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Abstract: Net radiation is a key component of the energy balance, whose estimation 

accuracy has an impact on energy flux estimates from satellite data. In typical remote 

sensing evapotranspiration (ET) algorithms, the outgoing shortwave and longwave 

components of net radiation are obtained from remote sensing data, while the incoming 

shortwave (ܴS՝) and longwave (ܴL՝) components are typically estimated from weather data 

using empirical equations. This study evaluates the accuracy of empirical equations 

commonly used in remote sensing ET algorithms for estimating ܴS՝ and ܴL՝  radiation. 

Evaluation is carried out through comparison of estimates and observations at five sites 

that represent different climatic regions from humid to arid. Results reveal (1) both ܴS՝ and ܴL՝  estimates from all evaluated equations well correlate with observations (R2 ≥ 0.92),  

(2) ܴS՝ estimating equations tend to overestimate, especially at higher values, (3) ܴL՝  

estimating equations tend to give more biased values in arid and semi-arid regions, (4) a 
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model that parameterizes the diffuse component of radiation using two clearness indices 

and a simple model that assumes a linear increase of atmospheric transmissivity with 

elevation give better ܴS՝ estimates, and (5) mean relative absolute errors in the net radiation 

(Rn) estimates caused by the use of ܴS՝ and ܴL՝  estimating equations varies from 10% to 

22%. This study suggests that Rn estimates using recommended incoming radiation 

estimating equations could improve ET estimates.  

Keywords: net radiation; incoming shortwave radiation; incoming longwave radiation 

 

1. Introduction 

Net radiation (Rn) is a key component of the energy balance, whose estimation accuracy has an 

impact on energy flux estimates from remotely sensed data. In typical algorithms that handle remote 

sensing data, evapotranspiration (ET) is estimated as a residual of Rn after accounting for sensible heat 

flux (H) and soil heat flux (G) [1–4]; G is estimated from empirical equations that relate G/Rn to 

vegetation index, and H is estimated such that the maximum value of H over a “hot” surface does not 

exceed Rn. Llasat and Snyder reported that 65%–85% of the error in Rn estimation directly propagates 

to crop-reference ET in the Catalonia region of Spain [5]. Sun et al. showed that a 10% error in Rn 

could result in a 25% error in actual ET when the latter is estimated through the Sim-ReSET algorithm 

over an irrigated crop field in a semi-arid climate [6]. 

In algorithms that estimate energy fluxes from remotely senses data, Rn is estimated by summing up 

estimates of its shortwave and longwave components: 

4
n S S L L S L s s(1 )R R R R R R R Tα ε σ↓ ↑ ↓ ↑ ↓ ↓= − + − = − + −  (1) 

where ܴS՝ is the incoming shortwave radiation, ܴS՛ is the outgoing shortwave radiation, ܴL՝  is the 

incoming longwave radiation, ܴL՛  is the outgoing longwave radiation, α is the surface albedo, ߝs is the 

surface emissivity, σ is the Stefan-Boltzmann constant (i.e., 5.670373×10−8 W/m2/K4), and ୱܶ [K] is the 

surface temperature. The incoming components (ܴS՝ and ܴL՝) might be indirectly estimated from remote 

sensing data and atmospheric profile observational data through radiative transfer models [7–10], but 

they are typically estimated from available weather station data using empirical but straightforward 

equations in remote sensing ET algorithms [1,6,11–13]. The outgoing components (ܴS՛ and ܴL՛) could 

be directly estimated from remote sensing optical and thermal information of land surface. 

Several studies have been conducted to evaluate empirical estimating equations of incoming 

components. For example, Gubler et al. evaluated clear-sky ܴS՝ and all-sky ܴL՝  parameterizations in 

Switzerland [14]; Trnka et al. evaluated various empirical formulae of RS՝  in Central European 

lowlands [15]; Marthews et al. evaluated contrasting semi-empirical estimation schemes of ܴL՝  under clear 

and cloudy conditions over a tropical lowland forest site [16]; Carmona et al. estimated daytime ܴL՝  under 

clear and cloudy skies conditions over a sub-humid region [17]. However most of those studies were 

limited to either one or few locations, and Rn calculated from ܴS՝ and ܴL՝  was not evaluated.  

