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Abstract: Remotely sensed data, with high spatial and temporal resolutions, can hardly be 

provided by only one sensor due to the tradeoff in sensor designs that balance spatial 

resolutions and temporal coverage. However, they are urgently needed for improving the 

ability of monitoring rapid landscape changes at fine scales (e.g., 30 m). One approach to 

acquire them is by fusing observations from sensors with different characteristics 

(e.g., Enhanced Thematic Mapper Plus (ETM+) and Moderate Resolution Imaging 

Spectroradiometer (MODIS)). The existing data fusion algorithms, such as the Spatial and 

Temporal Data Fusion Model (STDFM), have achieved some significant progress in this 

field. This paper puts forward an Enhanced Spatial and Temporal Data Fusion Model 

(ESTDFM) based on the STDFM algorithm, by introducing a patch-based ISODATA 

classification method, the sliding window technology, and the temporal-weight concept. 

Time-series ETM+ and MODIS surface reflectance are used as test data for comparing the 

two algorithms. Results show that the prediction ability of the ESTDFM algorithm has been 

significantly improved, and is even more satisfactory in the near-infrared band 
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(the contrasting average absolute difference [AAD]: 0.0167 vs. 0.0265). The enhanced 

algorithm will support subsequent research on monitoring land surface dynamic changes at 

finer scales. 

Keywords: data fusion; linear spectral mixing model; multi-resolution segmentation; 

sliding window; temporal weight 

 

1. Introduction 

Remotely sensed data, with high spatial resolution (HSR) and high temporal resolution (HTR), are 

very significant for monitoring rapid land surface changes (e.g., intraseasonal ecosystem variations) at 

fine scales (e.g., 30 m). However, the tradeoff in sensor designs, which balance spatial resolution and 

temporal coverage, make it difficult to acquire the data with “both high” characteristics [1]. For instance, 

the HTR data provided by some sensors (e.g., NOAA Advanced Very High Resolution Radiometer 

(AVHRR), Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS)) can be used in 

research at regional or global scales [2–4], but cannot reach the requirements of studies at local scales 

well, due to their low spatial resolutions (LSR) (250 m~1,000 m). On the contrary, the HSR data 

acquired by other sensors (e.g., Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper Plus 

(ETM+), SPOT High Resolution Visible (HRV)) can be applied for land-use/cover mapping and 

dynamic change detection at fine spatial resolutions [5–7], but can rarely be used to capture the changes 

in crop phenology and crop growth due to their low temporal resolutions (LTR) (e.g., Landsat TM: 16 d; 

SPOT HRV: 26 d) and frequent cloud contamination. 

Blending observations from multiple sensors with different advantages or characteristics (e.g., 

ETM+ and MODIS) is considered as a feasible and less expensive way to solve the “spatial-temporal 

contradiction” [8–10]. Several fusion algorithms have developed from this idea in recent years.  

Gao et al. [11] brought forward the Spatial and Temporal Adaptive Reflectance Fusion Model 

(STARFM) for fusing Landsat and MODIS surface reflectance data to produce a synthetic “daily” 

surface reflectance product at the ETM+ spatial resolution. Some studies [11,12] pointed out that the 

algorithm could, generally, fuse those data to generate the predicted images in good agreement with 

actual observations. However, it would lead to some errors, to some degree, in the following cases: 

(1) no transient change information of ground objects is recorded in the base Landsat images; and (2) no 

homogeneous LSR pixels appear in the sliding window. Regarding case (1), Hilker et al. [9] added the 

day of disturbed (DoD) information, extracted from the time-series MODIS images, to the judgment 

condition to select the base image pair. The rule is that the first Landsat and MODIS image pair is 

selected if the prediction date lies before the DoD (T0 < DoD); otherwise, the last one is selected  

(T0 ≥ DoD). Regarding the case (2), Zhu et al. [13] introduced the conversion factor (v) related to 

endmembers, and made the assumption that the endmember reflectance experiences linear change in a 

short period to “separate” more accurate reflectance variations of different endmembers from LSR 

pixels. They also calculated the correlation coefficient (R) between high- and low-spatial resolution 

pixels to improve the judgment rule on pixel purity and the calculation method of spectral distance. 
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Thus, the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) became 

more applicable to a complex, heterogeneous landscape [13].  

In addition to those algorithms, relevant to the STARFM algorithm, Zurita-Milla et al. [14] put 

forward an algorithm to gain the remotely sensed data with HSR and HTR characteristics by unmixing 

time-series low-spatial resolution images (LSRIs) based on the linear spectral mixing model and a 

high-resolution land-use map. The algorithm has been proven to be effective in multiple studies [14,15], 

based on the assumption that the spectral properties of an endmember are almost constant in adjacent 

pixels (hypothesis (1)). However, the algorithm, or some other similar algorithms, can only get the mean 

reflectance of different endmembers due to its own limitations (i.e., hypothesis (1)) [16], although some 

scholars introduced spatial distance [17] or spectral distance [18] in a weighted scheme for higher 

unmixed precisions. Wu et al. [16] proposed the Spatial and Temporal Data Fusion Model (STDFM) 

algorithm (described in detail in Sections 2.2 and 2.3), which can obtain the reflectance of different 

endmembers. Though the algorithm can be used to produce a synthetic reflectance product with both 

HSR and frequent coverage [16], it still has some shortcomings in theory. Firstly, solving the unmixing 

equations for the whole LSRI at once, the STDFM algorithm can only get one reflectance value for all 

HSR pixels belonging to one class in the unmixing of a LSRI [19], which does not take the spatial 

heterogeneity of the mean reflectance of an endmember into account. Secondly, it does not make full 

use of the information of the known high-spatial resolution images (HSRIs), as it only gets the predicted 

HSRI from the first base HSRI. However, a more accurate one may be acquired by a weighted 

combination of the two predicted results from the two base (the first and the last) HSRIs.  

