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Abstract: Estimating plant traits in herbaceous plant assemblages from spectral reflectance 

data requires aggregation of small scale trait variations to a canopy mean value that is 

ecologically meaningful and corresponds to the trait content that affects the canopy spectral 

signal. We investigated estimation capacities of plant traits in a herbaceous setting and how 

different trait-aggregation methods influence estimation accuracies. Canopy reflectance of 

40 herbaceous plant assemblages was measured in situ and biomass was analysed for N, P 

and C concentration, chlorophyll, lignin, phenol, tannin and specific water concentration, 

expressed on a mass basis (mg·g−1). Using Specific Leaf Area (SLA) and Leaf Area Index 

(LAI), traits were aggregated to two additional expressions: mass per leaf surface (mg·m−2) 

and mass per canopy surface (mg·m−2). All traits were related to reflectance using partial 

least squares regression. Accuracy of trait estimation varied between traits but was mainly 

influenced by the trait expression. Chlorophyll and traits expressed on canopy surface were 

least accurately estimated. Results are attributed to damping or enhancement of the trait 

signal upon conversion from mass based trait values to leaf and canopy surface 

expressions. A priori determination of the most appropriate trait expression is viable by 

considering plant growing strategies.  
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1. Introduction 

The functioning of the biosphere is partly determined by the combined impacts of the biochemical 

and structural characteristics of the plant species it comprises. These characteristics are commonly 

described by community-mean trait values [1], through which a vegetation community can be studied. 

This allows for comparison of ecosystems with little to no taxonomic overlap and tends to provide 

increased insight into plant functioning compared to taxonomic identity alone [2]. In this study, we 

refer to any biochemical or structural plant property as ‘plant trait’ or simply ‘traits’.  

It is recognized that plant traits structurally influence spectral properties of leaves and canopies 

alike [3,4]. Because these trait-driven nuances in spectral signatures may be obscured by the broad 

spectral sensitivity of broad band sensors, attention turns to imaging spectroscopy (also known as 

hyperspectral remote sensing) to register the spectral signal in many small width spectral bands [5]. 

Small width absorption features have thus been related to various traits, both directly on leaf level 

(e.g., [6,7]), at canopy level using field spectroscopy (e.g., [8–10]) as well as at regional scales using 

airborne imaging spectroscopy (e.g., [11]). 

While many different spatial scales have been investigated, in terms of biomes under investigation, 

especially forest ecosystems appear to receive much attention [12]. Estimation of plant traits in 

assemblages of naturally occurring herbaceous plant species on the other hand, appears to be less 

advanced, even though herbaceous environments have a large extent and influence biodiversity, 

biochemical cycles and fluxes [13]. Remote sensing techniques applied to herbaceous areas so far 

focused on mapping (temporal changes in) categorical variables, or a limited number of traits, see for a 

review [3]. In fact, to our knowledge some traits have hardly been, if at all, investigated at all for a 

herbaceous setting. These include phenol [14], tannin and lignin, which were earlier successfully 

related to forest canopy reflectance [15].  

There are a number of reasons for the limited applications to herbaceous communities. Firstly, the 

dimensions of herbaceous specimens are typically well below the spatial resolution of imaging 

spectroscopy [16]. The compound spectral signal in a heterogeneous herbaceous assemblage is thus 

determined by many different spectral signatures [16,17] that need to be aggregated to a certain 

community averaged spectral signal. Such aggregation can comprise the footprint of an airborne 

sensors pixel, or the field of view of a field spectrometer. An advantage of the latter is that the high 

geometric accuracy (i.e., the spectrometer can be precisely maneuvered over an area of interest), so 

that the response variable can be measured directly within the sensors field of view.  

Secondly, in addition to the leaf biochemical spectral signal, canopy properties unique for 

herbaceous setting further influence the canopy spectral signal. Previously, litter and canopy height 

have been identified as a confounding factor between canopy reflectance and species composition [18], 

but patches of bare soil are also likely to contribute. The latter is likely more conspicuous for 

herbaceous assemblages compared to forest settings, because herbivory and canopy gaps quickly 
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expose the underlying ground. In all, trait estimation in a mixed composition grassland or herbaceous 

community with remote sensing has been described as challenging [19]. Finally, establishment of a 

community trait value is not straightforward, because these, like the canopy spectral signal, can vary 

greatly among different plants, even over short distances both horizontally as well as vertically within 

the canopy [20].  

The challenge then is to aggregate trait values to a community-mean value that is both ecologically 

meaningful and corresponds to the functional attributes that are visible to the sensor and thus 

manipulate the spectral signal. For forests, this community-mean corresponds to the traits of top of 

canopy leaves, but in a herbaceous plant assemblage, stems or petioles may need to be included too. 

Moreover, herbaceous systems are less discretely layered than forests, complicating sampling efforts 

because ‘top of canopy’ is less meaningful. These considerations complicate the analysis of a canopy 

spectrum vs. a trait value expressing a community-mean attribute.  

Despite these challenges, several techniques have been used to estimate community mean trait values 

of herbaceous vegetation using field spectroscopy spectral data. Often used are empirical, statistical 

methods where (derivatives of) reflectance data, such as narrow band spectral indices [9,21,22] 

or continuum removed absorption spectra [23], are related to observed trait values using statistical 

techniques such as stepwise regression [23,24] or non-linear partial least squares regression 

(PLSR) [5]. So far, such empirical relations have been found to be poorly transferable between different 

locations or between different moments at the same location [18], which may be partly related to a lack 

of considerations on how community-mean traits need to be expressed. In addition, it is noted that 

often only a few traits are considered within a study [24]. Application of radiative transfer models 

(RTMs) to herbaceous assemblages is also limited to those traits that are RTM model-parameters, 

excluding many interesting plant traits [8,25–28]. Together, this prevents a direct assessment of how 

well various traits of herbaceous ecosystems can be estimated.  

