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Abstract: Remote sensing can provide good alternatives for traditional in situ water status 

measurements in orchard crops, such as stem water potential (Ψstem). However,  

the heterogeneity of these cropping systems causes significant differences with regards to 

remote sensing products within one orchard and between orchards. In this study, robust 

spectral indicators of Ψstem were sought after, independent of sensor viewing geometry, 

orchard architecture and management. To this end, Ψstem was monitored throughout three 

consecutive growing seasons in (deficit) irrigated and rainfed pear orchards and related to 

spectral observations of leaves, canopies and WorldView-2 imagery. On a leaf and canopy 

level, high correlations were observed between the shortwave infrared reflectance and in 

situ measured Ψstem. Additionally, for canopy measurements, visible and near-infrared 

wavelengths (R530/R600, R530/R700 and R720/R800) showed significant correlations. Therefore, 

the Red-edge Normalized Difference Vegetation Index (ReNDVI) was applied on fully 

sunlit satellite imagery and found strongly related with Ψstem (R2 = 0.47; RMSE = 0.36 MPa), 

undoubtedly showing the potential of WorldView-2 to monitor water stress in pear 

orchards. The relationship between ReNDVI and Ψstem was independent of management, 

irrigation setup, phenology and environmental conditions. In addition, results showed that 

this relation was also independent of off-nadir viewing angle and almost independent of 

viewing geometry, as the correlation decreased after the inclusion of fully shaded scenes. 
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With further research focusing on issues related to viewing geometry and shadows, high 

spatial water status monitoring with space borne remote sensing is achievable. 

Keywords: stem water potential; multispectral imagery; robust estimation; vegetation 

indices; pear orchards 

 

1. Introduction 

In capital intensive cropping systems, such as pear orchards, prolonged periods of water 

deficiencies can lead to significant yield loss [1], making water status monitoring crucial to optimize 

irrigation scheduling [2]. Traditional in situ measurements of plant water status are time consuming 

and destructive, allowing only limited samples and repetitions. Furthermore, the point measurements 

are insufficient to account for the high spatial variability present in orchards [3]. Technological 

advances in remote sensing provide non-destructive, time efficient and cost beneficial alternatives that 

visualize the spatial variability in water status at a wide range of temporal scales [4]. 

Various vegetation indices have been related to leaf and canopy water content (see review by [5]). 

In fruit trees, however, leaf water potential (Ψleaf) has been found a more robust indicator of plant 

water status compared to plant water content [6,7]. Leaf water content is normally measured on tissue 

samples [8], which are subject to some variability, while Ψleaf provide an integrated measurement of 

environmental conditions on water availability within the leaf. Moreover, while large changes in leaf 

water content only occur at advanced stages of dehydration, Ψleaf measurements were able to detect  

the onset of water deficiency, allowing a reaction before permanent damage occurs [7]. Several studies 

have linked Ψleaf in fruit orchards with vegetation indices [9,10]. The down-side of Ψleaf is the high 

variability within one tree. Therefore, most researchers prefer stem water potential (Ψstem) as an indicator 

of plant water status in fruit orchards [7,11,12]. The Ψstem is the water status of non-transpiring leaves, 

which is related to the water availability and transpiration. As opposed to plant water status and Ψleaf, 

the potential of remote monitoring of Ψstem is not yet fully explored nor widely adopted (but see 

examples for olives [13] and citrus [7,14]). 

Due to high cloud cover in many of the pear (and apple) growing areas of the world [15], irrigation 

scheduling through remote sensing requires a near-to-daily revisit time to provide the necessary 

information [16]. Furthermore, due to the large spatial variation within one management block [3],  

a high spatial resolution is required. Currently, this combination of both high spatial and temporal 

resolution is only feasible with high spatial resolution satellite sensors having off-nadir viewing 

capabilities, such as WorldView-2 (DigitalGlobe). However, most of the developed techniques and 

indices to monitor water status (as mentioned above) are based on reflectance information from the 

shortwave infrared (SWIR; 1,300–2,500 nm; [17]) and thermal infrared (3,000–35,000 nm; [18]) 

region of the electromagnetic spectrum. Yet very high spatial resolution satellites lack spectral bands 

in these regions of the spectrum. Furthermore, the highly variable off-nadir viewing angle influences 

spectral observations, which in turn complicates plant status monitoring [19]. Additionally, different 

management practices cause significant differences in orchard and tree architecture again influencing 

spectral observations and complicating accurate remote monitoring of plant water status [20]. 
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This study aims at investigating the potential of WorldView-2 satellite imagery for the monitoring of 