Although the unmixing-based algorithms (e.g., STDFM or ESTDFM) and the STARFM-based 

algorithms (e.g., STARFM or ESTARFM) have the same fundamental idea (i.e., Tobler’s first law of 

geography, near spatial data values are more related to each other than distant data values), it is 

fundamentally different for them to simulate the reflectance at fine resolution (e.g., 30 m). The 

unmixing-based algorithms simulate this by unmixing an LSRI based on the linear spectral mixing 

model, while the STARFM-based algorithms do it by assigning a higher weight to a more 

homogeneous pixel. However, this paper does not focus on the differences between them, but develops 

an enhanced STDFM algorithm (ESTDFM) by making some improvements to the original STDFM 

algorithm to better fuse Landsat and MODIS surface reflectance. Firstly, a patch-based ISODATA 

classification method, based on multi-resolution segmentation, is introduced to produce a classification 

map, more suitable to unmix MODIS images. Secondly, the sliding window technology is used for 

locally unmixing MODIS images to get a more reasonable estimation of the mean reflectance of 

different endmembers. Finally, the predicted Landsat-like images, from different base Landsat images, 

are temporally weighted to acquire a more accurate forecast.  

2. Algorithms 

2.1. Theoretical Basis 

The unmixing-based data fusion was put forward by Zhukov et al. [20], and first used for vegetation 

dynamic monitoring by Zurita-Milla et al. [14]. Its theoretical basis (i.e., the linear spectral mixing 

model) is that, for a spectral band b, the surface reflectance of an LSR pixel at date t(C(t,b)) is equal to the 
weighted sum of the mean reflectance of different endmembers within the pixel ( , , )  and their 
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corresponding abundance A(c,t) [21], provided that geolocation errors and differences in atmospheric 

correction, between an HSRI and its corresponding LSRI, are neglected:  

( , ) ( , , ) ( , )

1
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C F A ε
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= ⋅ +  (1)

where, ne is the number of endmembers; b is the processed band number; A(c,t) is the abundance of 

endmembers c at date t, which can be acquired, based on a high-resolution classification map and 

supposed to be unchanged in the prediction period; ε is the random error.  

The hypothesis (1) allows estimation of the mean reflectance of different endmembers in a certain 

window (e.g., w × w) by Ordinary Least Squares techniques, through utilizing the information of 

adjacent LSR pixels to establish the following linear system of equations in adequate quantities [22]:  
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where, n is the number of LSR pixels in the window. It equals to the quantity of equations (i.e., n = w2) 

and satisfies an inequality (i.e., n ≥ ne + 1).  

2.2. The STDFM Algorithm 

The variation of mean reflectance of endmember c in a certain window, from tk to t0 , is calculated as:  

0( , , ) ( , , , ) ( , , , )

1
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j

F F F
m

Δ
=

Δ = −  (3)

where, m is the number of HSR pixels belonging to endmember c in the window; F(c,t,b,j) is the 

reflectance of an HSR pixel j belonging to endmember c at date t. t0 is the prediction date; tk is the base 

date (i.e., t1 is the first base date and t2 is the last base date); ∆tk is the time interval from tk to t0. 

Based on an additional assumption that the temporal variation properties of an endmember are almost 

constant in adjacent pixels (Equation (2)), that is:  

0 0( , , , ) ( , , , ) ( , , , ) ( , , , ), ( , [1, ])k kc t b j c t b j c t b l c t b lF F F F j l m− = − ∈  (4)

Then, it derives from Equations (3) and (4) that:  

, 0( , ) ( , , , ) ( , , , )k b kc t c t b j c t b jF F FΔΔ = −  (5)

Following this:  

0( , , , ) ( , , , ) ( , , )k kc t b j c t b j c t bF F F Δ= +Δ  (6)

Equation (6) implies that the reflectance of an HSR pixel at prediction date equals the sum of its 

reflectance at base date and the corresponding variation of mean reflectance of an endmember, which 

the pixel belongs to, provided that hypothesis (2) is workable. Similarly, for a whole HSRI at base date, 

the corresponding variation image, which consists of the variation of mean reflectance of different 

endmembers, can be predicted by solving the difference between the unmixed LSRI, at base date, and 

the unmixed one, at prediction date:  
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0( , ) ( , ) ( , )k kt b t b t bU U UΔΔ = −  (7)

Then, the HSRI, at prediction date, can be calculated by making a sum of the HSRI, at base date, and 
the corresponding variation image (i.e., ∆ (∆ , )):  

0( , ) ( , ) ( , )k kt b t b t bF F U Δ= + Δ  (8)

In Equations (7) and (8), 	 ( , )  is the predicted HSRI; U is the unmixed LSRI; ∆  is the  

variation image.  

2.3. Improvements in the ESTDFM Algorithm 

2.3.1. Patch-Based ISODATA Classification 

The unmixing-based data fusion (e.g., STDFM or ESTDFM) needs a classification map with the 

HSRI(s) available. For this purpose, one generally uses an existing land-use map [14,18] or a map 

produced by performing a conventional unsupervised classification (e.g., ISODATA) [20,23]. 

However, the land-use map lacks timeliness and has fewer classes. In addition, the conventional 

unsupervised classification map usually meets the problem of how to deal with the “salt and pepper 

noise” well. This paper introduces a new classification method in which a key procedure of 

multi-resolution segmentation [24] is included (see Figure 1). Multi-resolution segmentation, one basic 

procedure for object-oriented image analysis, can segment the original single-pixel image into a 

homogenous-patch image, based on spectral, shape, and context information [25]. Thus, the negative 

influence coming from some small fraction objects (i.e., “salt and pepper noise”) [20,23] may be 

lowered when unmixing an LSRI based on a classification map gained by classifying an image 

consisting of homogenous patches (verified in detail in Section 5.2). Additionally, unlike the common 

object-oriented classification (e.g., fuzzy classification), the new method produces the classification map 

in an unsupervised way (e.g., ISODATA classification rule) (Figure 1), as it is not necessary to know the 

real class. Thus, the new classification method is named “patch-based ISODATA classification”. 