Furthermore, it is recognized that traits can be expressed relative to different plant properties. This 

is of relevance for ecological purposes [29], but also for remote sensing [30]. Often, community-mean 

traits are simply expressed on a leaf mass basis (e.g., [5,23,24]). Alternatively, traits are expressed on a 

per leaf surface basis (e.g., µg·cm−2 leaf surface, [8]) or per canopy surface basis (e.g., mg·m−2 canopy 

surface) [8,9]. We will refer to these trait expressions as: mass based, leaf surface based and canopy 

surface based and indicate the expression with subscript mass, leaf or canopy, respectively. Absence of 

a subscript refers to all three expressions of a specific trait while all traits in a certain expression are 

collectively indicated as: ‘mass traits’, ‘leaf surface traits’ or ‘canopy surface traits’, or alternatively as 

‘traitmass/leaf/canopy’.  

The influence of these trait expressions on remotely sensed trait estimates has never been 

investigated for more than a few traits (Chlorophyll, N, P or K) and more than two different 

expressions at the time [8,9,31,32]. No study to our knowledge has compared accuracy of trait 

estimations for the three trait expressions identified here. Hence, the objective of this study is to 

examine the overall estimation capability of a wide range of community-mean trait values over various 

herbaceous assemblages. The secondary objective is to investigate the influence of community trait 

aggregation, indicated by the different trait expressions, on the estimation capability of the traits. Our 

approach was to measure in situ canopy spectra, canopy architecture and other plot co-variates and 
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community mean traits (in three expressions) and to investigate the influence of traits of canopy 

spectra using multivariate regression. 

2. Materials & Methods 

2.1. Study Site  

The Kampina Natura2000 protected nature reserve was selected as the study area. It is located on 

Pleistocene aeolian cover sand landscape in the south of the Netherlands (Figure 1) and hosts a wide 

variety of herbaceous vegetation types within close proximity to each other. It is easily accessible by 

foot and within driving range of laboratory facilities. A 15 km2 study site within the Kampina was 

delineated, aiming to include as much adjacent herbaceous vegetation as possible. The study site hosts 

dry and generally oligotrophic areas to the north, inhabited by dry heather (dominated by Caluna 

vulgaris), pine forests and several fens. In the southern region of the study site, a small river valley 

incises the cover sand and hosts a range of different vegetation types such as moist alder forest, moist 

heather dominated by Erica tetralix and both mesotrophic and eutrophic moist to wet grasslands. 

Surrounding agricultural parcels were converted to natural conditions during 2000–2005 by removing 

the nutrient rich topsoil and raising the groundwater table. 

Figure 1. Overview of the study site, superimposed over an aerial photograph. Major 

vegetation types are indicated in grey shades. The 40 vegetation plots are only located in 

heathlands or grasslands.  
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2.2. Data Collection and Processing 

2.2.1. Plot Surveying and Floristic Composition 

During July and August 2012, 40 plots were sampled in the study site on locations that were 

manually chosen within strata of broad vegetation types, based on a pre-existing vegetation map [33]. 

Plot locations were selected to be homogeneous in vegetation composition, without trees or tall shrubs 

and where ground water was not up to ground surface. Because we are interested in how plant traits 

manifest in canopy spectral signals, we aimed to have as complete vegetation coverage as possible. 

Non-vegetated material would also influence the spectral signal, but would not be accounted for in the 

trait values.  

A plot consisted of a patch of homogeneous vegetation, approximately 2 × 2 m, within which 

several plot characteristics were measured (see following sections for details): location with sub cm. 

accuracy, floristic composition and coverage, canopy height and Leaf Area Index (LAI, m2 leaf 

surface·m−2 ground surface, [43]), 10 plant traits and canopy reflectance. Each plot characteristic was 

measured in a subsequent visit to the plot and care was taken not to take measurements in previously 

disturbed parts of the plot. Due to the homogeneous vegetation inside each plot we considered all 

measurements taken from it to be representative for the vegetation in the plot, even when the 

measurements were not done on the same material. 

The plots were distributed over several following broad vegetation types as follows, where n is the 

number of plots in the type: 

• Dry heathlands, dominated by C. vulgaris, n = 4 

• Moist heathlands, dominated by E. tetralix, n = 5 

• Heathlands with grass encroachment, dominated by Molinia caerulea, n = 4 

• Eutrophic grasslands, former meadows, among others species abundance of Trifolium sp, 

Holcus lanatus, Agrostis capillaris, n = 7 

• Eutrophic meadows along walking paths, dominated by Phragmitum australis and Utrica 

dioica, n = 2. 

• Mesotrophic wet grasslands, Cirsium dissectum, Succisa pratensis, n = 5.  

• Eutrophic wet grasslands, Phalaris arundinacea, Carex acuta, n = 4. 

• Mesotrophic, moist, sites within the recently converted agricultural areas, containing among 

others, Betula sp sapplings, Drosera intermedia, C. vulgaris and Salix repens sapplings, n = 5. 

Four plots were dominated by a single species: Juncus effuses, Pteridium aquilinum, Cladium 

mariscus and Myrica gale, respectively.  