Ψstem. The goal is to identify robust spectral indicators of Ψstem, independent of orchard parameters (i.e., 

phenology, tree structure and irrigation setup), environmental conditions (i.e., soil conditions) and sensor 

parameters (i.e., off-nadir viewing angle). To this end, Ψstem was monitored throughout three consecutive 

growing seasons in a (deficit) irrigated and non-irrigated (rainfed) pear orchard and related to spectral 

observations of leaves, canopies and spectral vegetation indices derived from WorldView-2 imagery. 

2. Materials and Methods 

2.1. Study Area and Experimental Setup  

Experiments were conducted in a (deficit) irrigated and a non-irrigated orchard, which were 

monitored throughout the 2011, 2012 and 2013 growing seasons. 

The (deficit) irrigated orchard, planted with Conference pear trees (Pyrus communis L. cv. 

‘Conference’) on Quince C rootstock, was situated in Bierbeek, Belgium (50°49'34.59"N, 4°47'42.83"E). 

The 2.5 m high trees were planted in 2000 in a 3.5 by 1 meter grid. They were trained in  

a V-system with four fruiting branches on one central stem [21]. The orchard was situated on  

a south-east facing slope (3.5°) with a loamy soil and two dominant row azimuths, namely 41 and 

131°. The trees received 100% of the reference evapotranspiration (ETo) [22], throughout most of  

the growing season. In the second phenological phase, characterized by vegetative growth [23], two 

irrigation treatments were applied. One treatment was fully irrigated (100% ETo), while the other 

treatment received no irrigation from Day of Year (DOY) 150–213, to create deficit irrigation. Each 

treatment was applied to four adjacent rows, with all measurements performed on both center rows of 

each treatment to minimize the influence of adjacent rows. In each of the center rows, four plots of 

four trees were selected on fixed intervals (30 m) within the row. As a result, 16 plots were monitored 

throughout three consecutive growing seasons. Additionally, 16 fully irrigated plots with a similar 

management system were selected throughout the orchard and monitored throughout the growing 

season in 2012 and 2013. The additional plots comprise trees with different age groups, soil types and 

row orientation. During the experiment, all management practices were carried out without 

interference to the experiment. 

The non-irrigated or rainfed orchard, situated in Kerkom, Belgium (50°46'24.25"N, 5°09'27.05"E), 

was planted in 2000 with Conference pear trees on Quince A rootstock. The 3.5 m high trees, planted 

in a 3.75 by 1.75 meter grid, were trained in a Spindle bush system [21]. The orchard was situated on  

a south facing slope (1.1°) with a loamy soil and a row azimuth of 197°. The trees were rainfed and 

received no additional water input. Two adjacent rows were selected and divided into eight plots of six 

trees, each plot consisting of four central experimental trees and two outside buffer trees. To ensure 

differences in water availability, root pruning was applied on one side of the canopy in the beginning 

of the growing season (March). In each row, a root-pruned plot was alternated with a non-treated plot. 

In both orchards, the soil under the trees was kept weed free for about 0.3 m from the trunk and 

grass was sown in between the tree rows. 
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2.2. Data 

2.2.1. In Situ Water Status 

Midday stem water potential (Ψstem) was acquired for one tree per plot, on three leaves per tree, on 

sunny days throughout the 2011, 2012 and 2013 growing seasons (see Table 1) with a pressure 

chamber [24]. Prior to measurement, the leaves were covered with aluminum foil and enclosed in 

plastic bags to equilibrate leaf water with stem water potential [25]. 

Reference evapotranspiration (ETo; mm/day) was calculated according to [22] for the (deficit) irrigated 

and rainfed orchard from weather data obtained from nearby weather stations in Beauvechain, Belgium 

(50°46'49.86"N, 4°46'26.44"E) and Bierset, Belgium (50°39'18.69"N, 5°27'03.34"E), respectively. 