Figure 1. The processes of different classification methods. 
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2.3.2. Sliding Window 

Utilizing the information of all LSR pixels to create a linear system of equations (i.e., Equation (2)), 

and solving the unmixing for the whole LSRI, the STDFM algorithm can only get one reflectance value 

for all HSR pixels belonging to a same class (Figure 2a). Such an algorithm evidently rejects all the 

within-endmember variability [23], as the mean reflectance of endmembers in different LSR pixels may 

be dramatically different from each other over the whole LSRI. For example, even for crops growing in 

adjacent plots, their surface reflectance would be different due to environmental factors 

(e.g., illumination, soil type) or management practice (e.g., fertilization, harvest). For a whole image, the 

spatial heterogeneity will be more obvious. The ESTDFM algorithm applies the sliding window 

technology for such an improvement as: The mean reflectance of different endmembers in an LSR pixel 

is obtained through making use of the information of adjacent pixels in a certain window (e.g., w × w) 

(Figure 2b). Then, with reference to a classification map, the HSR pixels corresponding to the central 

target pixel (e.g., the LSR pixel labeled with a red cross in Figure 2b) are assigned the mean reflectance 

of different endmembers according to the rule that the HSR pixels belonging to the same endmember are 

assigned the same value. Finally, the whole LSRI can be unmixed in a sliding window, moved with the 

step of one LSR-pixel size (Figure 2b). 

Figure 2. The different schematic diagrams of unmixing a low spatial resolution image 

(LSRI) in STDFM (a) and ESTDFM (b). (a): (Step 1) A linear system of equations 

(Equation (2)) is established by utilizing the information of all LSR pixels. (Step 2) The 

mean reflectance of different endmembers is calculated by Ordinary Least Squares 

techniques. (Step 3) All the HSR pixels belonging to the same endmember are assigned the 

same value. That is, the mean reflectance of the endmembers belonging to the same class in 
different LSR pixels (e.g., ci and cj) is equal (e.g., ( , , ) = ( , , )). (b): (Step 1) A linear 

system of equations (Equation (2)) is established by utilizing the information of adequate 

adjacent pixels in a window (e.g., w × w). (Step 2) The mean reflectance of different 

endmembers in the window is calculated by Ordinary Least Squares techniques. (Step 3) 

The HSR pixels belonging to the same endmember in the central target pixel (e.g., the LSR 

pixel labeled with a red cross) are assigned the same value. That is, the mean reflectance of the 
same endmembers in different LSR pixels is not equal (e.g., ( , , ) ≠ ( , , )). The whole 

LSRI can be unmixed in the sliding window, moved with the step of one LSR-pixel size. 
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2.3.3. Temporal Weights 

The STDFM algorithm acquires the predicted HSRI merely from the base HSRI at t1, though two 

base HSRIs are available and two predicted results can be acquired. The ESTDFM algorithm adds the 

other predicted HSRI from the base HSRI at t2 to make full use of the information of the base HSRIs. 

Thus, the final predicted HSRI at t0 can be obtained by a temporal-weight combination of the two 

predicted results:  

0 1 1 0 2 2 0( , ) ( ) ( , ) ( ) ( , )t b b t b b t bF T F T F= × + ×  (9)

where, ( , ) and ( , ) are, respectively, the predicted HSRIs from the base image at t1 and t2; ( ) and ( ) are, respectively, the temporal weights. Provided that the surface reflectance would 

experience more change along with the longer time interval, it would then be reasonable to simulate the 

different time intervals between the base date and the prediction date, according to the change magnitude 

detected by the LSR reflectance [11,13]:  
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where, x, y are the coordinates; w is the size of a sliding window; the other symbols are the same  

as above. The final predicted HSRI can be calculated by Equation (9), after the temporal weights  

are obtained. 

Figure 3. The flowchart of the ESTDFM algorithm. 
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2.4. Process of the ESTDFM Algorithm Implementation 

The ESTDFM algorithm is operated with the following steps as shown in Figure 3. Only two input 

image pairs at base dates (i.e., t1 and t2) and one input LSRI at prediction date (i.e., t0) (time-series 

LSRIs can be used in practice) are used as an example. There are five major steps in the ESTDFM 

algorithm implementation (Figure 3). Firstly, the two HSRIs at base dates are used to get a 

classification map by performing a patch-based ISODATA classification; and the abundance of 

endmembers can be calculated based on the classification map. Secondly, the three LSRIs at base and 

prediction dates (i.e., t1, t2, and t0) are, respectively, unmixed by a sliding window. Thirdly, two 

variation images are calculated by solving the difference between the unmixed LSRI at base date t1, the 

unmixed one at base date t2 and the unmixed one at prediction date (i.e., t0) according to Equation (7). 

Fourthly, two predicted HSRIs can be obtained by making sums of the different base HSRIs and their 

corresponding variation images according to Equation (8). Finally, the two predicted HSRIs are 

temporally weighted to get the final HSRI at the prediction date according to Equation (9). The 

calculation method of temporal weights (i.e., Equation (10)) is described in detail in Section 2.3.3.  

3. Algorithm Test 

3.1. Test Data and Preprocessing 

Three Landsat ETM+ images at 30 m spatial resolution and three corresponding MOD09GA images 

at a 500 m spatial resolution are selected as test data (see Table 1). The ETM+ and MOD09GA image 

pairs, from 8 October and 9 November, and the MOD09GA image, from 24 October, are used for the 

input data. The ETM+ image from 24 October is applied for validating the predicted results of 

different algorithms (i.e., STDFM and ESTDFM). Additionally, the ETM+ and MOD09GA image pair 

from 8 October is also employed for addressing if the patch-based ISODATA classification is more 

suitable for unmixing an LSRI than a conventional ISODATA classification. Since each Landsat 

multispectral reflectance band has a MODIS band with a similar bandwidth, ETM+ and MODIS land 

data (e.g., MOD09GA) have six corresponding bands (see Table 2). However, it should be noted that 

the ESTDFM algorithm processes corresponding surface reflectance data, band by band, as described in 

Section 2, and this paper only selects three corresponding bands (i.e., red, green, and NIR bands) 

for testing. 