2.2.2. Plot Traits 

We selected a suite of plant traits that we suspect are instrumental in defining leaf spectral signals 

and are known to play a key role in plant functioning and plant strategies. These were: leaf N, P and C 

concentration (LNC, LPC, LCC), Chlorophyll a, Chlorophyll b and total Chlorophylls (Chl a, Chl b 

and total Chl, collectively referred to as Chl), lignin, tannin, phenol and Specific Water Concentration 

(SWC). These are traits that are commonly applied in ecology [2] or remote sensing science [15].  
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Within each plot, vegetation was sampled within a randomly located subplot of 25 × 25 cm. By 

virtue of this sampling design and plot site selection, trait values are assumed to be representative for 

an entire vegetation plot. Where possible, the complete above ground biomass was harvested. In case 

of tall vegetation (>50 cm), the upper ±50 cm was harvested. Woody elements were not sampled 

because they are incompatible with chemical analysis protocols. The complete sample was manually 

shredded and homogenized in the field. Subsequently, three subsamples (A–C, approximately 15 g 

fresh weight material per subsample) were taken from the shredded material and were each stored 

according to the various prerequisites of the trait determination procedures. A fourth subsample 

(subsample D) was harvested directly without shredding the sample first. All sampled material was 

transported to laboratory facilities within 24 h.  

Subsample A was analyzed for Specific Water Concentration (SWC, g water·g d.w.−1). Dried plant 

material was ground and analyzed for Leaf N and Leaf C Concentration (LNCmass, LCCmass, mg·g−1) 

using dry combustion. Leaf Phosphorus Concentration (LPCmass, mg·g−1) was measured using the method 

of Murphy and Riley [34]. Finally, ligninmass was determined following Poorter and Villar [35]. 

Subsample B was analyzed for tanninmass and phenolmass following [36], while from subsample C Chl 

amass, Chl bmass and total Chlmass concentration was determined spectrometrically using extinction 

coefficients provided by Porra et al. [37]. The area and dry weight of subsample D was measured to 

determine the plot Specific Leaf Area (SLA, mm2·mg−1). A detailed account of the sample processing 

and trait determination procedures, as well as trait summary statistics and correlation, are provided in 

Supplementary Data 2.  

2.2.3. Plot Co-Variates 

Several additional variables of the plots were quantitatively assessed to assess the environmental 

conditions at the plot and to assess the structure of the vegetation. Firstly, the plot floristic composition 

was recorded based on the entire plot area, including a visual estimation of the % coverage of 

vegetation and % bare soil. The height in cm of the shrub layer was measured.  

Secondly, plot-averaged indicator values (IVs, see Diekmann [38] for a review) were calculated as 

the average of the IVs of all species in a plot, based on a list of species indicator values from  

Witte et al. [39]. IVs are an ordinal value indicative of the site’s moisture regime (mF, ranging from 1 

= aquatic to 4 = dry), nutrient availability (mN, ranging from 1 = nutrient poor to 3 = very nutrient 

rich) and acidity (mR, ranging from 1 = acid to 3 = alkaline). Note that we did not employ the original 

IVs as introduced by [40], but rather a list of IVs per plant species specifically composed for the 

Netherlands. See Witte, Wójcik, Torfs, De Haan and Hennekens [39] for a detailed explanation of the 

derivation of the IVs and Roelofsen et al. [41] for a more in depth explanation of IV calculation for 

vegetation plots. No actual physical measurements were involved when determining plot mean 

indicator values, which makes this a cheap and quick, but admittedly crude [42], method to gauge the 

site conditions of a plot. 

Finally, the LAI was determined using an LAI2000 instrument (Li-COR Inc, Lincoln, NE, USA, a 

detailed description of this instrument is provided in Welles and Norman [43]). The sampling protocol 

consisted of four below canopy measurements, one at each side of the plot, preceded and followed by 

an above canopy measurement.  
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2.2.4. Trait Expressions 

Traits were expressed in one of three ways: (1) mg·g−1 dry matter (2) mg·m−2 leaf surface and 

(3) mg·m−2 canopy surface. These trait expressions represent hypothesizes about the interaction of 

radiation with the canopy. Firstly, mass based traits assume that the complete leaf contributes to the 

spectral signal, regardless of whether the trait content is apparent at the leaf surface, or tucked away 

within the leaf. To illustrate, for equal LNCmass value, the amount of N on a given leaf surface can be 

very different and is determined by the leaf density. Mass based traits are expected to relate well to leaf 

spectra when radiation fully penetrates the leaf and absorbance is modulated by all trait content within 

the leaf. 

Secondly, leaf surface traits suppose that the field of view of the sensor is fully occupied by a single 

layer of leaves and that only these leaves contribute to the spectral signal. Hence, only trait content 

contained in the perceived foliage is presumed to contribute to the spectral signal and non-leaf 

elements such as woody and dead biomass are expected not to contribute to the signal. Therefore, we 

may expect this alternative to perform best when nothing but foliage is present in the canopy (i.e., no 

bare soil or dead material). 

Canopy surface traits assume that all foliage contributes to the spectral signal, regardless of whether 

or not it is in the field of view of the sensor. All leaves contribute to the spectral signal according to 

this expression via backscattering, oblique reflectance and transmission. If this is the case, then all 

leaves inside the canopy should also contribute to the community-mean trait value. 

The chemical analysis directly yielded mass based trait values. These were expressed on leaf 

surface and canopy surface basis according to Equations (1) and (2):  

traitleaf (mg·m−2 leaf surface) = traitmass (mg·g−1 dry matter)/ 

(SLA (mm2·mg−1 dry matter)/1000) 
(1) 

traitcanopy (mg·m−2 land area) = traitleaf (mg·m−2 leaf surface)  

× LAI (m2 leaf·m−2 land area) 
(2) 

except for SWC for which the numerator is in grams. Note that SWC is related to various other plant 

traits that are common in ecological or remote sensing applications; SWCmass relates to Leaf Dry 

Matter Content (LDMC, g dw·g−1 fw, [2]) following Equation (3), while SWCleaf equals Equivalent 

Water Thickness (EWT, cm3 H2O·cm−2 leaf surface, [44]) and SWCcanopy equals Canopy Water 

Content (CWC, g H2O·m−2 land area [25]): 

SWCmass = (1/LDMC) − 1 (3) 

2.2.5. Plot Spectra 

In each of the 40 plots, canopy reflectance was measured using an ASD (Analytical Spectral 