The purpose of this study was to evaluate the accuracy of commonly used empirical equations that 

estimate ܴS՝, ܴL՝ , and then Rn from weather station data under clear sky conditions. Our approach was to 
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compare these estimates to ground-based measurements (observations) across continents with 

contrasting climates and land cover types. We considered 7 equations for estimating ܴS՝ and 6 equations 

for estimating ܴL՝ . The study was limited to clear-sky conditions (given our focus on satellite remote 

sensing ET algorithms and the fact that satellite remote sensing cannot provide useful visual and 

thermal data of land surface during cloudy sky conditions).  

This paper is organized as follows. Section 2 provides the commonly-used estimating equations for ܴS՝ and ܴL՝  under clear sky conditions. Section 3 presents an overview of the ground reference sites and 

measurements and the evaluation metrics employed. The results of the comparison of ܴS՝, ܴL՝ ,  

and Rn estimates against observations are provided and discussed in Section 4. Conclusions are  

drawn in Section 5. 

2. Methodology 

2.1. Estimating Equations for Incoming Shortwave Radiative Flux (ܴௌ՝) 

2.1.1. Theoretical Framework ܴS՝ is determined by the solar constant (ܵ଴, 1,367 W/m2), solar zenith angle (ߠ, rad), atmospheric 

transmissivity (τ), and Earth-Sun distance in astronomical unit (d, AU): 

0
S 2

cos
S

R
d

τ θ↓ =  (2) 

The Earth-Sun distance can be calculated using the day of year (DOY) [11]: 

DOY 93.5
1 0.0167 sin(2 )

365
d π −= +  (3) 

d varies between 0.9833 AU (3–5 January) and 1.0167 AU (3–7 July).  

The solar zenith angle can be calculated using geographical latitude (φ, rad), solar declination  

(δ, rad), solar hour angle (ω, rad), and topographic data [18,19]:  

For sloping surfaces, 

cos sin (sin cos cos sin cos )

cos cos (cos cos sin sin cos )

cos sin sin sin

s s

s s

s

θ δ φ φ γ
δ ω φ φ γ
δ γ ω

= −
+ +
+

 (4a) 

For horizontal surfaces, 

coscoscossinsincos ωϕδϕδθ +=  (4b) 

where s [rad] and γ [rad] are the slope and the azimuth calculated from digital elevation models. 

The solar hour angle is calculated using local time (t, h): 

12

12

tω π −=  (5) 

The solar declination is calculated using DOY: 

DOY 284
0.4093sin(2 )

365
δ π +=  (6) 
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The challenge in ܴS՝ estimation lies in obtaining accurate estimates of atmospheric transmissivity τ. 

A number of empirical equations have been proposed for estimating τ.  

2.1.2. Equations for Estimating Clear-Sky ܴS՝ 

We considered the following estimating equations commonly used in remote sensing ET algorithms 

for estimating ܴS՝ using weather station data: 

• SW1—the equation of Tasumi et al. [20], 
• SW2—the equation of Zillman [21], 
• SW3—the modified equation of Zillman [21], 
• SW4—the equation of Shine [22], 
• SW5—the modified equation of Shine [22], 
• SW6—the scheme of Allen et al. [23], and 
• SW7—the scheme of Kondo [24]. 

SW1—The equation of Tasumi et al. assumes that the atmospheric transmissivity in cloudless sky 

conditions is a constant value of 0.75 just above sea surface, and increases linearly with elevation [20]. 