Table 1. Test data for comparing the original algorithm and the proposed algorithm 

(i.e., Spatial and Temporal Data Fusion Model (STDFM) and Enhanced Spatial and 

Temporal Data Fusion Model (ESTDFM)). 

Landsat ETM+ MOD09GA 

Acquisition Date Path/Row Main Usage Acquisition Date Path/Row Main Usage 

10/08/02 120/38 Classification and validation 10/08/02 28/05 Unmixing 

10/24/02 120/38 Validation 10/24/02 28/05 Unmixing 

11/09/02 120/38 Classification 11/09/02 28/05 Unmixing 

All data are downloaded from USGS GLOVIS portal (http://glovis.usgs.gov/). As the ETM+ data in 

the test have high geo-correction precision (the registration accuracies (RMS error) for the three 



Remote Sens. 2013, 5 5354 
 

Landsat scenes are, respectively, 2.94 m, 3.11 m, and 2.70 m), only radiation correction, including 

radiation calibration and atmospheric correction, is made for them. The correction procedure uses the 

Landsat ecosystem disturbance adaptive processing system (LEDAPS) [26] to convert DN values to 

surface reflectance. The MOD09GA data are reprojected from the native Sinusoidal projection to the 

UTM_WGS84 coordinate system, and resampled from 500 m to 480 m by means of the MODIS 

Reprojection Tool (MRT) to facilitate the subsequent calculation, as they are, exactly, the standard 

surface reflectance product with high-precision geolocation (approximately 50 m at NADIR) [27]. 

Table 2. Landsat Enhanced Thematic Mapper Plus (ETM+) bandwidth and Moderate 

Resolution Imaging Spectroradiometer (MODIS) land bandwidth. Three bands for testing 

are marked in bold. 

ETM+ Band Bandwidth  
(nm) 

Spatial  
Resolution (m) 

MODIS  
Land Band 

Bandwidth 
(nm) 

Spatial  
Resolution (m) 

1 450–520 30 3 459–479 500 
2 520–600 30 4 545–565 500 
3 630–690 30 1 620–670 250 a 
4 760–900 30 2 841–876 250 a 
5 1,550–1,750 30 6 1,628–1,652 500 
7 2,080–2,350 30 7 2,105–2,155 500 

a Although the spatial resolutions of band 1 and band 2 (i.e., red band and NIR band) in the standard MODIS daily surface 

reflectance data are 250 m, the spatial resolutions of all the six corresponding bands in MOD09GA are 500 m, as red and 

NIR bands are aggregated from the 250-m resolution in MOD09GA. 

Figure 4. NIR-red-green composites of ETM+ images (Upper Row) and MOD09GA 

images (Lower Row). From left to right, they were acquired from 8 October 2002, 

24 October 2002, and 9 November 2002, respectively. Those images are about 19 km × 19 km 

in size. 

 

(A) (B) (C)

(D) (E) (F)
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This paper selects an overlap region of MOD09GA and ETM+ data as the test area (see Figure 4). 

The region is located in the south of Nanjing, Jiangsu province, and covers an area of about  

19 km × 19 km. It mostly contains cultivated lands and spreads over multiple kinds of ground objects: A 

river crosses over its upper right part; a plot of buildings is located in its upper middle part; and a piece of 

woodland and some small water pools are included in the lower left part. The river is hardly recognized 

on the MOD09GA image due to the coarse spatial resolution (Figure 4D–F). 

3.2. Implementation Considerations 

3.2.1. Patch-Based ISODATA Classification Map 

At least two pairs of high- and low-spatial resolution images, acquired at two base dates, and one 

LSRI, acquired at prediction date, in the ESTDFM algorithm. Considering, if two ETM+ images are 

available, a more reasonable scheme for obtaining a classification map is to stack all bands of the two 

HSRIs and to classify the stacked HSRI. Therefore, according the process of patch-based ISODATA 

classification stated in Section 2.3.1, the specific steps for producing the classification map in the test 

are as follows: Firstly, all bands of the two ETM+ images (green, red, and NIR bands are tested in this 

paper) are stacked to generate a stacked image. Secondly, a segment image can be acquired by 

segmenting the stacked image (six bands in total) in the Ecognition software 

(http://www.ecognition.com/) (scale parameter is empirically set as 20). Thirdly, only the mean 

reflectance of every object in the segment image is exported and converted to a grid image, though it has 

many characteristic values (e.g., mean, variance and peakness). Thus, the original image consisting of 

single pixels is converted to be an image consisting of homogeneous patches. Finally, a classification 

map with 40 classes (see Figure 5, the definition of the number of classes is described in Section 5.3), 

which is used for unmixing the three MOD09GA images, can be obtained by performing an ISODATA 

classification rule to the “patches image”.  

Figure 5. The patch-based ISODATA classification map with 40 classes (i.e., ne = 40) for 

unmixing the three MOD09GA images in the test. 
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3.2.2. Calculation of the Abundance of Endmembers 

Based on the patch-based ISODATA classification map, the abundance of endmember, c, in a 

MOD09GA pixel can be calculated as:  

( ) /cA c n N=  (11)

where, nc is the number of ETM+ pixels belonging to endmember c in a MOD09GA pixel; N is the total 

number of ETM+ pixels contained in the MOD09GA pixel. As the pixel sizes of ETM+ and 

MOD09GA are, respectively, 30 m and 480 m in this paper, N is calculated to 256 (i.e., 16 × 16). 

The calculated abundance of endmembers would be unchanged, assuming that the classification map 

is unchanged within the prediction period. In this case, it can be applicable to unmix the MOD09GA 

images at three dates (i.e., t1, t2 and t0).  