Devices, Inc., Boulder, CO, USA) FieldSpec Pro FR spectrometer. Measurements were calibrated 

against a white Spectralon™ (Labsphere Inc., North Sutton, NH, USA) panel. Ten spectral 

measurements were made over each plot. The sampling design was as follows. A single measurement 

in the center of each 66 × 66 cm square was taken in a 3 × 3 squares array within the boundaries of the 
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plot, finalized by a final single reading over a random location in the plot (comparable to the VALERI 

sampling scheme [45]). We used a bare optical cable with a viewing angle of approximately 

25 degrees, resulting in a field of view with radius 33 cm when held approximately 150 cm above 

ground surface. Approximately 85% of the plot surface was thus covered. Because spectral 

measurements in the field require sunny and cloud free circumstances, the spectral measurements were 

confined to five consecutive sunny and cloud free days in August 2012 between 0900 and 1730 h.  

The spectrometer measures spectral radiance between 350 and 2,500 nm, with a sampling interval 

of 1 nm and spectral resolution of 3 nm in the Visible (VIS, 350–1,700 nm) and Near-Infrared (NIR, 

700–1,350 nm) regions and 10 nm the Short-Wave Infrared (SWIR1: 1,450–1,800 nm and SWIR2: 

2,050–2,350 nm) regions. Standard preprocessing of the data yields discrete reflectance values for each 

consecutive nm in the range 350–2,500 nm, but spectral bands with considerable atmospheric 

absorption were removed (1,350–1,450 nm, 1,800–2,050 nm and 2,350–2,500 nm). The remaining 

reflectance data were smoothed using a 2nd order Savitsky-Golay filter [46]. Filter length was 7 bands, 

but increased to 21 bands for a particularly noisy region around 1,000 nm and was increased to 51 

bands for two plots to attenuate an atmospheric artifact around 1,120 nm. The 10 measurements of 

each plot were averaged to a single spectral signature per plot.  

2.3. Statistical Data Analysis 

To gain a first impression on the relation spectrum-trait we calculated Pearson’s correlation 

coefficients between each trait and each spectral band. With this we could later check the PLSR 

models for consistency and evaluate whether the models recognized highly correlating bands. 

Correlation is described as strong (r > 0.7), moderate (0.5 > r > 0.7) or weak (r < 0.5). 

PLSR is an useful technique for relating dependent variables to many, highly correlated, 

explanatory variables [47]. PLSR reduces the dimensionality of the explanatory variables and projects 

the information content into new, orthogonal latent variables [47]. The regression is then applied with 

that number of latent variables (NLV) as explanatory variables that is the optimal tradeoff between 

complexity and precision, i.e., prevent over-fitting but also achieve optimal accuracy.  

The spectral bands were standardized by the standard deviations. Model accuracy was determined 

twofold: the calibration accuracy tells how well the model is fitted to the training data. Using Leave 

One Out (LOO) validation, the ability of the model is gauged to estimate trait values for a spectrum 

that was not present in the training set. For both the calibration and validation, a coefficient of multiple 

determination (r2) and root mean square error (RMSE) were calculated, indicated with subscript cal 

and val respectively. The NLVs of the final model is the number that minimizes the RMSEval. 

However, this criterion could enforce a very high NLV, which immediately generates a high r2
cal. In 

cases where both a low (~3–4) and high (>8) NLV generated comparable low RMSEval values, the 

lower NLV was chosen, aiming for model parsimony. PLSR was applied between canopy reflectance 

and all traits of the 40 plots (10 traits in three different expressions), using both log10 corrected and 

original trait values, retaining the highest validated (r2
val) model. For each of the LOO validation 

model fittings, the regression coefficients were calculated. A t-test revealed if the mean regression 

coefficient deviated significantly from 0. A band was considered significant (i.e., stable) if p < 0.05. 

PLSR models were iteratively fitted by cropping the spectral bands to the significant spectral bands of 
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the prior run. This was repeated until all spectral bands were significant, or until cropping did not 

result in an improved RMSEval. Band selection could involve up to five model iterations, but only a 

singly iteration was sufficient for most models.  

Model residuals were correlated to plot co-variates: indicator values, vegetation coverage, bare soil, 

vegetation height and LAI, using Pearson’s correlation coefficient and tested for significance at 

p = 0.05. All data analysis was performed in R [48], using the pls package [49] and scripts adapted 

from Feilhauer et al. [50].  

3. Results 

3.1. Traits Values and Plot Co-Variates Reflect Wide Range of Environmental Conditions 

The range of trait values reflect the wide variety of environmental conditions, ranging from 

mesotrophic to oligotrophic sites and of varying moisture levels (Figure 2 and Supplementary Data 2). 

This is consistent with the sampling scheme that specifically included various vegetation types and 

abiotic conditions. Correlations among traits are notably high between the three chlorophyll traits and 

between lignin, phenol and tannin.  

Figure 2. Boxplots of the mass based traits’ distribution, showing median and four 

quantiles. Total Chl never equals Chl a + Chl b and the difference between (Chl a + Chl b) 

and total Chl increase with increasing total Chl values (data not shown). 

 

In addition to the trait values, the plot co-variates corroborate the impression of a wide variation in 

environmental conditions present in the plots (Supplementary Data 3). The IVs range from nutrient 

poor to rich (mN = 1–2.7), very wet to extremely dry (mF = 1.8–3.9) and acidic to alkaline soils  

(mR = 1.1–2.6). The LAI data confirmed that most plots were densely populated, with only a single 
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plot having an LAI value <1, meaning that leaf surface is less than the ground surface. The highest 

LAI value (8.31 m2·m−2) was observed for a plot along the eutrophic wet grasslands.  