The equation is given as: 

50 0
S 2 2

co s (0 .75 2 10 ) cos
S S

R E
d d

τ θ θ↓ −= = + ×  (7) 

where E [m] is the elevation above mean sea level. This equation was, for example, used for estimation 

of daily actual ET in North China [13].  

SW2—The equation of Zillman uses solar zenith angle and water vapor pressure (e0) at the screen 
level [21]: 

2
0

S 2
0

02
0

cos

1.085cos (2.7 cos ) 10 0.1

cos
cos

1.085cos (2.7 cos ) 10 0.1

S
R

e

S
e

θ
θ θ

θ θ
θ θ

↓
−

−

=
+ + × +

=
+ + × +

 (8) 

where e0 is in kPa. The seasonal variation of the Earth-Sun distance is not considered in this equation. This 

equation was adopted to estimate net radiation from Moderate Resolution Imaging Spectroradiometer 

(MODIS) data [25], and also was used in existing remote sensing ET algorithms [6,26,27]. 

SW3—The modified equation of Zillman [21]. We modified SW2 by varying the Earth-Sun 
distance seasonally: 

0
S 2 2

0

cos
cos

1.085 cos (2.7 cos ) 10 0.1

S
R

e d

θ θ
θ θ

↓
−=

+ + × +
 (9) 

SW4—The equation of Shine is a modified version of SW2 by adjusting the coefficients to well agree 

with the detailed calculations of a method as a function of cloud thickness and surface albedo [22]:  
2

0
S 2

0

02
0

cos

1.2cos (1.0 cos ) 10 0.0455

cos
cos

1.2cos (1.0 cos ) 10 0.0455

S
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e
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=
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 (10) 
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This equation also ignores the seasonal variation of the Earth-Sun distance. 

SW5—The modified equation of Shine [22]. We modified SW4 by varying the Earth-Sun 

distance seasonally: 
0

S 2 2
0

cos
cos

1.2 cos (1.0 cos ) 10 0.0455

S
R

e d

θ θ
θ θ

↓
−=

+ + × +
 (11) 

SW6—The equation of Allen et al. [23]: 

0
S 2

0
Bo Do 2

cos

( ) cos

S
R

d
S

K K
d

τ θ

θ

↓ =

= +
 (12) 

where KBo is the clearness index for direct beam radiation and KDo is the clearness index for diffuse 

beam radiation.  
The KBo is calculated as:  

0.4

t

0.00146
0.075( )

sin sin
Bo 0.98

P W

KK e β β
− −

=  (13) 

where Kt is the empirical turbidity coefficient, P [kPa] is the surface atmospheric pressure, β [rad] is the 

angle of the sun above the horizon, and W [mm] is the equivalent depth of precipitable water in the 

atmosphere. Kt varies between 0 (extremely turbid, dusty or polluted air) and 1 (clean air, typical of 

agricultural and natural vegetation regions). β is calculated from solar declination (δ) geographical 
latitude (φ), and solar hour angle (ω) as .coscoscossinsinsin ωϕδϕδβ += W is calculated from the 

water vapor pressure at the screen level (e0) and atmospheric pressure (P) as 1.214.0 0 += PeW . 

The KDo is calculated from KBo as: 

Bo Bo

Do Bo Bo

Bo Bo

0.35-0.36 , 0.15

0.18 0.82 ,0.065 0.15

0.10 2.08 , 0.065

K K

K K K

K K

≥
= + < <
 + ≤

 (14) 

SW7—The equation of Kondo considers the effect of atmospheric optical length, aerosol, vapor, 

and land surface albedo on shortwave radiation [24]:  

0
S 2

ln10 0
2

cos

( 0.70 )(1 )(1 ) cosMF

S
R

d
S

C e I J
d

τ θ

θ

↓

−

=

= + − +
 (15) 

where,  

0( / ) / cosM P P θ=  (16a) 

0.21 0.2C η= −  (16b)
20.056 0.16F η= +  (16c)