3.2.3. Unmixing of the MOD09GA Images 

Since the abundance of endmembers has been known, three unmixed MOD09GA images can be 

acquired by applying the sliding window technology described in Section 2.3.2. There are two 

parameters to be optimized for unmixing an MOD09GA image in a sliding window. They are the 

number of classes contained in the classification map (ne) and the size of sliding window (w). ne can be 

given a higher value for a heterogeneity area than a homogeneous one. w is dialectically valued: On one 

hand, w should be given a low value to expand the spatial variation among the mean reflectance of 

endmembers in the unmixed image; on the other hand, w should be given a high value to establish 

adequate equations for unmixed stability [23]. Normally, both ne and w have certain limitations. The 

quality of the unmixed image will be decreased when ne and w are higher than their limitations. In this 

paper, “ERGAS” [28], a common comprehensive evaluation index for assessing the quality of an 

unmixed image, is employed to screen the optimal parameter combination (ne = 40, w = 61; the 

screening method is described in Section 5.3) for unmixing the three MOD09GA images:  

2 2

1

1
100 /

nb

i i

i

h
ERGAS RMSE M

l nb =
=   (12)

where, h is the pixel size of HSRI (30 m herein); l is the pixel size of LSRI (480 m herein); nb is the 

number of spectral bands (three or six herein); RMSEi is the root-mean-square error of a certain band i, 

between the unmixed image and the reference image; Mi is the mean value of band i in the reference 

image. The lower the ERGAS is, the better the quality of an unmixed image [23]. 

3.3. Evaluation Methods  

Three methods are introduced to compare the prediction effects of different algorithms (i.e., STDFM 

and ESTDFM) from different levels. (1) Visual evaluation. A visual comparison, one of common 

qualitative evaluation methods, between the predicted ETM+-like image and the actual ETM+ image, is 

made to roughly judge the prediction effect of an algorithm. (2) Scatter plots. The scatter plots for all 

corresponding bands between the actual image and the predicted one are used to semi-quantitatively 

describe the prediction effect of an algorithm. The closer to the line of 1:1 the scatters are, the better the 

prediction effect is. (3) Average absolute difference (AAD) value and average difference (AD) value. 
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The AAD value is calculated for quantitatively presenting the prediction accuracy of an algorithm. In 

addition, the AD value is calculated for quantitatively making a description of the deviation (positive or 

negative) of a predicted result. For instance, that the AD value is positive implies the predicted result 

shows a positive deviation or a higher forecast; otherwise a negative deviation or a lower forecast. What 

is worthy of mentioning is that the STDFM algorithm tested in this paper applies the same classification 

method as ESTDFM (i.e., patch-based ISODATA classification) to get the classification map. Although 

a different classification method has been applied in the quoted literature (i.e., reference [16]), the 

essence of the STDFM algorithm in this paper is consistent.  

4. Test Results of Algorithm 

4.1. Visual Evaluation  

The ETM+-like images predicted by STDFM and ESTDFM are shown in Figure 6. Both algorithms 

can exactly retrieve the buildings, cultivated lands, woodlands, and so on, as their outlines are clearly 

seen. The predicted images are very close to the actual ones even watched in the partial enlarged details 

(Figure 6b1 vs. Figure 6a1; Figure 6c1 vs. Figure 6a1). However, some undesired cases still appear. For 

example, a bit of clouds in the actual ETM+ image are not presented in both of the predicted images 

(Figure 6B vs. Figure 6A; Figure 6C vs. Figure 6A). As clouds are transient and not recorded in the 

classification map, the cloud pixels will be assigned the same reflectance as other classes 

(e.g., cultivated lands) in the unmixing of the MOD09GA images, which causes the disappearance of 

clouds in the predicted image. Additionally, some errors emerge in the forecasts of dense vegetation 

(e.g., some forests and croplands) where the hue is in a deeper red than the observations (Figure 6B vs. 

Figure 6A; Figure 6C vs. Figure 6A). Nevertheless, for some water areas (e.g., ζ1 vs. ζ2 in Figure 6), 

ESTDFM makes a more accurate prediction, as the prediction of STDFM seems “brighter” than the 

real image.  

4.2. Scatter Plots 

The scatter plots in Figure 7 show the relationship between the reflectance of the actual ETM+ 

image on 24 October and the reflectance of the predicted images with different algorithms for green 

band, red band, and NIR band, respectively. Similar to the visual evaluation, the scatters of all bands 

distribute closely to the line of 1:1, indicating that both algorithms can make a good prediction for an 

unknown HSRI. For the green band and the red band, the forecasts of ESTDFM are slightly better than 

the ones of STDFM (Figure 7a) vs. Figure 7d; Figure 7b vs. Figure 7e). However, for the NIR band, the 

forecast of ESTDFM is much better than the one from STDFM, as the former’s scatters are, not only 

closer to the line of 1:1, but also have no evident deviation; while most of the latter’s scatters are 

obviously higher than the line of 1:1 (Figure 7c vs. Figure 7f). The contrasting results can be also proven 

in the visual check of Figure 6 (e.g., ζ1 vs. ζ2 in Figure 6). 
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Figure 6. Comparisons between the actual image on 24 October 2002 (A) and the predicted 

image by ESTDFM (B), the predicted image by STDFM (C) (all images are NIR-red-green 

composites). (a1–c1) and (a2–c2) are the partial enlarged details of (A–C). 

 

Figure 7. Scatter Plots between the reflectance of the actual ETM+ image on 24 October and 

the reflectance of the predicted image by ESTDFM (a–c), the reflectance of the predicted 

image with STDFM (d–f) for green, red, and NIR band (scale factor = 10,000). 
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4.3. AAD and AD 

Table 3 shows the AAD and the AD values between the reflectance of the base ETM+ images from 

8 October and 9 November, the predicted reflectance for 24 October and the reflectance of the  

ETM+ image from 24 October. The AAD values of both algorithms are lower than the ones of the base 

ETM+ images for all bands (Table 3), indicating that both algorithms successfully integrate the surface 

reflectance change of MOD09GA images into the base ETM+ images. The forecasts of the two 

algorithms for the green band and the red band are similar and have no evident deviation (green-AD: 

0.0006 vs. 0.0010; red-AD: 0.0012 vs. 0.0013), although the prediction errors of ESTDFM are a little 

lower than those of STDFM (green-AAD: 0.0073 vs. 0.0078; red-AAD: 0.0090 vs. 0.0102). However, 

for the NIR band, the prediction errors of ESTDFM are remarkably lower than that of STDFM 

(NIR-AAD: 0.0167 vs. 0.0265) and both of their forecasts, obviously, have positive deviations, though 

the degree of former’s forecast is lower (NIR-AD: 0.0130 vs. 0.0243). A higher forecast for NIR band 

will cause a higher hue in “red channel” in the NIR-red-green composites of the predicted images. In 

addition, it is the reason why both algorithms have a deeper red hue in their forecasts of some dense 

vegetation in the visual evaluation (Figure 6B vs. Figure 6A; Figure 6C vs. Figure 6A). Generally, the 

prediction effect of ESTDFM is better than that of STDFM.  

