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Abstract: Real-time image georeferencing is essential to the prompt generation of spatial
information such as orthoimages from the image sequence acquired by an airborne
multi-sensor system. It is mostly based on direct georeferencing using a GPS/INS system,
but its accuracy is limited by the quality of the GPS/INS data. More accurate results
can be acquired using traditional aerial triangulation (AT) combined with GPS/INS data,
which can be performed only as a post-processing method due to intense computational
requirements. In this study, we propose a sequential AT algorithm that can produce
accurate results comparable to those from the simultaneous AT algorithm in real time.
Whenever a new image is added, the proposed algorithm rapidly performs AT with minimal
computation at the current stage using the computational results from the previous stage.
The experimental results show that the georeferencing of an image sequence at any stage
took less than 0.1 s and its accuracy was determined within ± 5 cm on the estimated ground
points, which is comparable to the results of simultaneous AT. This algorithm may be used
for applications requiring real-time image georeferencing such as disaster monitoring and
image-based navigation.
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1. Introduction

Real-time acquisition of spatial data such as DSMs (digital surface models) or orthoimages is needed
to provide appropriate and prompt countermeasures to situations such as natural disasters or accidents.
For example, by monitoring the areas of forest fires and floods using the spatial data acquired by an
airborne multi-sensor system, we can observe the situation, assess on-going damage, effectively decide
how to evacuate people and restore damaged areas.

Disaster monitoring systems based on airborne real-time acquisition of spatial data mostly consist
of an aerial segment for data acquisition of the target areas and a ground segment for data processing
and delivery [1–4]. The aerial segment includes an airborne system based on manned or unmanned
air vehicles mounted with sensors such as cameras, laser scanners, GPS, and INS. The image
sequences acquired by such a system can be extremely useful for decision makers to establish effective
countermeasures by comparing such images with existing spatial data such as 2D or 3D maps, city
models, DSMs, and so on. However, such a comparison is possible only if the images are rectified
with the same coordinate system as the existing spatial data, which is mainly generated with an absolute
ground coordinate system. For example, in order to overlap the images on a 2D map, the images should
be orthorectified with the same coordinate system as the map.

The orthorectification requires a DSM over the target areas and the intrinsic and extrinsic parameters
of the camera. In a real-time situation, the DSM can be promptly generated from the laser scanner data.
The intrinsic parameters can be determined during camera calibration on the ground before the flight
and are assumed to be constant during the flight. Most problems occur when determining the extrinsic
parameters in real time, which requires knowing the position and attitude of the camera at the time
of exposure for each image. This process is referred to as image georeferencing in this paper, which
attempts to establish the geometric relationship between an image or image sequences and the absolute
ground coordinate system.

Image georeferencing in both photogrammetry and computer vision fields may be categorized into
two groups, i.e., indirect georeferencing and direct georeferencing. Indirect georeferencing usually
requires accurate ground control features in absolute coordinates that can be identified from the images.
This involves significant human involvement, which makes real-time processing difficult or impossible.
Direct georeferencing attempts to measure directly the position and attitude of the camera using other
independent sensors, mostly GPS and INS. This process can be fully automated, but its accuracy is not
satisfactory. Most problems arise in determining the attitude using the INS data. If we want to more
accurately determine attitude, we need to employ an INS with higher quality, resulting in much higher
cost [5]. Hence, we intend to establish a real-time method to enhance the accuracy of the extrinsic
camera parameters initially provided by GPS/INS sensors.

An existing promising method to determine camera parameters is aerial triangulation (AT) based
on the bundle block adjustment [6], which considers tie (or corresponding) points between images and
ground control features and (or) the GPS/INS data. This process provides the camera parameters for each
image and the coordinates of the object points corresponding to the tie points. In a real-time situation,
however, we cannot use the ground control features to exclude human operations. We should thus only
utilize the tie points with the GPS/INS data as stochastic constraints to the camera parameters. A more
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severe problem exists in that bundle block adjustment is a simultaneous approach, which estimates the
unknown parameters involved in all input images simultaneously. To perform georeferencing of an image
sequence in real time, whenever a new image is acquired, we have to not only determine the camera
parameters of the image most recently added to the sequence but also update the camera parameters of
all previous images. Since, for real-time processing, the computation time should be less than the image
acquisition period, the traditional simultaneous approach of bundle block adjustment cannot be used.
Hence, we intend to develop a sequential approach that requires a constant computation time even when
new images are added continuously.

