements is that the LVIS is a large-footprint lidar 

(20 m), which is significantly affected by the topography and denseness of vegetation over the 

ground [72]. Especially, Barro Colorado Island consists of dense tropical forest and some plots are 

located over steep terrains. This possibly decreases the measurement accuracy of LVIS data,  

inflating deviations. 



Remote Sens. 2013, 5 214 

 

 

Subsequent analysis was focused on comparison of five metrics derived from GLAS waveform data 

(HA–E; Table 4) with LVIS tree heights, at six sites with terrain slope condition ≤5° (Figure 5). Results 

for other slope categories are shown in Figure S7 and S8. We observed an overestimation of GLAS 

tree heights relative to LVIS tree heights, similar to previous studies [37,56]. Among the five GLAS 

height metrics, HC was best correlated to LVIS tree heights (R
2
 of 0.70 and RMSE of 4.42 m  

(P < 0.01)). This metric was derived from the distance between the last Gaussian peak and signal 

beginning of the GLAS waveform and incorporated topographic effect correction. Overestimations are 

related to both topographic gradient effects and GLAS waveform parameters. The bias increased with 

increasing tree heights (HA and HB; Figure 5(a,b)), as previously noted in Lee et al. [37]. Also, 

significant biases were generated for taller trees from use of the full GLAS waveform extents (HB and 

HD; Figure 5(b,d)). As shown in Figures 5e, a relatively low correlation with LVIS tree heights was 

obtained from the metric using all three GLAS waveform parameters (i.e., signal begin, end, and the 

last Gaussian peak). 

Similarly, for regions with intermediate slope condition (Figure S7) HC was best correlated with 

LVIS tree height but with a lower R
2
 and larger RMSE as compared to the low slope condition. In the 

case of high topographic gradients (Figure S8), HD showed better correspondence with LVIS heights, 

however, the correlations were significantly lower for all five metrics. 

Figure 5. Comparison of five GLAS-derived metrics (a–e, HA-E; Table 4) with LVIS tree 

heights. The slope of the terrain in all cases is less than or equal to 5°. Comparisons for 

other topographic conditions (slope > 5°) are shown in Figure S7 and S8. 

  

(a) (b) 

  

(c) (d) 
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Figure 5. Cont. 

  

(e)  

4.2. Optimized ASRL Model Predictions and Evaluations 

The ASRL model was optimized using tree heights derived from the best GLAS height metric (i.e., 

HC; Section 4.1) for all the 12 FLUXNET sites. The number of sample GLAS tree heights in the  

two-fold cross validation varied from 5 to 34 depending on the site (Table S3). A statistically 

significant relationship (R
2
 = 0.85; RMSE = 1.81 m; P < 0.01) was obtained when comparing the 

optimized model predictions with the average of test GLAS tree heights (Figure 6). Kempes et al. [17] 

similarly tested the adjustment of individual allometric parameters of the ASRL model (e.g., stomatal 

density and root absorption efficiency) but reported less variation in model errors from the  

sensitivity analysis. 

Figure 6. Comparison of the optimized ASRL model predictions with the best GLAS 

metric of tree height (HC in Figure 5(c)) at the FLUXNET sites (N = 12). We used a  

two-fold cross validation approach that randomly divides GLAS tree heights into two equal 

sets of training and test data. 

 

The optimized values of allometric parameters for the study sites are listed in Table S3. There were 

notable adjustments in the optimized values of leaf size, α (initial value: 13.0 cm
2
). It varied from 

14.0 cm
2
 for the US-MMS site to 56.0 cm

2
 for the US-Ha2 site. This supports the relative significance 

of selecting α as an additional allometric parameter in model optimization. The other two allometric 
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parameters, exponent for canopy radius, η (initial value: 1.14) and root absorption efficiency, γ (initial 

value: 0.33), were also adjusted in the optimization with η values ranging from 0.94 for the US-MOz 

site to 1.24 for the US-Ha1 site and γ ranging from 0.19 for the US-Ho1 site to 0.38 for the US-SP3 

site. These parameters were relatively stable compared to α, as previously reported by  

Kempes et al. [17]. 

Optimizing three parameters clearly improved model performance. Figure 7 shows the distribution 

of tree heights over 12 FLUXNET sites. Compared to the unoptimized ASRL model predictions 

(Figure 7(b)), tree heights from the optimized ASRL model (Figure 7(c)) better resemble GLAS tree 

heights (Figure 7(a)). As shown in Figure S9, the variance of model errors to the actual observation, 

“(GLAS tree heights—Predicted tree heights)/GLAS tree heights” [17], decreased from 0.53 (without 

optimization) to 0.01 (after optimization). 

We performed a second evaluation of the optimized ASRL model at the eco-climatic zone scale 

(Table S2). Cold and drier regions are characterized by the zone ID 2, while zone ID 1, 3 and 5 

represent cold and wetter regions. Zone ID 4 is located in the relatively warm and dry region. This 

definition of eco-climatic zones is comparable to the traditional eco-climatic zones (e.g., Holdridge life 

zones [73])—zone ID 1, 3 and 5 are related to the Cool Temperate Wet Forest, while ID 2 and 4 

represent the Cool Temperate Moist Forest and Warm Temperate Dry Forest, respectively. 