Table 3. Average Absolute Difference (AAD) values and Average Difference (AD) values 

between the observed reflectance at two base dates (8 October 2002 and 9 November 2002), 

the predicted reflectance for 24 October 2002 by different algorithms (ESTDFM or 

STDFM) and the observed reflectance on 24 October 2002. 

ETM+ AAD AD 

Band 
Base Date1 Base Date2 Prediction Base Date1 Base Date2 Prediction 

10/08/02 11/09/02 ESTDFM STDFM 10/08/02 11/09/02 ESTDFM STDFM 

Green 0.0081 0.0110 0.0073 0.0078 0.0014 0.0089 0.0006 0.0010 

Red 0.0111 0.0212 0.0090 0.0102 0.0001 0.0202 0.0012 0.0013 

NIR 0.0475 0.0191 0.0167 0.0265 0.0474 −0.0112 0.0130 0.0243 

5. Discussions 

5.1. Point Spread Function 

As with some previous studies [16,18], the point spread function (PSF) [29,30] is not considered in 

the calculation of the abundance of endmembers, as mentioned in Section 3.2.2. The calculated 

abundance is actually the area proportion of each class within a certain LSR pixel. Nonetheless, this 

paper just focuses on anglicizing the two algorithms in a comparative way. That is, which one is better 

has nothing to do with the classification map and the abundance. Thus, it is appropriate to neglect the 

item. Surely, it will be better to consider it in some practical applications of the ESTDFM algorithm, as 

almost 25% signal of MODIS data comes from adjacent pixels [31].  
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5.2. Suitability of the New Classification Method 

The MOD09GA and ETM+ image pair from 8 October 2002 (Figure 8A,B) is used for validating 

the superiority of the new classification method (i.e., patch-based ISODATA classification) for 

unmixing an LSRI. A combination of the ISODATA classification and the Majority Analysis post 

classification, a common unsupervised method, is set as a contrast to the new classification. A transfer 

kernel, where the class of central pixel will be replaced with the class of major pixels, is designated in 

the Majority Analysis post classification, so that the “salt and pepper noise” can be reduced. The kernels 

in different sizes (3 × 3 and 5 × 5) are set in the comparison tests. The scheme for validation is: Firstly, 

the different classification methods are performed to classify the ETM+ image from 8 October to 

produce their corresponding classification maps with the same number of classes (e.g., ne = 40). 

Secondly, a set of sliding windows with different sizes (e.g., 11 × 11, 21 × 21, …, w × w) is applied to 

unmix the MOD09GA image from October 8, based on the different classification maps. Finally, the 

unmixed results are evaluated with qualitative (e.g., visual evaluation) and quantitative (e.g., ERGAS 

index) methods.  

Figure 8. NIR-red-green composites of MOD09GA images (A) and ETM+ images (B) on 

8 October 2002 and comparisons between the different unmixed images of the patch-based 

ISODATA classification (C), and the Majority Analysis Method1 (3 × 3 transfer kernel) 

(D), the Majority Analysis Method2 (5 × 5 transfer kernel) (E) with the optimal parameter 

combination (i.e., ne = 40, w = 61). (b–e) are the partial enlarged details of (B–E). 
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Figure 8 shows the unmixed images of the three methods with the optimal parameter combination 

(i.e., ne = 40, w = 61). Both algorithms generally present good unmixing effects. The “salt and pepper 

noise” is effectively reduced so that no “abrupt” points appear in the unmixed images compared to the 

unmixed one, based on a map with no post classification (not shown here). In addition, their spatial 

resolutions are obviously finer than that of the original MOD09GA image. For instance, the residential 

area (α in Figure 8C) at the upper middle part and the river (β in Figure 8C) at the upper right part can be 

distinctly recognized, and the details of woodland at lower left part can be reflected completely  

(Figure 8C–E). However, the unmixed images of the two conventional unsupervised methods present 

some “clumps” (e.g., γ1 in Figure 8d and γ2 in Figure 8e), which are unmatched with the truth. In 

addition, the riverlet in the actual ETM+ image (Figure 8b) is reflected in varied degrees: The riverlet 

is continuous in Figure 8c (θ1 in Figure 8c); however, its continuity is poorly shown in Figure 8d (θ2 in 

Figure 8d); and it even disappears in Figure 8e (θ3 in Figure 8e). The “clumps” phenomenon and the 

discontinuity of the riverlet in Figure 8d,e may be caused by the transfer kernel in the post 

classification, as the process is a mathematical calculation, which means that the real shape of an 

object is not considered, and the size of a transfer kernel may be larger than the width of the riverlet, 

which could “erase” the riverlet in the post classification. Generally, the new classification method can, 

not only reduce the “salt and pepper noise”, but also obtain an unmixed image closer to the real ground 

objects from the visual check.  