2.2.2. Leaf Level Reflectance 

Throughout the 2011, 2012 and 2013 growing seasons, leaf spectra were gathered for one tree per 

plot. Table 1 summarizes the exact dates of measurement. The measurements were performed with  

an ASD spectroradiometer (Analytic Spectral Devices, Boulder, CO, USA), conforming to [8], with a 

contact plant probe and an attached light source. For each tree, 20 undamaged and mature leaves were 

randomly selected from the sunlit part of the canopy, sampled 10 times in a basal position on  

the adaxial side of the leaf and averaged per leaf. All measurements were performed on sunny days 

within 1.5 h of local solar noon. All spectra were smoothed using a 2nd order Savitsky-Golay filter 

with a window size of 21 [26]. In this study, only leaf measurements coinciding with in situ water 

status measurements were considered, i.e., within one day before or after a Ψstem measurement. 

2.2.3. Canopy Level Reflectance 

Throughout the 2011, 2012 and 2013 growing seasons, canopy reflectance measurements were 

collected on cloud-free days (see Table 1), using a full range (350–2,500 nm) HR-1024 

spectroradiometer (Spectra Vista Corporation, New York, NY, USA). The canopy spectra were taken 

from an elevated position between the rows at an average height of one meter above the top of  

the canopy. For each plot, eight sunlit canopy spectra were taken and averaged. All measurements 

were performed within 1.5 h from local solar noon, to minimize differences with regards to solar 

geometry and illumination. All spectra were smoothed using a 2nd order Savitsky-Golay filter with  

a window size of 21 [26] and atmospheric water absorption features were removed. In this study, only 

canopy measurements coinciding with in situ water status measurements were considered, i.e., within 

one day before or after a Ψstem measurement. 

2.2.4. Satellite Level Reflectance 

WorldView-2 multispectral iages were acquired under different off-nadir viewing angles, with  

a resampled ground sampling distance of 2.0 m and a spectral resolution complying eight bands: Coastal 

(400–450 nm), Blue (450–510 nm), Green (510–580 nm), Yellow (585–625 nm), Red (630–690 nm), Red 

Edge (705–745 nm), NIR1 (Near InfraRed 1; 770–895 nm) and NIR2 (860–1,040 nm). The acquisition 

details for the WorldView-2 images are shown in Table 2. All images were radiometrically [27], 
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atmospherically [28] and geometrically corrected [29]. Additionally, the position of each plot was 

determined with a differential global positioning system (Trimble RTK 58000). 

Table 1. Ψstem, Leaf reflectance and canopy reflectance measurements for both locations 

during the growing seasons of 2011, 2012 and 2013. Only reflectance measurements 

coinciding with in situ water status measurements were considered, i.e., within one day of  

a Ψstem measurement. 

Location Year DOY of Ψstem Measurements 
DOY of Leaf Level Reflectance 

Measurements 

DOY of Canopy Level 

Reflectance Measurements 

(Deficit) 

Irrigated 

Orchard 

2011 133, 140, 146, 167, 193, 215 and 238 214 141 

2012 
145, 150, 157, 166, 178, 180, 200, 

207, 214, 233 and 242 
242 208 and 214 

2013 
159, 166, 170, 183, 187, 194, 205, 

215 and 240 

159, 166, 170, 183, 187, 194, 215 

and 240 
195 and 214 

Rainfed 

Orchard 

2011 132, 141, 151, 179 and 214 214 178 

2012 
146, 151, 171, 185, 206, 217, 223 and 

236 
217 146 and 207 

2013 156, 163, 193, 199, 214 and 225 156, 163, 193, 214 and 225 157 and 213 

Because of the unnatural hedge shape of capital intensive pear orchards, a viewing azimuth opposite 

the solar azimuth would imply that only shaded area was visible. Therefore, in the first part of this 

study, only plots acquired on the sunlit side of the canopy were considered. 

Table 2. Metadata of WorldView-2 acquisitions used in this study. 

Location Year DOY Off-nadir Viewing Angle (°) Satellite Azimuth (°) Satellite Elevation (°) 

(Deficit) 

Irrigated 

Orchard 

2011 214 10.8 45.9 78 

2012 148 2.7 181.1 86.7 

 232 18.9 209.8 68.6 

2013 189 26.1 14.7 60.7 

 214 25.6 107.9 61 

Rainfed 

Orchard 

2011 214 4.8 68.6 84.7 

2012 148 15 199.8 72.9 

 232 23.7 211.1 62.9 

2013 187 28 99.1 58.2 

 214 27.4 133.5 58.7 

2.3. Analysis 

The hyperspectral leaf and canopy measurements (Sections 2.2.2 and 2.2.3) were related with  

the measured Ψstem values. A normalized difference ratio (Equation (1)) was calculated for each 

combination of wavelengths to investigate the predictive power of all wavelengths for water  

status estimation. 
Normalized difference ratio ( ) ( )x y x yR R R R= − +  (1)
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with Rx and Ry, the reflectance at wavelengths on the x-axis and y-axis are represented, respectively. From 

this analysis, the best band combinations were selected and used to relate the multispectral satellite images 