The wide range of traits was planned as to make the relation between traits and spectra as wide and 

general as possible. So, although the canopy spectra all complied to the general spectral signature of 

healthy green vegetation, much spectral variation was observed, especially in the NIR range 

(Supplementary Data 4). Extremes in NIR reflectance were observed in a mesotrophic grassland plot, 

where high LAI and vegetation height betray a high biomass and an oligotrophic dry heathland where 

LAI and biomass were relatively low. In the latter plot, the sandy soil may have contributed to the 

canopy reflectance.  

3.2. Accuracy of Trait Estimation Varies with Trait and Trait Expression 

The correlation coefficients between spectral bands and leaf surface traits revealed how trait values 

relate to the various spectral regions (Figure 3 and Supplementary Data 5). Traits with high (high is 

used in an absolute sense, so either a large positive or negative value) correlation coefficients at certain 

spectral locations are also expected to be well modeled by PLSR with the PLSR assigning high 

regression coefficients to these wavelengths.  

Figure 3. Pearson’s correlation coefficient between each spectral band and traits, each 

given in three different expressions of the trait value: mass based: mg·g−1 dry matter, leaf 

surface: mg m−2 leaf surface and canopy surface: mg m−2 canopy surface. 
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Figure 3. Cont. 

 

The VIS region was relevant for nearly all traits. Reflectance around 550 nm correlated strongly to 

e.g., LCCmass, LCCleaf, all Chlmass and Chlcanopy traits, as well as ligninmass and ligninleaf. The SWIR1 and 

SWIR2 regions were of low importance for nearly all traits, except for Chlleaf and SWCcanopy. The 

correlation coefficients for mass, leaf and canopy traits were generally on par, except for some traits 

where one of the three variants correlated differently (Figure 4). This appears to happen only in the 

NIR region where correlation between LCCcanopy and NIR reflectance was nearly absent, while 

LCCmass and LCCleaf correlated reasonably well in that region. Also striking is that LNCleaf correlates 

negatively with NIR reflectance, while LNCmass and LCNcanopy correlate positively. Likewise, SWCleaf–

NIR correlation is virtually zero, but around 0.4 for SWCmass and SWCleaf. 
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Figure 4. Scatterplot of the coefficient of determination (r2) for the validation of all PLSR 

models, plotted for mass based ~ canopy surface traits, leaf surface ~ canopy surface traits 

and leaf surface ~ mass based traits. 

 

The PLSR regression coefficients between trait and reflectance values (Supplementary Data 5) 

revealed that for most models VIS reflectance is employed in the model. The location of spectral bands 

retained in the models generally corresponds to peaks in the correlation coefficients (e.g., for 

LPCcanopy, tanninleaf and SWCcanopy), although in other cases the PLSR models failed to locate the 

highest correlating bands (e.g., phenolcanopy around 700 nm and SWCleaf around 700 nm). The pattern 

of regression coefficients is jagged when a high NLV tightly described the calibration data (e.g., 

ligninmass NLV = 8). This is indicative of complex, non-linear relations between traits and spectral data 

(Haaland and Thomas 1988). When fewer latent variables were employed (e.g., total Chlmass NLV = 1), 
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the regression coefficients followed a much more smooth pattern. When band selection did not 

improve the model accuracy, or when none of the bands was significant, all bands were retained (e.g., 

phenolleaf). Up to 10 NLV were employed over the PLSR models. Poorly validated models were often 

signaled by a low NLV (e.g., phenolcanopy, Chl bleaf and total Chlleaf, with 2, 1 and 1 NLV respectively). 

For nearly all PLSR models, band selection generated a reduced difference between the r2
cal and r2

val. 

For three models, none of the spectral bands was found to be significant (total Chlleaf and LCCcanopy) 

and for five other models, band selection did not result in a more accurate model (LPCleaf, ligninmass, 

phenolleaf, tannincanopy and SWCleaf).  

The resulting accuracy of the PLSR models varied (Figure 4 and Supplementary Data 6) among the 

traits, among different trait expressions and between the calibration and validation phase. Only validation 

accuracies are mentioned here, calibration accuracies are provided in Supplementary Data 6. Lignin, 

phenol and tannin were accurately modeled and validated when expressed on a mass or leaf surface 

basis, but accuracy degraded once expressed on canopy surface basis. The nutrient related traits (LNC, 

LPC and LCC) correlated moderately strong with spectral data with r2
val up to 0.74. Accuracy of Chl a, 

Chl b and total Chl estimations was overall low. Negative r2
val values were recorded for validation of Chl 

bleaf and total Chlleaf, meaning that the mean of the observed value was a better estimator than the PLSR 

model. Chl a always performed slightly better than the other two Chl traits.  

Only LNC and tannin retained comparable accuracies regardless of how they were expressed 

(Figure 4 and Supplementary Data 6). For most traits, the expression greatly influenced the accuracy of 

the modeling: e.g., LCCcanopy was much less accurately estimated than LCCmass and LCCleaf. None of 

the different trait expressions clearly distinguished itself by consistently yielding the highest 

accuracies, although the expression on leaf surface basis most often generated the most accurate 

models (for LNC, LCC, Chl a, lignin and tannin). Mass based trait expressions generated the most 

accurate model for phenol, while traits expressed on canopy surface basis yielded most the accurate 

models for Chl a, Chl b SWC. 

Table 1. Correlation coefficients between model residuals and plot co-variables. Shown 

are correlations significant at p = 0.05. Note that residuals of traits models absent in this 

table do not correlate significantly with any of the plot co-variables. 