According to Equation (12), by regarding the observed ETM+ image from October 8 as the reference 

image and regarding the unmixed results based on the different classification maps as the unmixed 

images, the ERGAS values are calculated and recorded as ERGASH. The lower the ERGASH is, the 

closer the attribute of spatial resolution of an unmixed image is to the reference image, and the better the 

quality of an unmixing image is to some degrees [23]. The quantitative results (i.e., ERGASH values) 

are summarized in Table 4. All the ERGASH values of the three methods are lower than those of the 

method with no post classification (Table 4), indicating that the classification maps gained from the new 

classification, or an ISODATA classification including a post classification, can improve the quality of 

an unmixing image. In addition, all the ERGASH values of the three methods are lower than 3, stating 

quantitatively that all the unmixed images based on them show good qualities [32]. The two 

noteworthy points are that all ERGASH values have an obvious trend of “better in wider window” and 

that the ERGASH values of the new classification method are almost minimal in all sliding-window sizes 

(except for k = 11, see Table 4), which expressly proves that the new classification method is more 

suitable for unmixing an LSRI, compared to the other conventional unsupervised classification methods. 

The original single-pixel image can be segmented into a homogeneous-patch image by means of 

multi-resolution segmentation, according to the information of spectrum, spatial location, and shape 

among pixels. On one hand, the classification accuracy may not be influenced greatly, since the difference 

between homogeneous patches is retained in the process of multi-resolution segmentation [24]; on the 

other hand, unlike using a mathematical method (e.g., transfer kernel) to eliminate the “salt and pepper 

noise” in a conventional unsupervised classification, the patch-based ISODATA classification has 

considered multiple factors in multi-resolution segmentation to get a segment image [25], which may 

be more of a benefit for both “salt and pepper de-noising” and fidelity to real objects.  
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Table 4. ERGASH values of the different classification methods for unmixing MOD09GA 

images from 8 October 2002 with different sizes of sliding windows. 

 
11 21 31 41 51 61 

patch-based ISODATA 

classification 
1.89 1.46 1.33 1.29 1.26 1.24 

Majority Analysis1 (3 × 3) a 2.18 1.60 1.41 1.33 1.29 1.27 

Majority Analysis2 (5 × 5) b 1.87 1.49 1.39 1.36 1.34 1.33 

No Post Classification c 5.12 2.48 2.15 2.03 1.97 1.96 
a The ISODATA classification and the Majority Analysis post classification with a 3 × 3 transfer kernel are included  

in the method; b The ISODATA classification and the Majority Analysis post classification with a 5 × 5 transfer kernel  

are included in the method; c Only the ISODATA classification (no post classification for filtering noise) is included in  

the method. 

5.3. Definition of Optimal Parameter Combination 

As mentioned in Section 3.2.2, the class number (ne) and the size of sliding window (w) will exert 

direct impacts on the unmixing effect. The two necessary input image pairs (e.g., the ETM+ and 

MOD09GA image pairs from 8 October and 9 November in the paper) in the ESTDFM algorithm are 

used to calculate two ERGAS indexes (ERGAST and ERGASM) for screening the optimal parameter 

combination. ERGAST: Firstly, the two ETM+ images and the two MOD09GA images, at two base 

dates, are stacked, respectively. Secondly, a set of parameter combinations is applied to unmix the 

stacked MOD09GA image (six bands in total). Finally, according to Equation (12), by taking the 

stacked ETM+ image (six bands in total) as the reference image, and taking the unmixed stacked 

MOD09GA images as the unmixed images, the ERGAS values are calculated and recorded as ERGAST. 

ERGASM: A mean filter is used to degrade the unmixed stacked MOD09GA images to the same spatial 

resolution as a MOD09GA image (i.e., 480 m). Then, by taking the stacked MOD09GA image 

(six bands in total) as the reference image and taking the degraded images as the unmixed images, the 

ERGAS values are calculated and recorded as ERGASM.  

The ERGAST (Figure 9a) and the ERGASM (Figure 9b) for all parameter combinations show almost 

opposite trends to each other. For instance, when ne = 40 and w is enlarged from 11 to 61, the ERGAST is 

valued from 1.79 down to 1.25 (red triangle in Figure 9a); while the ERGASM is valued from 0.51 up to 

0.63 (red triangle in Figure 9b). It indicates that there is no such parameter combination can make both 

indices reach the minimum simultaneously. In deliberation of the trends of both indices from all 

perspectives, the combination of ne = 40 and w = 61 is selected as the optimal parameter combination 

for unmixing the MOD09GA images in this paper. Additionally, there is an obvious exceptional point, 

p, in Figure 9b. It might be relative to the instability in the unmixing process when ne is high (e.g., 80) 

while w is low (e.g., 11). In that case, the unmixing equations in Equation (2) are relatively in 

smaller quantities.  

It may be unbalanced to assess the unmixing effects by only applying ERGAST. As ERGAST values 

become lower with the expansion of window size (Figure 9a), the unmixing effect seems to be better 

when the window is larger from the angle of the ERGAST trend. However, the expansion of the window 

size will cause the problem that the spatial variation of mean reflectance will be inevitably brought 

down. Thus, it is not straightforward to define the optimal parameter combination. Meanwhile, 

w 
Method 
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unmixing an LSRI can be regarded as the process of redistribution of energy in terms of the energy  

conservation. Assuming that the energy between the unmixed image and the original LSRI should be 

well “balanced” [20], ERGASM index can be recommended for making a quantitative assessment on the 

energy redistribution process. As all the energy of the unmixed image comes from the original LSRI, 

ERGASM being low means the unmixed image “maintains” the original energy; otherwise, loses. Thus, 

the optimal parameter combination is screened on the condition that ERGAST has to be very low, firstly, 

and ERGASM must not be too high, secondly. In actuality, it is a semi-quantitative scheme. The 

different optimal parameter combinations could be defined according to the different practical needs 

(e.g., focusing on the high-spatial resolution characteristic or the energy conservation characteristic).  

Figure 9. Trend curves of ERGAST (a) and ERGASM (b).  