(Section 2.2.4) to the measured Ψstem values. The strength of correlation was determined with the 

coefficient of determination (R2; Equation (2)) and the Root Mean Squared Error (RMSE; Equation (3)), 

with t-statistics used to test significance of correlation (α = 0.05). 
2 22 1 ( ) ( )pred meanR y y y y= − − −   (2)

2RMSE ( ( ) )predy y= −  (3)

with y the measured Ψstem; ypred the predicted Ψstem, and ymean the average Ψstem. 

3. Results 

3.1. Water Status 

The temporal profile of the ETo (mm/day), the measured Ψstem (MPa) and its standard deviation are 

shown in Figure 1. 

Before the experimental water treatment (DOY 150), the small standard deviations indicated similar 

Ψstem values within one day. Moreover, the measured Ψstem values were similar for all growing seasons 

and orchards pre-treatment, although a warm April and May in 2011 caused an exception. 

During the water treatment, the average Ψstem values decreased and the standard deviations 

increased, indicative of water deficiency accumulation and differences between treatments. This effect 

was more pronounced in the (deficit) irrigated orchard, as a result of the larger differences between 

treatments. In the rainfed orchard, differences in Ψstem values throughout the growing season were less 

variable and more dependent on weather conditions. In general, the lowest average Ψstem values were 

encountered near the end of the water treatment period in the (deficit) irrigated orchard, as a result of 

the prolonged period of water deficiency. The extended use of drip irrigation caused small root 

systems [30,31], which were more sensitive to longer periods of lack of water, causing lower Ψstem 

values in the deficit irrigation treatment. In 2012, however, during the later stages of the experimental 

water treatment (DOY 180–220), ETo dropped to 2 mm/day for an extended period. Together with 

high rainfall (data not shown here), this caused low standard deviations and high average Ψstem values 

for both the (deficit) irrigated and rainfed orchard. 

After the water treatment was finished, full irrigation (100% ETo) was again applied and  

the average Ψstem values restored to the level prior to the treatment. 

As a result of the differences in experimental treatments, a wide range of Ψstem values were present 

in the dataset, with a slightly skewed distribution towards the lower Ψstem values. The overall average 

Ψstem was −1.20 MPa with a standard deviation of 0.43 MPa, a minimum value of −3.07 MPa and  

a maximum value of −0.42 MPa. The overall average standard deviation within each tree was  

0.09 MPa (1,172 observations). 
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Figure 1. Reference evapotranspiration (ETo; mm/day) from Beauvechain, Belgium, and 

measured stem water potential (Ψstem; MPa), averaged for all plots in both the (deficit) 

irrigated and rainfed orchard, with bars indicating standard deviation. 

 

3.2. Leaf and Canopy Reflectance 

Figure 2 summarizes the significant R² values between measured Ψstem and the normalized difference 

ratios (Equation (1)) of all wavelength combinations for both leaf (above diagonal; 395 observations; 

Section 2.2.2) and canopy (below diagonal; 167 observations; Section 2.2.3) reflectances. 

Overall, the highest R² values between Ψstem and both leaf and canopy reflectance spectra (R² > 0.45) 

were located in the SWIR region. The R1400–R1800 nm and R2000–R2400 nm regions correlated strongly 

with Ψstem (Figure 2). Normalized difference band combinations between SWIR and other regions 

resulted in low(er), yet significant R² values. On the other hand, significant and high R² values were 

also found in the VIS-NIR region (Visible-Near Infrared; 350–1,300 nm). As the spectral range of  

the WorldView-2 satellite only compromised the VIS-NIR region, this was further investigated. 

In the VIS-NIR region, the canopy reflectance spectra were better correlated with the Ψstem values 

compared to the leaf reflectance spectra (Figure 2). More specifically, several bands in the VIS-NIR 

region showed high R2 values (R2 > 0.35), i.e., the combination of green to red (550–650 nm) or  

red-edge (700 nm) with blue (500–530 nm). Additionally, the combination of red-edge (700–750 nm) 

with NIR (800–900 nm) reflectance correlated relatively well with Ψstem (R2 > 0.3). These high R² 

values were further highlighted in Figure 3, through scatterplots between Ψstem and three normalized 
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difference ratio indices (Equation (1)); namely, a ratio of two SWIR bands (R1480 and R2230), a ratio of 

two VIS bands (R520 and R700), and a red-edge/NIR band combination (R800 and R722). 