Figure 7. Distributions of tree heights over 12 FLUXNET sites: (a) GLAS tree heights, 

(b) unoptimized ASRL model predictions, and (c) optimized ASRL model predictions 

using training GLAS tree heights (two-fold cross validation). 

 

(a)        (b) 

 

(c) 
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As shown by the bootstrapping evaluation approach (Figure 8), the optimized model satisfactorily 

predicted tree heights (R
2
 = 0.66; RMSE = 2.60 m; P < 0.01). The model’s error variance decreased 

from 0.60 to 0.02 after optimization (Figure S10). Overall, the optimization successfully alleviated the 

effect of different environmental conditions and forest types and thus generated a more robust 

prediction of tree heights at a local scale, as indicated by the results of the two evaluation approaches. 

However, our approach did not consider the error propagation related to uncertainties in such input 

climatic variables and the GLAS waveform data, which are critical inputs to the optimized ASRL 

model. Input climate data may have produced large uncertainties due to the interpolation of climatic 

variables that are sensitive to terrain conditions (e.g., [74,75]). Model predictions and evaluations carry 

certain constraints that GLAS tree heights are taken as true values of tree heights in spite of inherent 

uncertainties in GLAS waveform data: topographic effects [55] might not be completely corrected 

from GLAS data. In addition, GLAS undersampling for some of the climatic zones results in fewer 

comparison sets in the optimization process, that is, increasing uncertainties. 

Figure 8. Bootstrapping evaluation of the optimized ASRL model. The optimized model 

used the best GLAS tree height metric (HC in Figure 5(c)). 100 sets of bootstrapping 

subsamples were generated for five eco-climatic zones. 

 

5. Concluding Remarks 

The Allometric Scaling and Resource Limitations (ASRL) model optimized with the Geoscience 

Laser Altimeter System (GLAS) waveform data was tested at site scale (12 FLUXNET sites over the 

continental USA) in this second of a multi-article series. The model predicts potential tree heights 

based on local energy budgets limited by water, radiation, wind and air temperature. Predicted 

potential tree heights differ from observations due to homogeneous scaling parameters and exponents 

across different eco-climatic zones and forest types with varying age classes. Model optimization in 

this study is aimed at minimizing the difference between model predictions and observations (i.e., 

GLAS tree heights). This study considered three allometric parameters (area of single leaf, α; exponent 

for canopy radius, η; and root absorption efficiency, γ) for model optimization. 

Amongst the five GLAS metrics (HA–E) indicative of tree heights, the best GLAS metric (HC) was 

used in model optimization. We conducted comparisons showing the closeness between: (a) Laser 

Vegetation Imaging Sensor (LVIS) tree heights and field measurements (R
2
 = 0.76; RMSE = 4.13 m) 

and (b) the five GLAS metrics of tree heights and LVIS tree heights (R
2
 = 0.70; RMSE = 4.42 m for 
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HC). This best GLAS metric (HC) was retrieved from the distance between the last Gaussian peak and 

signal beginning of the GLAS waveform and incorporated topographic effect correction. 

The optimized model prediction was evaluated using two-fold cross validation and bootstrapping 

exercises. Predicted tree heights explained 85% of the variability in GLAS tree heights and on average 

showed an estimation error of 1.81 units of height from the two-fold cross validation approach at the 

studied sites. The variance of model errors to observation decreased from 0.53 to 0.01 after model 

optimization. In the case of bootstrapping, the study sites were stratified into five eco-climatic zones 

based on dominant forest type, annual total precipitation and annual average temperature. This exercise 

also resulted in a satisfactory prediction of GLAS tree heights by the optimized model (R
2
 = 0.66; 

RMSE = 2.60 m) and a decrease in model error variance from 0.60 to 0.02 after optimization. 

This investigation at site scale provides evidence corroborating our initial study [27] to the need for 

optimization and utility of the ASRL model with the ultimate goal of generating spatially continuous 

maps of tree heights and biomass. Optimization with remote sensing altimetry data successfully takes 

into account the external effect imposed by different eco-climatic regimes and forest types. The ASRL 

model was clearly improved by the parametric optimization showing the potential of the model in 

mapping tree heights. Nevertheless, the results from this site-specific analysis cannot be generalized 

due to the limited number of study sites and available GLAS waveform data. The studied sites did not 

cover the full range of precipitation, temperature and forest types prevalent across the continental 

USA. The optimized ASRL model has certain limitations due to (a) uncertainties of input climate and 

GLAS data and (b) a limited number of parameters explored in the optimization. Also, forest stand 

ages were not directly involved in the model optimization. 

Forthcoming investigations will focus on extending the model formulation using similar concepts 

for the estimation of woody biomass (next two articles in preparation). Also, our approach will be 

tested over different study locations (e.g., China and Amazon Basin) to generalize the results for 

mapping global tree heights and biomass. A future research will be conducted over Amazon Basin 

where eco-climatic regimes and forest types are quite different from the CONUS. The availability of 

input climate data with good quality is certainly a challenge in this study region. Additionally,  

eco-climatic regimes and forest types of some regions in China may resemble those of the CONUS, 

but scaling parameters of the ASRL model are not necessarily identical. Hence, we will investigate the 

feasibility of the ASRL model in various regions by obtaining the appropriate scaling parameters. 
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