The three sequential estimation algorithms used to determine the camera parameters that are mostly
used in photogrammetry or computer vision fields are: (1) the Kalman filter, which updates the inverse
of the normal matrix [7]; (2) the TFU (triangular factor update) algorithm, which directly updates
the upper triangle of the normal matrix based on Gauss/Cholesky decompositions [8]; and (3) the
Givens transformation, which updates the upper triangle of the design matrix based on orthogonal
decomposition [9]. Matthies et al. [10] estimated the depth map from image sequences using the Kalman
filter. However, the TFU algorithm was found to work more efficiently than the Kalman filter with respect
to both the computation time and storage requirements [11]. Overall, the algorithms based on the Givens
transformations were discovered to be the most efficient [12,13]. Gruen and Kersten [14] performed
on-line aerial triangulation based on Givens transformations. Kersten and Baltsavias [15] sequentially
estimated the orientation of two cameras mounted on a mobile robot based on Givens transformations.
Edmundson and Fraser [16] effectively implemented on-line quality control of single-sensor vision
metrology through on-line triangulation.

Although the sequential algorithm based on Givens transformations is efficient for estimating the
unknown camera parameters, it cannot provide the variance-covariance matrix of the estimates without
reverse computation. This is because it changes the structure of the normal matrix by application of
the Givens transformation. However, the variance-covariance matrix should be produced in real time so
that we can compute the correlation of a new image with the previous images in the sequence. With
any efficient sequential algorithm, the processing time at least gradually increases with the number of
images. To limit the processing time to a certain threshold such as the image acquisition period, we
should discard some images that are significantly less correlated with the new image. In this study, we
thus attempt to develop a new sequential aerial triangulation algorithm that can estimate and update not
only the camera parameters but also their variance-covariance matrix in real time whenever a new image
is added to an image sequence. Using this algorithm, we can update the inverse of the normal matrix
with minimal computation while maintaining the original structure of the normal matrix. In this paper,
we introduce the new sequential aerial triangulation algorithm, summarize the experimental results, and
present some conclusions and future research.

2. Sequential AT Algorithm

To establish real-time image georeferencing, all inputs such as controlled information and tie points
between adjacent images must be determined in real time whenever an image is newly captured. The
controlled information about ground truth is acquired by surveying ground control points or from the
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GPS/INS sensors. Acquisition of the ground control points requires labor-intensive operations that
preclude real-time processing. Therefore, we assume that image georeferencing is performed without
ground control features in which only the initial camera parameters are provided from the GPS/INS
sensor. It is also assumed that a sufficient number of tie points among the successive images are collected
from a robust real-time image matching algorithm [17]. The whole real-time image georeferencing
system is presented in Figure 1.

Figure 1. Real-time image georeferencing.

Under these assumptions, we have to perform aerial triangulation in real time for real-time image
georeferencing. Aerial triangulation is a sequential estimation problem where we have to update existing
parameters whenever new observations and even new parameters are added. Therefore, we propose a
sequential aerial triangulation approach in which we will not only estimate the camera parameters of the
new images, but also update those of the existing images whenever a new image is added.

During real-time image acquisition, a new image is continuously being added into an image sequence.
The addition of an image involves the addition of the following new parameters: six extrinsic parameters
of the camera, also called the exterior orientation parameters (EOP), and 3n parameters for the ground
point coordinates corresponding to n pairs of the new tie points. The traditional simultaneous AT
algorithm estimates the existing and new parameters using the existing and new observations based on a
grand adjustment process, and ignores any computation results from the previous stage. As the number
of images increases, this process requires much more time and memory for computation, preventing
real-time processing. In order to perform georeferencing of an image sequence in real time, we use
a sequential AT approach equipped with an efficient update formula that can minimize the amount of
computation at the current stage by using the computation results from the previous stage.

For the sequential AT approach, we classify the observations into three types, y1, y2, and y3, where y1

represents the observations only related to the existing parameters, y2 corresponds to those related to the
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existing and new parameters, and y3 denotes only those related to the new parameters. In most situations
such as the acquisition of an image sequence, the size of y1 continues to increase as time elapses, but
the sizes of y2 and y3 are small and only change slightly. Our new sequential AT approach enables us to
compute the inverse of the normal matrix of all the observation equations using only new observations for
the nearly constant-sized parameters, y2 and y3, and the inverse of the normal matrix already computed
from the previous stage. The new sequential AT approach consists of two stages. In the initial stage,
where only a small number of images are acquired, we can apply the traditional simultaneous algorithm
in a reasonably short processing time. As the number of images acquired becomes larger than a threshold,
we move to the combined stage where we apply the sequential algorithm.