 Acidity IV Nutrient IV Moisture IV Height Coverage Bare soil LAI 

LNCmass     −0.37   

LCCmass −0.37       

Ligninmass    0.31  −0.33  

SWCmass    −0.40  0.35 −0.5 

LNCleaf      0.33  

LigninLeaf    0.40    

PhenolLeaf   −0.32     

SWCleaf       −0.4 

LNCCanopy    0.49   0.47 

LCCCanopy     0.34  0.53 

LigninCanopy    0.49 0.47 −0.38 0.44 

Phenolcanopy       0.31 

SWCcanopy   −0.4  0.36  0.48 
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3.3. Plot Covariates May Be Additional Drivers of Canopy Reflectance 

Correlations, significant at p < 0.05, between PLSR model residuals and plot co-variables are 

indicated in Table 1. Relatively few mass based and leaf surface traits correlate significantly with plot 

co-variables, at least few when compared to canopy surface traits of which residuals of five out of 10 

trait models correlated with plot co-variables.  

Indicator values of site environmental conditions correlated negatively with residuals of three 

models. Moderately strong correlations were observed with LAI and height, mainly for canopy surface 

traits. Plot vegetation height and LAI were positively correlated (Supplementary Data 3), explaining 

why these two plot co-variable often correlated simultaneously with model residuals.  

4. Discussion 

4.1. Trait Estimation in Herbaceous Plant Assemblages Appears Feasible 

The first objective of this study was to estimate community-mean traits over various herbaceous 

plant assemblages, using in situ measured hyperspectral reflectance. All traits had been investigated 

earlier in terms of their spectral signatures, but to the best of our knowledge, some of the traits not yet 

in herbaceous ecosystems (i.e., lignin and tannin). Moreover, a comparison of estimations across a 

wide variety of community-mean traits of herbaceous communities was so far unavailable. This study 

demonstrates that, with varying accuracy, various traits can be estimated with a straightforward 

statistical approach over a wide range of herbaceous assemblages.  

Evaluating trait expressions from hyperspectral reflectance is of importance because trait estimation 

in assemblages of herbaceous species faces particular difficulties [19]. The canopy spectral signal is 

not only driven by leaf biochemistry, but also by litter and bare soil. These factors contribute to the 

canopy spectral signal but are not represented in trait values, because solely plant material is accepted 

by wet-chemistry trait protocols. It is known that at least height and litter fraction influence statistical 

relations between canopy reflectance and species composition in herbaceous ecosystems [18]. The 

positive correlations between canopy height, bare soil and vegetation coverage and residuals of eight 

PLSR models (Table 1) suggest these are indeed consistently confounding factors in the spectrum-trait 

relation. However, a more detailed experiment is required to quantify the effect of non-vegetation 

elements in herbaceous plant assemblages on community-mean trait estimation.  

An adequate sampling protocol in herbaceous sites is also faced with the problem that plant 

materials contributing to the spectral signal are less obvious. Especially for graminoids, whose 

vertically orientated leaves constitute a substantial portion of the plot biomass and thus to the trait 

value, but of which the nadir surface area and contribution to the spectral signal, may be proportionally 

low. In this study, we collected plant material throughout the vertical component of the canopy, 

assuming that (1) both upper and lower canopy material contribute to the spectral signal, due to gaps 

between the tallest species that expose underlying plants and (2) that the trait content was 

homogeneously distributed throughout the vertical canopy dimension. Our results do not allow explicit 

testing of these assumptions due to the homogenization of the sample material. Dedicated sampling 

and trait determination from different vertical canopy positions and working out various weighted trait 
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averages would shed more light on the question of how various canopy components together compile 

the overall canopy reflectance.  

Nonetheless, this relatively straightforward sampling approach still yielded trait values that relate 

well to the spectral data, which is critically important for estimating community-mean traits of 

herbaceous ecosystems. This was apparent from the correlation coefficients between the trait values 

and individual bands, as well as from the performance of the PLSR models (Figure 3). The accuracy of 

the estimations was considerably different among the traits. Traits relating to nutrient availability 

(LNC, LPC and LCC) were well estimated when expressed on either mass or leaf surface basis. This is 

in line with earlier work, where these traits were also expressed on a mass basis and had comparable or 

slightly lower estimation accuracies [23,32]. Trait estimation accuracy for these traits may increase 

when the set of explanatory variables is expanded from solely reflectance to derivatives from 

reflectance data [24] or additional environmental variables [5]. Given the apparent influence of plot co-

variables such as coverage and LAI (Table 1), trait estimations might be further improved by explicitly 

including these factors into the explanatory variables.  

The Chl estimations were among the models with lowest accuracies. This was against expectations, 

because there is a mechanistic relation between Chl concentration and absorbance in VIS spectra and 

reflectance in NIR [51]. In fact, leaf chlorophyll content (μg·cm−2 leaf surface) is employed as driver 

of leaf reflectance in the PROSPECT leaf optical properties model [52] and many studies accurately 

derived chlorophyll concentration using empirical models and leaf and canopy spectra [7,9,53] or with 

mechanistic leaf and canopy reflectance models [8]. These chlorophyll estimations rely on the strong 

correlation with the red-edge (680–780 nm) [54]. Together with green wavelengths (around 550 nm), 

these spectral regions indeed hosted the highest correlation coefficients of Chlmass and Chlcanopy in the 

current study (Figure 4), although these were never high in comparison to other traits (i.e., not 

exceeding r = 0.5). Still, this does not necessarily prevent an accurate PLSR model, as e.g., LNCmass 

had equally low correlation coefficients but was still modeled moderately accurate. For Chl, it appears 

that reflectance at 550 nm (one of the highest correlating wavelengths) saturates with increasing 

Chlmass concentration (data not shown). Therefore, an exponential function might describe Chlmass 

concentration more accurately than the linear PLSR modeling applied here. Indeed, in Hansen and 

Schjoerring [9], performance of an exponential model between narrow band vegetation indices and 

chlorophyll content outperformed a linear model. We did not pursue this option because we restricted 

ourselves to the simplest, but still physically meaningful model, which is a linear model.  