2(0.066 0.34 )( 0.15)J η α= + −  (16d)

w w0.014( 7.0 2.0 )I M F F= + +  (16e)

w 0.4343ln( /10)F W=  (16f)
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e1.234 0.21W W= −  (16g)
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where M is the optical length of atmosphere, P0 [kPa] is the standard atmospheric pressure at sea level, 

C and F are two aerosol optical parameters related to the turbidity coefficient (η, 0.03 for clear sky 

conditions), J is the parameter that accounts for the effect of surface albedo (as a constant of 0.2) on 

scattered light, I is the vapor optical parameter, Fw is an intermediate variable used to calculate I, W 

[mm] is the atmospheric precipitable water, We is an intermediate variable for W estimation, td [°C] is 

the dew point temperature, and b is the parameter that accounts for the effect of air pressure on 

atmospheric precipitable water. The SW7 scheme was used in the remote sensing ET algorithm of 

Nishida et al. [12], among others. 

2.1.3. Summary of Clear-Sky ܴௌ՝ Estimating Equations  

Shortwave radiation is the sum of a direct beam component and a diffuse component. Both 

components depend on atmospheric transmissivity (i.e., integrated effect of molecular and particulate 

absorption and scattering). Although these processes possess a spectral variability, simple models that 

compute integrated atmospheric transmissivity are often used in various remote sensing algorithms. 

Methods SW1 to SW5 are very crude approximations of the integrated shortwave radiation. The 

diffuse component is parameterized in SW6 using two clearness indices KBo and KDo, with the 

clearness index for the diffuse component that depends on the clearness index for the direct component 

and the latter is computed from an empirical turbidity coefficient which is assigned a constant value 

(equal to 1.0) for clear sky conditions. SW7 is more complex, and it is based on a number of relations 

that rely on two aerosol optical parameters related to the turbidity coefficient which is assigned a 

constant value for clear sky conditions. Molecular absorption is parameterized either from elevation 

(SW1) or from water vapor pressure (SW2 to SW5) or from atmospheric precipitable water (SW6 and 

SW7). The only difference between SW2 and SW3, and between SW4 and SW5, is the accounting for 

(or lack thereof) seasonal variation of the Earth-Sun distance. 

2.2. Estimating Equations for Incoming Longwave Radiative Flux (ܴ௅՝) 

2.2.1. Theoretical Framework ܴL՝  can be calculated as:  
4

L a aR Tε σ↓ =  (17) 

where ߝୟ is the atmospheric emissivity, and Ta [K] is the screen-level air temperature. Ta can be 

obtained from weather station data, but ߝୟ depends on vertical profiles of temperature and radiatively 
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active constituents that are not available from typical weather station data. ߝୟ is often estimated from 

weather station data using empirical equations, and therefore the challenge in ܴL՝  estimation lies in 

obtaining accurate estimates of ߝୟ. 
2.2.2. Equations for Estimating Clear Sky ܴL՝   

We considered the following estimating equations commonly used in remote sensing ET algorithms 

for estimating ܴL՝ using weather station data: 

• LW1—the equation of Brutsaert [28],  

• LW2 (a–d)—the equation of Prata [29] and its modified equations, and  

• LW3—the scheme of Kondo [24]. 

LW1—The equation of Brutsaert uses air temperature and vapor pressure to estimate  ܴL՝  [28]: 

4
L a a

1/7 40
a

a

10
1.24( )

R T

e
T

T

ε σ

σ

↓ =

=
 (18) 

where air temperature [K] and vapor pressure [kPa] measurements are taken at the screen level. This 

equation was used by Gao et al. [13], among others. 