2.1. The Initial Stage

In the initial stage, a small number of images are acquired, and the traditional simultaneous aerial
triangulation algorithms based on bundle block adjustment is applied. Here, the EOP of the images and
the coordinates of ground points (GP) corresponding to the tie points are the parameters to be estimated.
The collinearity equations for all the tie points are used as the observation equations. The initial EOP
provided from the GPS/INS system is used for stochastic constraints. The observation equations with
the stochastic constraints can be expressed as[

y11

z1

]
=

[
Ae11 Ap11
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][
ξe1
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]
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where ξe1 and ξp1 are the parameter vectors for the EOP and GP, respectively; y11 is the observation
vector for the tie points; Ae11 and Ap11 are the design matrices derived from the partial differentiation
of the collinearity equations corresponding to the tie points with respect to the parameters, ξe1 and ξp1;
z1 is the observation vector of the EOP provided by the GPS/INS system; K1 is the design matrix
associated constraints, expressed as an identity matrix; ey11 and ez1 are the error vectors associated with
the corresponding observation vectors; σ2

0 is the unknown variance component; P−1
y11 is the cofactor

matrix of ey11, generally expressed as an identity matrix; and P−1
z1 is the cofactor matrix of ez1, reflecting

the precision of the GPS/INS.
The observation equations can be rewritten as
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where
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]
By applying the least squares principle, we can derive the normal equations as follows:

N11ξ̂1 = c1 (3)
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where

N11 ≡ AT
11P1A11, c1 ≡ AT

11P1y1, and ξ̂1 =

[
ξ̂e1

ξ̂p1

]
With the sub-block representations of the normal matrix and the right side, the normal equation can
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The inverse of the normal matrix is then represented as
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whereN−1
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T
ep11)
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−1
p11; U2 = −N−1

r1 U1; and U3 = N−1
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1 N
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r1 U1.

For this computation, we need to calculate the inverses of the matrices, Np11 and Nr1. The
computation of N−1

p11 is efficient because it is a 3 × 3 block diagonal matrix, and the computation of
N−1

r1 is also efficient because it is a band-matrix. This is a well-known property of the bundle block
adjustment method. Therefore, the parameter estimate can be computed as

ξ̂e1 = N−1
r1 (ce11 + cz1)−N−1

r1 Nep11N
−1
p11cp11

ξ̂p1 = N−1
p11(cp11 −NT

ep11ξ̂e1) (6)

2.2. The Sequential Combined Stage

With the results of the initial stage, we can progress toward the combined stage. At the combined
stage, we have a set of new images and the newly identified ground points corresponding to the tie
points either in new images only or in new and existing images together. The parameter vectors for the
EOP of the new images and the newly identified ground point coordinates are denoted as ξe2 and ξp2,
respectively. In addition, we also have two kinds of new observations. One set of observations is related
to both existing and new parameters, and the other set of observations is related to only new parameters.
The observation equations corresponding to the first set are expressed as shown in Equation (7), and the
observation equations corresponding to the second set are expressed as Equation (8).
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where y12 is the observation vector for the image points in the existing images for newly identified
GPs; y21 is the observation vector for the image points in the new images for previously identified GPs;
Ae12 andAp12 are the design matrices derived from the partial differentiation of the collinearity equations
corresponding to the image points related to y12 with respect to the parameters, ξe1 and ξp2; Ap21 andAe21

are the design matrices derived from the partial differentiation of the collinear equations corresponding
to the image points related to y21 with respect to the parameters, ξp1 and ξe2; ey12 and ey21 are the error
vectors associated with the corresponding observation vectors; P−1

y12 and P−1
y21 are the cofactor matrix of

ey12 and ey21, generally expressed as an identity matrix.
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where y22 is the observation vector for the image points in the new images for newly identified GPs;
Ae22 and Ap22 are the design matrices derived from the partial differentiation of the collinear equations
corresponding to the image points related to y22 with respect to the parameters, ξe2 and ξp2; z2 is the
observation vector about the EOP of the new images, provided by the GPS/INS system; K2 is the design
matrix associated with the constraints, expressed as an identity matrix; ey22 and ez2 are the error vectors
associated with the corresponding observation vectors; P−1

y22 is the cofactor matrix of ey22, generally
expressed as an identity matrix; and P−1

z2 is the cofactor matrix of ez2, reflecting the precision of the
GPS/INS system.

The new observation equations in Equations (7) and (8) are combined with the existing observation
equations in Equation (1) to estimate the parameters at the combined stage. The entire combined
observation equations are then expressed as y1
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where
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The normal equations resulting from the application of the least squares principle to the observation

equations are expressed as[
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where N11 ≡ AT
11P1A11; M11 ≡ AT

21P2A21; M12 ≡ AT
21P2A22; M22 ≡ AT
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32P3A32;
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During an estimation process based on the least squares principle, the most time-consuming step is

the computation of the inverse of the normal matrix. Since the size of the normal matrix is the sum of the
number of existing and new parameters (n1 +n2), it gradually increases while new images are repeatedly
acquired. Although we have to estimate all the parameters whenever a new image is acquired, after a
significant number of images are acquired, we cannot compute the inverse of the normal matrix within
the required time period since the size of the normal matrix is too large. This requires the derivation
of an update formula in order to efficiently compute the inverse of the normal matrix using the results
computed at a previous stage.