Phenol, tannin and lignin were nearly always strongly to moderately accurate estimated from the 

spectral data. Two distinct groups are observed in the tannin values and to a lesser extent also for 

lignin; relatively high values were found in both moist and dry heathland plots, as well as the M. gale 

and P aquilinum plots. High tannin and lignin concentration is indicative for sturdy and woody leaves 

and stems, indeed, as found for the various heathland species. Tanninleaf, tanninmass and ligninleaf are 

among the highest validated models in this study, achieving much higher accuracy compared to earlier 

estimations based on leaf level spectra [15]. The shrub-like structured and woody components 

containing canopy of the heathland plots possibly create a distinctive spectral signature compared to 

grass and herbaceous sites [26], which is sufficiently distinctive to spectrally discriminate the plots 

with relatively high lignin and tannin concentration from the remaining plots. Canopy physiology and 

structure, which are known propellants of canopy reflectance [18], might thus have co-varied with 
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tannin and lignin values and are responsible for the highly accurate tannin and lignin estimations. 

Future studies will need to evaluate these patterns. Accuracy of SWCcanopy estimates was on par with 

CWC estimation based on PROSAIL model inversion [25].  

We used LOO validation, but admit that a stricter validation procedure with an external validation 

dataset would have yielded a more reliable indication of model robustness. However, our dataset is 

already characterized by a small sample size (40) compared to a large number of explanatory variables 

(1,648). A reduced sample would only increase this and likely result in a weaker model as the trait and 

spectral variability might not be fully covered by the reduced calibration dataset. Repetitively selecting 

a new random calibration and validation set was considered not feasible because the model calibration 

process was not automatized. Applying LOO validation on the other hand allowed us to retain the 

spectral and trait variability [50]. Also, we aimed for model parsimony by restricting the NLV and a 

reduced calibration sample would have created an unrealistic constrain on the NLV.  

Furthermore, we aimed to find out if a relation between spectra and traits existed, and LOO suffices 

to answer this question. An external validation set is particularly useful after model transfer to other 

locations, such as in future spatial trait estimations based on imaging data.  

4.2. Alternative Expressions of Trait Aggregation 

The second objective of this research concerns the aggregation of trait values to a community mean 

that both corresponds to the aggregated canopy reflectance and is ecologically meaningful. Three 

alternative trait expressions were related to canopy reflectance: mass based (mg·g−1), leaf surface based 

(mg·m−2 leaf surface) and canopy surface based (mg·m−2 canopy surface). None of the trait expressions 

was unequivocally better in relating traits to reflectance (Figure 4). Mass based and leaf surface trait 

expressions generated model accuracies in the same order of magnitude, while estimates of traits 

expressed on canopy surface were generally less accurate. This suggests that canopy reflectance is not 

generated by the entire leaf surface, as was implicitly assumed with the canopy surface trait 

expression. Rather, results suggest that reflectance originates from leaves in the direct field of view of 

the sensor.  

Still, trait expression on a canopy surface basis yielded the most accurate models for SWC, Chl b 

and total Chl. Especially for the latter two, the difference with mass based and leaf surface based 

expressions was large. However, because the overall accuracy of these models was still low  

(r2
val = −0.18 − 0.17 for Chl b and total Chl, Figure 4 and Supplementary Data 5), these results should 

be interpreted with care. Nonetheless, our results are corroborated by earlier work where chlorophyll 

content per canopy surface unit was estimated more accurately compared to content per leaf 

surface [8,21]. These results were attributed to the fact that Chlcanopy traits convey information on both 

LAI and chlorophyll content, which are both known drivers of canopy reflectance [55]. While this 

plausibly explains why Chl bcanopy, total Chlcanopy and SWCcanopy were more accurately estimated when 

expressed on canopy surface basis then on leaf surface, it leaves the question why the remaining traits 

perform poorer when expressed on canopy surface basis.  

Canopy surface traits are the result of multiplying traitleaf values with LAI; hence traitcanopy values 

and LAI are positively correlated (Supplementary Data 2). An improved relation with canopy 

reflectance is anticipated if the canopy spectral reflectance is also positively related to LAI. However, 
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any factor that causes the spectral signal to be non-linearly related to LAI will deteriorate the 

traitcanopy–reflectance relation. Increased scattering by the internal canopy architecture is an example of 

this. Saturation of the spectral signal with increasing LAI has also been reported [7,9] and may have 

occurred here as well. We noticed that for LNC, LCC, lignin, phenol and SWC, the PLSR model 

residuals correlated positively with either LAI and/or canopy height when expressed on a canopy 

surface basis (Table 1). In other words, estimation accuracy deteriorated with increasing LAI and 

indeed, these traits are more (or equally, in case of SWC validation) accurately estimated when 

expressed on mass or leaf surface basis. With increasing LAI, the probability grows that a leaf is 

obscured by its more elevated counterparts. We hypothesize that obscured leaves contribute less, if at 

all, to the spectral signal. At the same time, the entire leaf surface contributes to traitcanopy values, so 

that the discrepancy grows between what is perceived by the sensor and what the canopy surface trait 

value is suggesting should be there. 

Whether either the saturation/scattering effects or rather added information effects of LAI prevail is 

likely trait-dependent. This may explain the differences between the various traits in this study. The 

magnitude with which traitleaf values are transformed to traitcanopy values (because LAI > 1 for all plots 

except one, conversion from traitleaf to traitcanopy nearly always implies an increase in numerical value) 

depends on the relation between traitleaf and LAI (Supplementary Data 2). A negative relation dampens 

the traitcanopy signal as low traitleaf values are multiplied with high LAI and high traitleaf values with low 

LAI. A contracted range of traitcanopy values means that plots become more similar in its community-

mean traitcanopy values, while the spectral diversity is retained, thus weakening the spectrum–traitcanopy 

relation. A positive relation on the other hand increases variation in traitcanopy values, possible 

enhancing the relation with the spectral data.  