Figure 2. Coefficient of determination (R²) values of normalized difference ratio of leaf 

measurements (above diagonal; Section 2.2.2) and canopy measurements (below diagonal; 

Section 2.2.3) with measured stem water potential (Ψstem; MPa) for each wavelength; only 

significant correlations were shown (α = 0.05) and atmospheric water absorption bands 

were left out. 

 

Similar to Figure 2, the SWIR band combination showed a high correlation with Ψstem on both leaf 

(R2 = 0.51; RMSE = 0.34 MPa; Figure 3a) and canopy level (R2 = 0.39; RMSE = 0.34 MPa; Figure 3d). 

The VIS combination showed a good correlation on canopy level (R2 = 0.48; RMSE = 0.31 MPa; 

Figure 3e) but no relation on leaf level (R2 = 0.02; RMSE = 0.49 MPa; Figure 3b), caused by the small 

range of the normalized difference ratio. Similarly, the red-edge/NIR combination showed a good 

correlation on canopy level (R2 = 0.20; RMSE = 0.39 MPa; Figure 3f), but was incapable to estimate 

Ψstem on the leaf level (R2 = 0.04; RMSE = 0.49 MPa; Figure 3c). 

In addition to the SWIR band combinations, the canopy level showed high R² values in areas of  

the spectral domain for which the WorldView-2 sensor was also sensitive (Figures 2, 3e and 3f).  

The narrow regions in the VIS with high R² values, such as combinations between R600/R550 and 

R700/R550 (Figures 2 and 3e), might not transfer to the broad satellite bands (40–70 nm bandwidth; 

Section 2.2.4). In this perspective, the red-edge/NIR combination showed more potential (Figure 3f), 

as a result of the uniformly high R² values for a large region of the NIR wavelengths (750–1,000 nm), 

which should transfer better to broad satellite bands (Figure 2). However, both regions in the VIS/NIR 
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with high R2 values indicated high potential for remote estimation of Ψstem through multispectral 

WorldView-2 imagery, especially since no distinctions were made between different management 

systems, irrigation setup and phenology. 

Figure 3. (a–f) Scatter plot of normalized difference (Equation (1)) of R1480 and R2230 nm 

(a,d); R520 and R700 nm (b,e); R800 and R722 nm (c,f); with measured stem water potential 

(Ψstem; MPa). All points were labeled for location. 

 

3.3. Satellite Level 

As an intermediate step in the up-scaling of canopy to satellite reflectance, the canopy reflectance 

spectra were resampled to match the multispectral bands of the WorldView-2 satellite, using the sensor’s 

spectral response function (similar to [32]). These were referred to as the modeled satellite level. 

Based on the results of leaf and canopy level measurements (Figures 2 and 3), a set of band 

combinations was chosen and highlighted. The applied band combinations were based on either  

the red-edge/NIR region or on the blue to red region, as defined by the sensor’s spectral response 

function [27] and the satellite bands (Section 2.2.4). 

Firstly, the Red edge Normalized Difference Vegetation Index or ReNDVI (Equation (4)) was 

chosen, as the red edge was previously shown to be useful in the detection of plant water stress [33]. In 

Figure 4, the ReNDVI (Equation (4)) on a modeled satellite level and satellite level is depicted against 

the measured Ψstem, only Ψstem measurements closest to the acquisition were considered. 

 1 Re   1 Re  ReNDVI ( ) ( )NIR d Edge NIR d EdgeR R R R= − +  (4)
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Figure 4. Scatter plot of Red edge Normalized Difference Vegetation Index (ReNDVI; 

Equation (4)) with measured stem water potential (Ψstem; MPa) for the modeled satellite 

level (a) and the satellite level (b). All points were labeled for location. 