The inverse of the normal matrix can be written as[
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]−1

=
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]

where R ≡ A−BD−1C.



Remote Sens. 2013, 5 65

The main component in the inverse of the normal matrix is N−1
r . This can be computed as

N−1
r = N−1

11 −N−1
11 A

T
21[I + P̄2A21N

−1
11 A

T
21]

−1P̄2A21N
−1
11 (12)

where P̄2 ≡ (P2 − P2A22(M22 + L22)
−1AT

22P2), using

(A−BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1

Since we already computed N−1
11 in the previous stage, we will only compute [I + P 2A21N

−1
11 A

T
21]

−1

and (M22 + L22)
−1 in P 2. Using these derivations, we can efficiently compute the inverse of the normal

matrix in Equation (11). Suppose that we have already had 150 images and 100 GPs, and a new image
and 3 GPs have just been acquired. It should be noted that the size of the inverse normal matrix to be
computed is (n1 + n2), where n1 is the number of existing parameters, (150 × 6) + (100 × 3) = 1200,
and n2 is the number of new parameters, (1 × 6) + (3 × 3) = 15. Although we employ a reduced
normal matrix scheme, we have to compute a large inverse matrix. The dimension of one matrix is
(151× 6) = 906, depending on the total number of images. This number grows during image acquisition
and eventually it is impossible to compute the inverse of the normal matrix within the maximum time
period allowed for real-time georeferencing, which is normally less than the image acquisition period.

Such a situation can be relieved by using an efficient sequential update formula derived from
Equations (11) and (12). Assume that one GP among three new GPs appears on the previous three
images and eight GPs among the existing 100 GPs appear on the new image. Using our sequential
formula, we should compute two inverse matrices, [I + P 2A21N

−1
11 A

T
21] and (M22 + L22). The size of

the first one is n12 + n21, where n12 is the number of observations corresponding to new GPs appearing
on previous images, ((1 × 3) × 2) = 6, and n21 is the number of observations corresponding to existing
GPs emerging on new images, ((8 × 1) × 2) = 16. Furthermore, the size of the second one is np2 × ne2,
where np2 is the number of observations corresponding to new GPs only appearing on new images,
((2 × 1) × 2) = 4, and ne2 is the number of EOPs of the new images, (1 × 6) = 6. Hence, instead of
computing an inverse of a matrix with a size of 906, we can estimate the same parameters by computing
only the inverses of two matrices, the sizes of which are 22 and 10, using our sequential formula.
This numerical example indicates our algorithm’s computational efficiency and is practical for real-time
applications. The estimates for the existing parameter vector can be expressed as the estimates at the
previous stage ξ̂1. It is updated for the current stage, as shown in Equation (13). The estimates for the

new parameter vector ˆ̂
ξ2 can be derived according to Equation (14).

ˆ̂
ξ1 = ξ̂1 +N−1

11 A
T
21[I + P̄2A21N

−1
11 A

T
21]

−1{P̄2(y2 − A21ξ̂1) + P̄23y3} (13)
ˆ̂
ξ2 = (M22 + L22)

−1(d2 + b2 −MT
12

ˆ̂
ξ1)

= (M22 + L22)
−1{AT

22P2(y2 − A21
ˆ̂
ξ1) + AT

32P3y3} (14)

2.3. The Sequential AT with Highly Correlated Images

The number of parameters to be updated increases linearly whenever a new image is added into an
image sequence, although we use the computation results from the previous stage to efficiently compute
the inverse of the normal matrix at the current stage. If we have to acquire an image sequence for a long
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time, it would be impossible to perform AT in real time due to the extremely large size of the parameter
vector. We thus need to maintain a constant parameter vector size for real-time processing. For this
purpose, we may update the parameters associated with a certain number of recent images, for example,
the latest 50 images. However, such a constant number is set by intuition; it does not originate from
the underlying principle of the estimation process. In this study, the correlation between parameters
is employed to reasonably limit the size of the parameter vector. It is obvious that some images in
the beginning of the sequence must have almost no correlation with a new image if image acquisition
continues for a long time. Therefore, we do not update the parameters associated with the images in
the beginning of the sequence in such a case. To exclude parameters associated with the images in the
beginning of the sequence, we determine the correlation coefficient between the parameters of the current
stage and those of the previous stage. If the correlation coefficients between the previous parameters and
current parameters are larger than a threshold, only the previous parameters should be updated.