Both amplification and dampening of the traitcanopy signals has indeed been observed in the results. 

A significant (p < 0.05) correlation is observed for phenolleaf and tanninleaf with LAI (r = −0.40 and 

−0.44 respectively, Supplementary Data 2). This coincides with lower validation accuracy when 

expressed on canopy surface basis than either leaf surface or mass basis. For the remaining traitleaf, 

correlations with LAI are non-significant. This lack of relation between the trait and LAI can result in 

either an amplified signal (i.e., higher estimation accuracy for traitcanopy compared to traitleaf for: 

LPCcanopy, Chl bcanopy, Total Chlcanopy and SWCcanopy), or a slightly reduced signal.  

In a similar fashion, a positive relation between SLA and traitmass works to condense the value 

distribution of traitleaf, as high traitmass values are divided by equally high SLA values and low traitmass 

values by a low SLA. This appears to be the case for LPCmass and SWCmass (correlation with SLA  

r = 0.62 and 0.43 respectively, p < 0.05, Supplementary Data 2); traits which were more accurately 

modeled when expressed on a mass basis compared to expression on a leaf surface basis (Figure 4). In 

contrast, LCCmass, ligninmass, phenolmass and tanninmass correlated negatively with SLA (r = −0.42, 

−0.48, −0.39 and −0.47 respectively, p < 0.05, Supplementary Data 2), so that the leaf surface 

expression of these traits is an amplification of the mass based trait values. As a result, these traits are 

estimated more accurately on leaf surface basis compared to mass basis, or at least with accuracy 

comparable to expression on mass basis (Figure 4). 

Chl appears insensitive to both SLA and LAI in our data (i.e., low correlation coefficients, see 

Figure 3 in Supplementary Data 2). However, this was probably caused by a single plot that combined 

a low SLA value with the highest Chlmass values and therewith sharply contrasted the more common 
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combination of low SLA and low Chlmass values. Additional research should demonstrate if and how 

Chl responds to changes in SLA and LAI in different ecosystems, so that the most appropriate 

expression of Chl be determined. 

Overall, we observed that the nature of the relation between traitmass values and SLA, as well as the 

relation with traitleaf values with LAI influences the estimation accuracies. Furthermore, we reckon that 

the nature of this relation is, at least partly, determined by the ecosystem. This should be exploited to 

determine a priori the most appropriate trait expression for each trait. For example, high 

concentrations of traits such as lignin, phenol and tannin are indicative of investments in defensive 

structure and indicate tough, long living and slow growing leaves and is incompatible with a high 

SLA [56]. This negative relation between defensive traits and SLA implies an amplified trait signal 

when expressed on a leaf surface basis and possibly enhanced estimation capabilities from spectral 

data. Similarly, competitive species who invest many nutrients in rapid growth after e.g., a mowing 

event, are associated with high nutrient concentration (LNC, LPC and LCC) and high SLA [57]. Such 

positive correlation between trait values and SLA suggests that traits should be expressed on mass 

basis rather than leaf surface. On the other hand, competitive species are also associated with high LAI 

values due to their rapid growth. The traits related to nutrient content expressed on leaf surface basis 

could thus be again be amplified by the LAI. 

4.3. Implications for Trait Estimations in Herbaceous Ecosystems 

The above analyses and interpretations indicate that aggregation of trait values to a meaningful 

community average is an important issue to consider for spectral estimation of plant traits and should 

be taken into consideration in future trait estimates. Based on expected relations between trait values 

and leaf and canopy properties (i.e., SLA and LAI), it is feasible to estimate which aggregation is most 

appropriate for a trait in a given herbaceous environment. With that, we can move forward to regional 

estimates of nutrient related traits in herbaceous plant assemblages, which would be beneficial for e.g., 

rangeland and pasture quality management [23], while chlorophyll estimates would enhance 

understanding of photosynthetic processes, as well as monitoring foliar condition [51]. Likewise, 

regional estimates of lignin tannin and phenol could aid research into herbivore pressure and 

decomposition rates, as well as wildfire occurrence when combined with dry matter estimates [58,59]. 

In all, regional trait estimates from remote sensing sources can be instrumental in providing input for 

estimating vegetation composition and functioning [60]. 

5. Conclusions 

The objectives of this research were to examine the overall estimation capability of in situ measured 

community-mean trait values over various herbaceous assemblages, as well as to investigate the 

influence of community trait aggregation on the estimation capability of the traits. This study 

simultaneously estimated 10 different traits of high ecological relevance, some of which were never 

estimated earlier in herbaceous settings. The importance of trait expressions has been recognized in 

plant ecology studies, but until this point had not been comprehensively investigated from a remote 

sensing point of view. Given that canopy surface based traits (i.e., mg·m−2 land surface) hardly 

produced accurately validated models (0.04 < r2 < 0.60), we conclude that the total trait content per 
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unit ground area is not conveyed to the canopy spectral signature. Instead, the higher estimation 

accuracy of traits expressed on mass (mg·g−1 dry matter, 0.04 < r2 < 0.73) or leaf surface basis (mg·m−2 

leaf surface, −0.18 < r2 < 0.82) suggest that that canopy reflectance is a composition of reflectance 

from the leaf surface within the field of view of the sensor and from scattering within the leaf tissue. 

Aggregation of trait values to an ecological meaningful community-mean value that also relates well to 

the canopy spectral signal is thus not straightforward and depends on the trait in question. However, 

we found that ecological theory on how trait values relate to Leaf Area Index (m2 leaf surface·m−2 land 

area) and Specific Leaf Area (mm2·mg−1) provides a priori insight into which trait expression is most 

appropriate. This might aid future studies on trait estimations in herbaceous plant assemblages, and 

other ecosystems, to consider trait expressions beforehand. 
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