LW2(a–d)—The equation of Prata uses atmospheric precipitable water and air temperature to 

estimate  ܴL՝  [29]: 

0.5

4
L a a

(1.2 3.0 ) 4
a[1 (1 ) ]W

R T

W e T

ε σ

σ

↓

− +

=

= − +
 (19a) 

where W [cm] is the atmospheric precipitable water. W is typically estimated from empirical equations 

involving air temperature and/or vapor pressure. This equation has been adopted for estimation of net 

radiation from MODIS data [25]. We considered four different empirical equations for estimating W: 

Prata [29]: 0 a465( / )W e T=  (19b) 

Kondo [24]: e0.1234 0.021W W= −  (19c)

Reitan [30]: dln 0.1102 0.06141W t= +  (19d)

Venäläinen [31]: 00.71104(493 / ) 0.032003aW e T= −  (19e)

Depending on the W equation, different LW equations can be distinguished:  

• LW2a refers to Equations (19a) and (19b), where air temperature [K] and vapor pressure [kPa] 

measurements are at the screen level. 

• LW2b refers to Equations (19a) and (19c), where We [mm] is obtained from Equation (16h). 

• LW2c refers to Equations (19a) and (19d), where td [K] measurement is at the screen level. 

• LW2d refers to Equations (19a) and (19e), where air temperature [K] and vapor pressure [kPa] 

measurements are at the screen level. 

LW3—The equation of Kondo uses We and air temperature to estimate clear-sky ܴL՝  [24]: 

).)ln011.0ln038.059.0( 4
ae

2
eL TWWR σ++=↓  (20) 
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This equation was used by Nishida et al. [12], among others. 

2.2.3. Summary of Clear-Sky ܴL՝  Estimating Equations  ܴL՝  can be calculated directly from air temperature and profile of atmospheric emissivity. While air 

temperature data are available from weather stations, atmospheric emissivity profiles are not. Simple 

models that compute integrated emissivity based on weather station data are often used in various 

remote sensing algorithms. Integrated atmospheric emissivity can be estimated from vapor pressure 

and air temperature at the screen level (LW1, LW2a, LW2d) or from dew point temperature (LW2b, 

LW2c, LW3). The equations also differ in their functional forms and parameter values. 

3. Data and Approach 

3.1. Data 

Our data came from flux tower stations at five sites (three sites in China, one site in South Africa, 

and one site in USA). Table 1 provides salient features of the sites, observed variables and data period. 

The sites represent a wide range of climatic conditions (humid to arid), elevations (28 m a.s.l. (meter above 

sea level) to 1177 m a.s.l.) and land cover conditions (paddy, irrigated crop, shrub, savanna, and pecan 

orchard). The sites in China have 30-min measurements of Ta, relative humidity (RH), P, Ts, ܴS՝, ܴS՛, ܴL՝ , ܴL՛ , and ܴn [32]. The site in South Africa has 30-min measurements of Ta, RH, P, ܴS՝, and ܴS՛ [33], and the 

site in USA has 60-min measurements of Ta, RH, P, ܴS՝, and Rn [34].  

The instruments were well maintained and calibrated yearly, and so the measurement errors can be 

safely assumed to arise only from the known instrument manufacturing errors. For example, a Q7 net 

radiometer (see http://www.campbellsci.com/q7-1-l for details) installed at the OPEC site has an 

accuracy of ±2.5%, while CNR1 net radiometers (see http://www.campbellsci.com/cnr1-l for details) 

installed at the other four sites have an accuracy of ±10% for daily totals. More information on the 

instruments and data quality is available in [32–34].  

3.2. Approach 

Our approach was to evaluate estimates of ܴS՝, ܴL՝ , and Rn through comparison of the estimates with 

flux tower observations. The estimates were obtained from empirical equations using input data (e.g., 

air temperature) provided by the flux tower observations. We used the following statistics to measure 

the performance of the estimates:  

1

1
ME ( )

n

i i
i

E O
n =

= −  (21a) 

1

1
MAE | |

n

i i
i

E O
n =

= −  (21b)

1

| |1
MRE

n
i i

i i

E O

n O=

−=   (21c)

where Ei is the estimated value, Oi is the flux tower observed value, ME is the mean error, MAE is the 

mean absolute error, MRE is the mean relative absolute error, and n is the number of pairs of estimated 

and observed values. 
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Table 1. Ground validation sites and ground-based measurements. 