The correlation coefficient is an efficient measure of the correlation between two variables. In
general, the correlation coefficient between two variables can be computed using the covariance between
the two variables and the standard deviation of each variable. A variance-covariance matrix, derived
from an adjustment computation, consists of the variance of a parameter and the covariance between
parameters. Our sequential AT process not only estimates the parameters, EOP and GP, but also offers
a cofactor matrix (Q) including the variance of the estimated EOP/GP and the covariance between
the estimated EOP/GP at every stage. In our proposed algorithm, as shown in Equation (12), the
cofactor matrix can be efficiently updated at every stage and is thus actually ready to use without further
matrix operations. The diagonal element of the Q matrix is the variance, indicating the dispersion
of the estimated EOP/GP, while the remaining off-diagonal element is the covariance, indicating the
correlations between the estimated EOP/GP. Consequently, we can quickly calculate the correlation
coefficient between parameters using the standard deviation, which is the square root of the diagonal
elements and the covariance from the cofactor matrix.

We have two classes of parameters, i.e., EOPs of each image and GPs corresponding to all the tie
points. The parameters to be updated are selected separately from among previous parameters as a
class. First, we select previous EOPs that are highly correlated with the EOPs of a new image by
determining the correlation coefficient between EOPs. However, a problem arises because the correlation
coefficient between the existing EOPs and the EOPs of a new image can be found only after adjusting for
both existing parameters and new parameters. It is inefficient to adjust all previous parameters without
excluding those that correlate poorly with new parameters. It is apparent that a new image is likely to be
closest to the last image of the previous set, so we use the correlation coefficient between the EOPs of the
previous images and the EOPs of the last image of the previous set instead of the EOPs of the new image.
As shown in Figure 2, the last image (blue) instead of the new image (red) is employed to compute the
correlation coefficient of the previous images. The EOPs of the image, whose correlation coefficients
with the EOPs of the last image are less than a threshold, are excluded from the parameter vector to be
updated. Each EOP set of two images has six parameters, X, Y, Z, ω, φ, and κ, referring to the position
and attitude of the camera. Therefore, the correlation coefficients between the EOPs of the two images
are presented as a 6 × 6 matrix. The maximum value among those 36 components in the correlation
coefficient block is considered the correlation coefficient between the EOPs of the two images.
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Figure 2. Exclusion process of the previous parameters.

To facilitate the efficient implementation of this algorithm, there is no further examination of the
correlation coefficient between the EOPs of the next images and the EOPs of the last image after an
image highly correlated with the last image is detected from the beginning of the sequence. For example,
if the correlation coefficient between the EOPs of the third image and those of the last image is more
than the threshold for the first time, all of the EOPs from the third image to the last image should be
updated, even though the correlation coefficient of the EOPs for the fifth and the last image is less than
the threshold (Figure 2).

After the images associated with the EOPs included in the adjustment are selected, GPs appearing
only in the images associated with EOPs excluded from the adjustment also have to be eliminated in
the adjustment computation. Some GPs may appear only once in the images associated with the EOPs
included in the adjustment. They should also be deleted from the adjustment computation because they
can no longer be considered to be derived from tie points. As shown in Figure 2, white GPs do not appear
or appear only once in the images associated with the EOPs included in the adjustment. Therefore, those
white GPs are excluded from the parameter vector to be updated. Finally, the EOPs and GPs that are
highly correlated with a new image are determined and the size of the parameter vector can be held
nearly constant. The algorithm for keeping constant the parameter vector size is summarized below.

Do if a new image is acquired
For n = 1: the number of previous images

Calculate the correlation coefficient between EOPs of a previous
image and the new image.
If (the correlation coefficient < a threshold)

Exclude the EOPs of a previous image from the parameter vector.
Else

Count the number of images that appear per previous GP
If (the appearance number > 1)

Include the GP in the parameter vector
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3. Experiments with Simulated Data

Experiments were conducted with simulated data sets to evaluate our proposed AT algorithm. We
implemented three types of aerial triangulation processes, the sequential AT with highly correlated
images (Seq-R), the sequential AT with full images (Seq-F), and the simultaneous AT (Sim) using Matlab
(ver. R2008b), and tested them in the computing environment described in Table 1. Each AT method
was applied with simulated data and the results were analyzed in terms of accuracy and processing time.

Table 1. Implementation and test environments.