 
(a) (b)

5.4. Drawbacks in the ESTDFM Algorithm 

5.4.1. “Patch Effect” 

Similar to the original STDFM algorithm, one of the drawbacks in the ESTDFM algorithm is the 

undesired “patch effect” in the predicted result (λ1 and λ2 in Figure 6). It may be related to the 

classification map. According to the process of unmixing an LSRI stated in Section 2.3.2, the HSR 

pixels belonging to a same class are assigned the same reflectance. Therefore, the unmixed image is 

directly influenced by the classification map, so that the “class effect” (see Figure 8c,d,e) is always 

visible. Subsequently, two cases that can result in “patch effect” may emerge. Case (1) for the different 
sections of one patch: The base reflectance value (i.e., ( , , ) in Equation (6)) in different sections of 

one patch is very close as they belong to a same class. However, they may be located in different LSR 
pixels, which will lead to different variation of reflectance (i.e., ∆ ( ,∆ , ) in Equation (6)). Thus, the 

predicted results, the sums of the base reflectance and the variation of reflectance, in those sections 

may become different, which may disrupt the spatial continuity. Case (2) for the neighbor patches: The 

neighbor patches may have very different base reflectance and variation of reflectance if they belong to 

different classes, which is more likely to disrupt the spatial continuity. The promising method for 

reducing the “patch effect” may be the soft clustering classification method [33] presented in the recent 

studies [34,35], and applied in some cases with good performance.  
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5.4.2. Time Consumption 

There are five major steps in the implementation of the ESTDFM algorithm (see Section 2.4). 

However, it takes a little time for the processes of Step 1 (i.e., Classification), Step3 (i.e., Subtraction), 

Step4 (i.e., Sum) and Step5 (i.e., Temporally-weighted Sum). The Step 2 (i.e., Unmixing) requires most 

time. Thus, we compare the time consumption of unmixing an LSRI in the two algorithms. Results show 

that the time consumption of ESTDFM is longer than that of STDFM (about 88 s vs. 25 s) for unmixing 

one LSR band with 100 × 100 pixels (i.e., 48 km × 48 km), running at a common desktop computer 

(2 CPU, 2.66 GHz, 4 G RAM). It takes about 20 min to unmix one LSR band of which the area is almost 

equal to a range of a Landsat scene (i.e., about 180 km × 180 km). We believe that the computation time 

cost of the proposed algorithm is acceptable.  

5.4.3. Constraints 

Extra attention may need to be paid. Firstly, the rationality of the theoretical basis of ESTDFM 

(i.e., the linear spectral fusion model) is still under discussion [36]. Secondly, the determination of 

relevant parameters is not strictly regulated. For example, the scale parameter in multi-resolution 

segmentation, the class number (ne), and the size of sliding window (w), are defined with an empirical or 

semi-quantitative method. Thirdly, the assumption that the classification map is unchanged in the 

forecast period could be reasonable in a short term, but unreasonable in a long time. The prediction 

effect may be worse in a longer forecast period. Finally, as with some other fusion algorithms for 

predicting high temporal Landsat-like data (e.g., STARFM in Gao et al. [11] and ESTARFM in  

Zhu et al. [13]), if changes are transient and not recorded in any of the base Landsat images 

(e.g., clouds), it may not be possible to capture them in a fine resolution. 

6. Conclusions and Summary 

The enhanced STDFM (ESTDFM) algorithm has improved the STDFM algorithm by introducing a 

patch-based ISODATA classification method, the sliding window technology, and the temporal-weight 

concept. Tests have proved that the ESTDFM algorithm can acquire a more accurate forecast than the 

original STDFM algorithm (e.g., the contrasting average absolute differences for NIR band: 0.0167 vs. 

0.0265). The progresses of the ESTDFM algorithm are summarized below:  

(1) The most important improvement in the ESTDFM algorithm is to apply a sliding widow for 

unmixing a low spatial resolution image (LSRI). Only one reflectance value for each 

endmember can be obtained in the unmixing of an LSRI in the original STDFM algorithm, as 

all low spatial resolution (LSR) pixels are unmixed at once. Obviously, such an algorithm 

rejects all the within-endmember variability. By introducing the sliding widow technology, the 

ESTDFM algorithm unmixes the adjacent pixels in a window to get the mean reflectance of 

different endmembers, and assigns them to the HSR pixels corresponding to the central target 

LSR pixel with reference to a classification map; subsequently unmixes all LSR pixels by a 

sliding window, moved with the step of one LSR-pixel size. The spatial heterogeneity of the 

mean reflectance of endmembers has been fully considered, which would be more consistent 

with the variation of real ground objects.  
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(2) The temporal-weight concept is introduced in the ESTDFM algorithm. One predicted high 

spatial resolution image (HSRI) can be acquired, by making a sum of one base HSRI and its 

corresponding variation image calculated by solving a difference between the unmixed LSRI at 

base date and the unmixed one at prediction date. Therefore, two different predicted HSRIs can 

be obtained, as two high- and low-spatial resolution image pairs at base date, and one LSRI at 

prediction date, are available in the ESTDFM algorithm. Thus, making full use of the 

information of the known HSRIs, a more reasonable scheme to obtain the final predicted HSRI 

is temporally weighting the two predicted results.  

(3) A patch-based ISODATA classification method is also introduced in the ESTDFM algorithm. 

Two main procedures are included in the method: A single-pixel HSRI is firstly converted into a 

homogeneous-patch image base on multi-resolution segmentation. A patch-based ISODATA 

classification map then can be acquired by applying the ISODATA classification rule to the 

“patches image”. Test results show that the new classification method is more suitable for 

unmixing an LSRI than some conventional unsupervised classification methods, since an 

unmixed LSRI based on a patch-based ISODATA classification map not only has low “salt and 

pepper noise” but is more consistent with the real object. 

Compared with the original STDFM algorithm, the proposed algorithm can generally fuse the 

multi-sourced data with different characteristics in a short-time period better to generate the remotely 

sensed data with high temporal and spatial resolutions. However, the ESTDFM algorithm still has some 

drawbacks (e.g., “patch effect”) and constraints (e.g., the linear spectral fusion model), as well as more 

time consumption. The proposed method will push forward the studies of monitoring the land surface 

dynamic changes at finer scales by remote sensing technology. 
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