Site Location 

Climate (Annual  

Average Temperature, 

Annual Precipitation) 

Land Cover Measurements * 

Date Available 

over the  

Whole Year of 

Taoyuan 

(China) 

111.469°E 

28.944°N 

108 m a.s.l. 

Humid 

(16.5 °C, 1,450 mm) 
Paddy 

Ta, RH, P, Ts,  ܴS՝, ܴS՛, ܴL՝ , ܴL՛ , Rn 
2003 

Yucheng 

(China) 

116.571°E 

36.829°N 

28 m a.s.l. 

Semi-arid 

(13.1 °C, 610 mm) 
Irrigated crop 

Ta, RH, P, Ts,  ܴS՝, ܴS՛, ܴL՝ , ܴL՛ , Rn 
2007 

Fukang 

(China) 

87.937°E 

44.292°N 

470 m a.s.l. 

Arid, 

(6.6 °C, 164 mm) 
Shrub 

Ta, RH, P, Ts,  ܴS՝, ܴS՛, ܴL՝ , ܴL՛ , Rn 
2003 

Skukuza 

(South Africa) 

31.497°E 

25.020°S 

365 m a.s.l. 

Semi-arid 

(21.9 °C, 547 mm) 
Savanna Ta, RH, P, ܴS՝, ܴS՛ 2008 

OPEC 

(New Mexico, USA) 

106.756°W 

32.225°N 

1177 m a.s.l. 

Arid, 

(17.8 °C, 280 mm) 
Pecan orchard Ta, RH, P, RS՝ , Rn 2003 

Note: *:Ta is the air temperature, RH is the relative humidity, P is the air pressure, Ts is the surface 

temperature, ܴS՝ is the downwelling shortwave radiation, ܴS՛ is the upwelling shortwave radiation, ܴL՝  is the 

downwelling longwave radiation, ܴL՛  is the upwelling longwave radiation, and Rn is the net radiation. 

4. Results and Discussions 

4.1. Evaluation of Clear-Sky Incoming Shortwave Radiation (ܴS՝) Estimating Equations  

Only clear-sky cases were collected. The total number of clear-sky cases was 999, 1,449, 2,948, 897 

and 738 cases, at the Taoyuan, Yucheng, Skukuza, Fukang, and OPEC sites, respectively. Figure 1 

presents comparison of ܴS՝ estimates and observations. We note that scattered points in Figure 1 

represent 60-min average for the OPEC site (last column), and 30-min average for the other sites. 

There is a high correlation (R2 ≥ 0.92) between the estimates and observations. The bias (i.e., ME) 

varies from 3.35 W/m2 to 86.12 W/m2, the variability (i.e., MAE) varies from 30.92 W/m2 to  

89.18 W/m2, and the relative variability (i.e., MRE) varies from 4.66% to 13.09%. According to ME, 

SW6 performs better than the other methods at all sites (ME: 3.35–19.76 W/m2). According to MRE, 

SW1 performs better than the other methods at four of the five sites (MRE: 4.66%–8.71%). Mainly 

because of location-specific empirical coefficients, the simple equations (SW2–SW5) that estimate 

transmissivity based on vapor pressure and the complex SW7 that involves several equations give 

worse performance (ME: 18.59–86.12 W/m2; MRE: 6.30%–13.09%). The RS
՝  values from SW1 to 

SW7 tend to be overestimated over the higher ranges, which indicates that atmospheric transmissivity 

tends be overestimated when RS
՝  values are relatively high. The SW1 and SW6 perform better because 

both estimate atmospheric transmissivity better. 