Environment Specifications

Operating System Microsoft Window XP SP3
CPU Intel(R) Core(TM)2 Duo CPU

E7500 @ 2.93 GHz, 2.93 GHz
RAM 3.00 GB

3.1. Preparation for Experiments

Emergency monitoring will definitely benefit from real-time image georeferencing technologies. In
an emergency situation, we need a feasible platform such as an unmanned aerial vehicle (UAV). One of
the advantages of utilizing an UAV is that it can fly over dangerous regions without a human operator. In
addition, it enables us to acquire sensory data with high spatial resolution since it can fly at relatively low
altitude. Thus, we assumed a multi-sensor system based on a close-range UAV to simulate experimental
data. We assumed that the system is equipped with a medium-format digital camera and a medium-grade
GPS/INS. These sensors were carefully selected among the actual sensors available in current markets
and their specifications were used for the simulation parameters. Under reasonable assumptions for
flight and sensor parameters and a terrain model, we determined the attitude and position of the camera
at the time of exposure of each image and the tie points in the adjacent images. The main simulation
parameters are summarized in Table 2.

The simulation procedure is shown in detail in Figure 3. First, we determined a flight trajectory and
acceleration and angular acceleration along the trajectory. We determined the true attitude and position
by substituting the acceleration and the angular acceleration into the navigation equation. By sampling
the attitude and position at the frame rate, true exterior orientation parameters (EOPs) were obtained.
We simulated the measured EOP pos (position) and EOP att (attitude) by adding position and attitude
measurement errors to the true EOPs, respectively. Then, we produced true ground point coordinates
(GPs) within the project areas boundaries, which were determined according to the true EOPs and image
coverage. The true image point coordinates (IPs) were generated through back-projection based on
collinearity equations. Finally, we simulated the IPs by adding measurement errors, 1 pixel size, to the
true IPs. We assigned the standard deviations of the position and attitude errors as 0.3 m and 0.1◦ by
assuming a SBAS (Satellite Based Augmentation System) GPS/INS system.
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Table 2. Main simulation parameters.

Category Parameter Value Unit
height 200 m

Flight speed 10 m/s
configuration no. strips 1

length of a strip 2,000 m
focal length 17 mm

Camera pixel size 3.45 × 3.45 µm
detector dimensions 2,456 × 2,058 pixels

frame rate 2 images/s
GPS/INS position error 0.3 m

attitude error 0.1 degree

Figure 3. Simulation procedures.

There were a total of 5,812 simulated images points and 304 ground points, and an average of 14.4
conjugate points between adjacent images. The overlap ratio between two subsequent images was almost
94%. One ground point appeared in 20 images on average except at the fringes of the project area. The
results of the simulation are summarized in Table 3. We implemented three types of AT processes and
compared them quantitatively, denoted as Sim, Seq-F, and Seq-R. The first is the traditional simultaneous
AT; the second is the sequential AT considering all the previous images; the third is the sequential AT
considering only the images that are highly correlated with the newest image. In the third process,
we exclude images for which the correlation with the last image in the previous set was less than a
threshold. The threshold can be variably defined based on processing time requirements and the accuracy
of AT results.
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Table 3. Simulation results.

Parameter Value
Images per strip 384
Ground points 304
Image points 5,812

Image points per ground point 20
Tie points between adjacent images 14
Ground Sampling Distance (GSD) 3 cm

3.2. Accuracy Verification

By applying the simulated data to the three different AT processes, we can estimate the EOPs and GPs
whenever a new image is acquired. Since the input data are a simulated set, we know the true values for
all the unknowns and compute the RMSE by comparing them with the estimated ones. Figures 4 and 5
show the RMSEs of the estimates for the position and attitude parameters among EOPs, respectively.
The green lines represent the RMSE of the initial approximations, which indicate the accuracy of the
direct measurements by the GPS/INS. The RMSE of the initial approximations, about 0.32 m and 0.1◦,
corresponds to the assumption about the GPS/INS quality parameter in Table 1, as expected.

Figure 4. RMSE of estimated EOP (position).

The red, blue and pink lines represent the RMSE of the estimates from the sequential AT with only
highly correlated images (Seq-R), the sequential AT with full images (Seq-F), and the simultaneous AT
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(Sim), respectively. The results from all types of AT are evidently better than the initial approximation
the results from direct georeferencing. In addition, the results from each AT method are very similar.
We see that the red, blue and pink lines almost coincide. The RMSEs of the estimated EOPs from each
method are about 0.18 m and 0.05◦. This is nearly a 50% improvement in accuracy compared with the
results of direct georeferencing. Indirect georeferencing technologies based on aerial triangulation can
compensate for position/attitude sensor performance such as in GPS/INS. Figure 6 shows the RMSE of
the estimates for the GPs. The initial approximation for GPs can be computed using the tie points and
the initial EOPs provided by GPS/INS. The RMSE of the initial approximation for GPs is about 1 m,
which is quite reasonable considering the propagation of GPS/INS, IP and GP measurement errors to
GP estimates. Through indirect georeferencing, such as Sim, Seq-F and Seq-R, the RMSE for GP is
significantly reduced from about 1 m to 10 cm. All the parameters can be estimated through Seq-F or
even Seq-R without large decreases in the RMSE, as compared with the RMSE of Sim.