 

Results for the ReNDVI, in Figure 4a, showed a similar correlation between the modeled 

WorldView-2 reflectance and Ψstem (R2 = 0.22; RMSE = 0.38 MPa) if compared to the correlation 

found between Ψstem and the hyperspectral (small band) ratio indices extracted from the original 

canopy reflectance spectra (R2 = 0.20; RMSE = 0.39 MPa; Figure 3f). This was particularly interesting 

since this indicates the sufficient applicability of the broad spectral bands of WorldView-2 to properly 

monitor Ψstem. The ultimate test was the comparison between per pixel derived ReNDVI values from 

the actual WorldView-2 imagery and measured Ψstem. The results in Figure 4b clearly showed a similar 

relationship between Ψstem and ReNDVI (R2 = 0.47; RMSE = 0.36 MPa), undoubtedly showing the 

potential of WorldView-2 to monitor water stress in pear orchards. With regards to the applicability of 

the index in multiple orchards, both the (deficit) irrigated and rainfed orchard showed a comparable 

relation with ReNDVI. However, the correlation of the rainfed orchard declined for both the modeled 

satellite level (R2 = 0.17; RMSE = 0.30 MPa) and satellite level (R2 = 0.13; RMSE = 0.36 MPa). On the 

other hand, the correlation of the (deficit) irrigated orchard increased for both the modeled satellite level 

(R2 = 0.41; RMSE = 0.40 MPa) and satellite level (R2 = 0.67; RMSE = 0.31 MPa). This was the result of 

the lower Ψstem range in the rainfed orchard. 

In addition to ReNDVI, the narrow regions in the VIS region with high R2 values (Section 3.2) were 

transferred into two indices, namely the Green Band Depth index (GBD; Equation (5)) and  

the Normalized Difference Green Blue index (Green/Blue; Equation (6)), based on the satellite bands 
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(Section 2.2.4). Similar to ReNDVI, both indices are depicted on a modeled satellite level and satellite 

level against measured Ψstem in Figures 5 and 6. 

GBD ( )Blue Yellow GreenR R R= −  (5)

Green Blue ( ) ( )Green Blue Green BlueR R R R= − +  (6)

The GBD (Equation (5)) showed a strong correlation on the modeled satellite level (R2 = 0.34; 

RMSE = 0.35 MPa; Figure 5a), with similar distribution for both experimental locations. On  

the satellite level, the correlation was stronger (R2 = 0.56; RMSE = 0.32 MPa; Figure 5b). However, 

Figure 5b also showed points very dissimilar to the rest of the dataset. As these effects were not present 

on the modeled satellite level, they were most likely caused by differences in viewing geometry. 

Figure 5. Scatter plot of Green Band Depth index (GBD; Equation (5)) with measured 

stem water potential (Ψstem; MPa) for the modeled satellite level (a) and the satellite level 

(b). All points were labeled for location. 

 

 

The normalized difference Green/Blue ratio (Equation (6)) also showed a strong correlation on 

satellite level (R2 = 0.51; RMSE = 0.33 MPa; Figure 6b). However, on the modeled satellite level  

the differences between experimental locations were distinct and also caused a weaker correlation  

(R2 = 0.18; RMSE = 0.39 MPa; Figure 6a). These differences were most likely the cause of different 

management systems (i.e., the V-system and the Spindle bush, see Section 2.1). 

Overall, both the GBD and the Green/Blue indices showed strong correlations on either the satellite 

level or the modeled satellite level but were not robust for both the satellite and modeled satellite level. 

Therefore, ReNDVI should be preferred for further application out of all the indices applied on  

a satellite level in this study, as it showed less dependence towards off-nadir viewing angle or orchard 
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architecture (i.e., row orientation, row spacing and orchard management) on either the satellite or  

the modeled satellite level. 

Figure 6. Scatter plot of Normalized Difference Green Blue index (Green/Blue; Equation (6)) 

with measured stem water potential (Ψstem; MPa) for the modeled satellite level (a) and  

the satellite level (b). All points were labeled for location. 

 
4. Discussion 

4.1. Potential of High Spatial and Multispectral Satellite Derived Ψstem Estimation 

As could be expected, the highest R2 values (R2 > 0.5) were observed in the SWIR on the leaf level 

(Figure 2). Previous studies have shown the SWIR region to be affected by water absorption and thus 

highly correlated with leaf water content [17,34,35]. Yet, next to the SWIR region, also the VIS-NIR 

region showed some significant zones with high R2 values (R2 > 0.2), mostly combinations within  

the 740–800 nm range. Similar to the SWIR region, several studies previously showed a relation 

between these wavelengths and leaf water content [36–38]. 