Figure 2 shows the relative absolute errors (for four typical days in four seasons at five sites) for 

each SW model in the daytime from 9:00 to 18:00 during which the diurnal variation of solar radiation 

can be obtained in the four seasons at the five sites. One observes that the relative absolute errors are 
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higher in the morning and late afternoon. This may be due to the significance diffuse shortwave 

component in the morning and late afternoon. 

Figure 1. Scatter plot of ܴS՝ estimates versus measurements for different estimating 

equations and sites. 
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Figure 2. Diurnal variation of relative absolute error (|Ei − Oi|/Oi) in ܴS՝ estimates on four 

typical days in four seasons at five sites. 

 

4.2. Evaluation of Clear-sky Incoming Longwave Radiation (ܴL՝) Estimating Equations  
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considered were not calibrated well for semi-arid and arid regions. The equation that gives the best ܴL՝ 

estimate depends on the climate/site: LW3 at the humid site, LW2d and LW3 at the semi-arid site, and 

LW2c at the arid site. This indicates that the empirical ܴL՝ estimating equations perform better while 

local climatic conditions are similar to that under which they were developed. 

Figure 3. Scatter plot of ܴL՝  estimates versus measurements for different estimating 

equations and sites. 
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Figure 4 shows the relative absolute errors (for four typical days in four seasons at three sites) for 

each LW model. In most cases, there is no pronounced diurnal variation in the estimates.  

Figure 4. Diurnal variation of relative absolute error (|Ei − Oi|/Oi) in ܴL՝ estimates on four 

typical days in four seasons at three sites. 
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comparison results for all combinations of estimating equations. The MRE varies from 10.53% to 

21.57%, depending on the site and estimating equation. The MRE is smaller at the humid site (11.14% 

to 15.29%) and semi-arid site (10.53% to 16.73%) compared to the arid site (13.65% to 21.57%). The ܴS՝ and ܴL՝ estimating equations that give the best Rn estimate are: SW1 and LW2d in the humid site, 

SW1 and LW2d in the semi-arid site, and SW1 and LW3 in the arid site. This is consistent with our 

earlier finding that SW1 performs better for estimating ܴS՝ (see Figure 1). However, the best estimating 

equations for ܴL՝ (LW3 at the humid and semi-arid sites, and LW2c at the arid site; See Figure 3) are 

not involved in the set of equations that give the best Rn estimate. This is because the ܴL՝ estimates that 

have large negative biases (therefore not the best ܴL՝ estimates) tend to counter the large positive biases 

in the SW1 ܴS՝ estimates, leading to the best Rn estimates. 

Table 2. Mean absolute relative error (%) in Rn estimates resulting from various 

combinations of ܴS՝ and ܴL՝  estimating equations. 