Figure 5. RMSE of estimated EOP (attitude).

To compare the results from these methods, we compute the standard deviation of the differences
between the ground point coordinates estimated using the three different methods, as shown in Figure 7.
The blue line indicates the standard deviation of the difference between the results from Seq-F and Sim.
The differences are relatively large for about 20 images in the beginning of the sequence. Thereafter,
the differences decrease considerably and finally come within ± 1 cm. With the Seq-R results, the
differences are limited to within ± 3 cm even though some previous images are excluded for faster
computation. We can perform georeferencing of an image sequence using sequential AT with only highly
correlated images and have accuracy of ± 3 cm compared with a post-processing method, simultaneous
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AT. In this experiment, the correlation coefficient threshold to exclude the less correlated images is set
to 0.1.

Figure 6. RMSE of estimated ground point coordinates.

Figure 7. Standard deviation of estimated ground point coordinates.
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3.3. Processing Time

The goal of sequential AT is to determine the EOP of all the images in almost real time whenever
a new image is acquired. Therefore, it is necessary to prove that sequential AT is more efficient than
simultaneous AT in terms of processing time. Figure 8 shows the processing time of each method
according to the number of images being acquired within an image sequence. The pink line denotes the
processing time of the simultaneous AT. The blue line and red line represent the processing time of the
sequential AT with full images and the sequential AT with only highly correlated images, respectively.
From the comparison of the processing times, we found that the processing time of sequential AT is
much shorter than that of simultaneous AT, as expected.

Figure 8. Processing time of the three AT methods.

The processing time of simultaneous AT increases proportionally to the square of the number of
images as shown in Figure 8. Many peaks appearing on the graph that indicate the processing time
of simultaneous AT arise since the number of iterations is varied to solve the non-linear problem.
Simultaneous AT requires significantly more computation time than sequential AT mainly because the
dimension of the inverse normal matrix increases remarkably due to the increasing number of images.
In spite of the reduced normal matrix scheme, we have to compute two kinds of inverse normal matrices
(N−1

r andN−1
pp ) with dimensions that depend on the number of total images and GPs. The dimensions are

(ne× 6) and (ngp× 3), where ne and ngp are the total number of images and GPs, respectively. As image
acquisition progresses, it is obvious that the dimensions rapidly increase according to the increasing
number of total parameters, EOPs and GPs. However, with our sequential methods, both Seq-F and
Seq-R, inverse operations required at each stage, are only [I + P 2A21N

−1
11 A

T
21]

−1 and (M22 + L22)
−1 as

indicated earlier. Their dimensions depend principally on the number of newly acquired observations and
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thus can be maintained as a small constant. The sizes ofNr andNpp increase almost linearly according to
the number of images, while the size of (M22 +L22) is maintained almost constantly with slight changes,
as shown in Figure 9. The increase in the sizes ofNr andNpp is not suitable for real-time georeferencing.
Consequently, simultaneous AT cannot be employed for applications requiring real-time georeferencing
even though it provides highly accurate results.

The processing time of sequential AT with full images also increases slightly with the number of
images as shown in Figure 10, which is an enlargement of Figure 8. This is because the size of the
parameter vector to be updated increases linearly with the number of images. The time to update
the parameter thus increases linearly, although the inverse normal matrix can be computed within a
constant time frame, regardless of the number of images. This linear increase makes real-time processing
impossible when the image sequence is long and comprises a large number of images. The processing
time at each stage must be limited to a constant to facilitate real-time processing.

Sequential AT with highly correlated images can be useful for real-time processing for a long image
sequence. In such a sequence, it is obvious that some images in the beginning of the sequence must have
almost no correlation with a new image. Hence, we choose not to update the parameters associated with
the images in the beginning of the sequence. Here, the question is how many images in the beginning
of the sequence can be safely excluded from the adjustment. Instead of setting a particular number of
images to be excluded, we adaptively select the images that would have an almost negligible impact
on the adjustment by determining their correlation with the new image. Such images with EOPs that
have a low correlation coefficient with the EOPs of the new image can be reasonably excluded from
the adjustment.

Figure 9. Dimension of the inverse matrices to be computed.
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Figure 10. Processing time of the three AT methods (zoomed in).

Figure 11. Size of parameter vectors.

In the experiment, we exclude the images with correlation coefficients less than 0.1. With this
threshold, the size of the parameter vector is maintained at about 400 (Figure 11). The processing time
of Seq-R can be limited to 0.1 s (Figure 10). Since a new image is acquired every 0.5 s, the processing
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time is fully satisfactory for real-time image georeferencing. Furthermore, the speed requirement of a
specific application can be fulfilled by selecting an appropriate threshold for the correlation coefficient.