 SW1 SW2 SW3 SW4 SW5 SW6 SW7 

LW1 

Taoyuan (paddy, humid) 12.84 15.05 14.44 13.83 13.17 12.25 13.06 

Yucheng (irrigated crop, semi-arid) 11.07 16.69 15.21 14.36 12.88 14.80 14.43 

Fukang (shrub, arid) 13.84 20.85 18.17 17.78 15.50 15.75 17.88 

LW2a 

Taoyuan (paddy, humid) 12.86 15.01 14.51 13.91 13.36 12.18 13.15 

Yucheng (irrigated crop, semi-arid) 10.90 16.56 15.36 14.18 13.05 14.50 14.72 

Fukang (shrub, arid) 13.81 21.38 18.53 18.10 15.78 15.61 18.22 

LW2b 

Taoyuan (paddy, humid) 12.92 15.00 14.45 13.95 13.34 12.11 13.06 

Yucheng (irrigated crop, semi-arid) 10.88 16.63 15.39 14.21 13.04 14.56 14.74 

Fukang (shrub, arid) 13.81 21.28 18.45 18.03 15.70 15.63 18.13 

LW2c 

Taoyuan (paddy, humid) 13.21 15.29 14.76 14.35 13.72 12.11 13.30 

Yucheng (irrigated crop, semi-arid) 11.05 16.73 15.55 14.39 13.28 14.45 14.88 

Fukang (shrub, arid) 13.76 21.57 18.69 18.24 15.93 15.48 18.35 

LW2d 

Taoyuan (paddy, humid) 11.14 14.18 13.78 12.53 12.21 12.40 12.67 

Yucheng (irrigated crop, semi-arid) 10.53 15.99 14.88 13.51 12.53 14.74 14.43 

Fukang (shrub, arid) 13.74 20.44 17.73 17.31 15.22 15.63 17.49 

LW3 

Taoyuan (paddy, humid) 12.03 14.68 14.12 13.20 12.60 12.30 12.83 

Yucheng (irrigated crop, semi-arid) 10.81 16.43 15.01 14.02 12.66 14.78 14.37 

Fukang (shrub, arid) 13.65 20.39 17.82 17.36 15.23 15.51 17.56 

4.4. Suggestions on Incoming Radiation Estimation Equations for Remote Sensing ET Algorithms and 

Further Studies 

This study reveals that the ܴS՝ estimating equations with less location-specific empirical coefficients 

tend to perform better for the wide ranges of climates and land cover types. This suggests that ܴS՝ 

estimating equations with empirical coefficients should be well calibrated before they are used out of 

the regions where they were developed. Therefore, the developers and users of remote sensing ET 

algorithms should select incoming radiation estimation equations with less empirical coefficients or 

well-calibrated equations for estimating Rn and then ET. We conducted a case study at an arid site 

(Fukang) to demonstrate the improvement of remote sensing-based ET estimates using recommended 
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incoming radiation estimating equations. The SW2 and LW2a equations originally embedded in the 

Sim-ReSET model were replaced by the SW6 and LW2c equations recommended in this study, 

respectively. By comparing with eddy covariance flux measurements, the Sim-ReSET model using the 

SW6 and LW2c equations could better estimate actual ET than that using the original SW2 and LW2a 

equations, with the MRE decreasing from 30% to 21% (see Figure 5). Refer to Sun et al. [6,35] for 

details about the Sim-ReSET model and ground measurements. 

Figure 5. Comparison of actual ET estimates from the Sim-ReSET model involving 

original (ET_V1) and recommended (ET_V2) incoming radiation estimating equations 

against eddy covariance flux measurements (ET_EC) at the Fukang site, respectively. 
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Of all the estimating equations, the equation treats the diffusive radiation component using two 

clearness indices and the equation assumes a linear increase of atmospheric transmissivity with 

elevation give the best estimates, and the mean relative absolute errors (MRE) are less than 10%. 

The equations that estimate atmospheric transmissivity from vapor pressure data or involve 

several complex relations produce worse results, and their MREs tend to be more than 10%. 

 The ܴL՝  estimating equations produce biased estimates at the arid and semi-arid sites  

(MRE: >4%) and less-biased estimates at the humid site (MRE: <3%). 

 As a whole, the RL՝  estimating equations tend to perform better than the ܴS՝ estimating 

equations. 

 The MRE in the net radiation (Rn) estimates caused by the use ܴS՝ and ܴL՝  estimating equations 

varies from 10% to 22%. The equation that gives the best estimate of Rn involves (1) the best ܴS՝ estimating equation for ܴS՝ estimation, and (2) the ܴL՝  estimating equation that gives the 

largest negative bias or the smallest positive bias for ܴL՝  estimation to compensate for the large 

positive bias in the ܴS՝ estimates. 

This study suggests that incoming radiation estimation equations with less empirical coefficients or 

well-calibrated equations could be used for better estimating Rn and then evapotranspiration (ET) in 

remote sensing ET algorithms. The best Rn estimates still have at least 10% error, which will be 

inevitably propagated to ET estimates. Therefore, the accuracy of Rn estimation should be carefully 

considered in developing and applying remote sensing ET algorithms in future studies and applications. 
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