4. Application to Real Data

4.1. Data Preparation

We acquired the real data using an airborne multi-sensory system composed of an UAV and sensors
such as a digital camera, a laser scanner, and GPS/INS. The main specifications of the sensors are
summarized in Table 4. The test site covers residential, agricultural and river areas in Chungju, Korea.
The flight altitude and velocity are 200 m and 60 km/h, respectively. The flight trajectory is shown over
the test site in Figure 12. The system during the data acquisition is presented in Figure 13.

Table 4. Main specifications of the sensors.

Sensors Specifications

medium format
Camera effective pixels : 4,872 × 3,248

focal length : 50 mm
frame rate : 1 fps
tactical grade

GPS/INS position accuracy : 0.3 m
attitude accuracy : 0.1◦

data rate : 20 Hz

Figure 12. Test site and flight trajectory.

We obtained 113 images with a GSD (Ground Sampling Distance) of 3 cm and performed automatic
image matching using a commercial digital photogrammetric workstation to generate conjugate points,
the input data for AT. A total of 1,488 conjugate points corresponding to 304 ground points are produced
with an average of 13 conjugate points between adjacent images. The coverage of the images and the
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distribution of the ground points are shown in Figure 14. The green dots indicate the ground points and
the red dots indicate the camera positions at the exposure times.

Figure 13. Airborne multi-sensory system during data acquisition over the test site.

Figure 14. Image coverage and ground points.
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4.2. Results and Analysis

We applied our sequential AT algorithms to the real data and analyzed the results in terms of the
accuracy and processing time. To verify the accuracy, we compared the estimates from our AT methods
(Seq-R and Seq-F) with those from the conventional AT method (Sim). Since we do not know the true
values for the unknowns in the experiments using real data, we used the Sim results as the reference data
instead. The Sim results have been recognized as the most accurate, although Sim cannot be performed
in real time.

The AT results are verified in terms of EOP positions, EOP attitudes, and GPs. The RMS values of
the differences between three AT results are shown in Figures 15–17. Our algorithm operates the same
as the Sim algorithm in the initial stage when a small number of images are acquired. The differences are
thus presented after the 11th image. When the sequential combined stage starts from the 11th image, the
RMS values increase dramatically and decreases gradually while new images are continuously acquired.
When the final image is acquired, the RMS values of the differences between Seq-R and Sim estimates
on EOP positions, EOP attitudes, and GPs reach about 0.7 mm, 0.0006◦ and 5 cm, respectively. It is
important that the results from our algorithm are increasingly similar to those from Sim as the sequential
stage progresses.

The processing times of each AT method according to the number of images being acquired are shown
in Figure 18. As we expect, the processing time of Sim increases drastically according to the number of
images, which makes it impossible to operate in real time. Only the Seq-R consumes a bounded time,
less than 0.1 s, regardless of the number of images.

Figure 15. RMS values of EOP differences (position).
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Figure 16. RMS values of EOP differences (attitude).

Figure 17. RMS values of GP differences.
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Figure 18. Processing time of each AT method.

5. Conclusions

This research proposes a new sequential AT algorithm to perform real-time georeferencing of image
sequences acquired by an airborne multi-sensor system. Although the traditional AT algorithm can
produce very accurate results, it cannot be employed for real-time georeferencing due to its computation
time, which dramatically increases with the number of images. The proposed sequential AT algorithm
can produce accurate results comparable to those from the simultaneous AT with a computation
time maintained within a constant time frame. This algorithm can be controlled such that it has a
computation time shorter than the image acquisition time, which supports real-time georeferencing.
Rapid computation is possible since only the minimum computation at the current stage is performed,
using the computational results from the previous stage whenever a new image is added. Moreover, the
exclusion of an image based on the correlation between the existing and new parameters in the algorithm
can minimize the processing time.

The accuracy and processing speed were verified by applying this algorithm to a simulated data set.
The experimental results show that the georeferencing of an image sequence is possible in less than 0.1 s
whenever a new image is acquired every 0.5 s. The accuracy of the sequential AT results is comparable to
that from the simultaneous AT results, where the differences between both results are very small, within
±3 cm in terms of the ground point coordinates. In addition, the proposed algorithm was applied to a real
data set acquired by an airborne multi-sensory system and the results confirm that it works efficiently
with the real data as well as the simulated data.

Consequently, it is expected that our sequential AT algorithm can be effectively employed for various
applications requiring real-time image georeferencing such as disaster monitoring and image-based



Remote Sens. 2013, 5 81

navigation. In the near future, this sequential AT algorithm will be integrated with a real-time image
matching algorithm for real-time image georeferencing. Finally, this approach will be applied to a variety
of real data sets and also verified with respect to accuracy and processing speed.
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