On the canopy level, similar (yet less pronounced) correlations were observed between SWIR 

reflectance and Ψstem (Figure 2). Moreover, the VIS-NIR region of the canopy level showed higher R2 

values compared to the leaf level. This is most likely the result of the low variability in the VIS region 

for the leaf measurements (Figure 3b), as a consequence of the sampling design. Only mature healthy 

leaves were sampled, while the canopy measurements were an integrated measurement of the entire 

canopy (Section 2.2.3). 

For canopy measurements, two regions within the VIS-NIR showed high R² values and potential for 

Ψstem estimation. On the one hand, combinations within the blue/green region were found to be 

strongly correlated with Ψstem (Figure 2). These band combinations were similar to the bands used by 
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the Photochemical Reflectance Index (PRI) [39] and are related to xanthophyll pigment changes, 

photosynthetic efficiency, as well providing early warning signs of water deficiency, in fruit  

orchards [13,14,39]. These narrow band combinations (R531 and R570) were not applicable on the broad 

satellite wavebands of WorldView-2, as they were included in one band (Green; 510–580 nm). 

On the other hand, the combination of the red-edge (700–750 nm) with the NIR region (800–900 nm) 

also showed a strong correlation with Ψstem (Figure 2). Contrary to the PRI bands, the R² values 

remained high for a large range of wavelengths, well suited for application on the broad satellite bands 

(Full Width Half Maximum between 50 and 100 nm). Previous research showed the relation between  

the red-edge region and stress detection [13,33], especially the shape and position of the red-edge [40,41].  

For healthy leaves, the red-edge inflection point showed a displacement towards the longer 

wavelengths as a result of high pigment concentrations [41]. However, during stressed periods and as  

a result of stress-induced chlorosis, the red-edge inflection point would shift to shorter wavelengths [13]. 

In addition to the correlation with chlorophyll content [40], the red edge was also found to be highly 

dependent on phenology, leaf water content and leaf area [41,42], causing lower R² values for the leaf 

measurements (Figure 2). As the resulting effect of water deficiency could be manifold, i.e., changes in 

water content, chlorophyll content, leaf area and leaf angle [43–45], and with the red-edge sensitive to 

all these influences, the red-edge could provide a good estimation of the overall health and stress level 

of a canopy. Moreover, it should also have a high correlation with Ψstem, as this is a measurement of 

the integrated effect of environmental conditions on water availability within the plant. This 

correlation between water potential measurements and biophysical variables was also shown by [42], 

where strong indices for Ψleaf were also strongly correlated with leaf area related indices (i.e., 

Normalized Difference Vegetation Index; [45]) and less with water content related indices (i.e.,  

Water Index; [46]). 

Overall, our analysis of leaf and canopy reflectance indicated high potential for the mapping of 

Ψstem with VIS/NIR derived band combinations, especially when keeping in mind that no distinctions 

were made between different management systems, irrigation setup, phenology and environmental 

conditions. We could further demonstrate this potential using WorldView-2 imagery (Figure 4). 

The ReNDVI (Equation (4)), derived from the Red-edge and NIR1 band of WorldView-2  

(Section 2.2.4.), was shown to be highly dependent on Ψstem and could be used in the remote estimation 

hereof. As an illustration on how such ReNDVI maps could be used for steering irrigation 

management, Figure 7 shows the index maps converted to estimates of Ψstem (RMSE = 0.36 MPa) for 

the (deficit) irrigated orchard. 

The image on the left was taken during an extended period of full irrigation, while the image on  

the right was taken during a deficit water experiment. The maps visualize spatial differences within 

each orchard block and indicate different zones in the orchard requiring different irrigation 

management, or the presence of problems related to obstructions in the irrigation system. In general, 

Ψstem readings below −1.5 MPa should be considered as a cut-off between moderate and severe water 

stress levels [1]. As expected, due to irrigation, Figure 7a showed no severely stressed trees (red to orange 

colors), while Figure 7b, acquired during a water stress experiment, showed large differences between 

different management blocks and water deficiency in some blocks (blue colors). With regular Ψstem maps 

throughout the growing season, irrigation scheduling with remote sensing input becomes feasible. 
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Figure 7. Stem water potential (Ψstem) map (MPa) of the (deficit) irrigated orchard based 

on the correlation depicted in Figure 4 (R2 = 0.47; RMSE = 0.36 MPa), for the image taken 

in 2012 on Day Of the Year (DOY) 232 (a) and the image taken in 2013 on DOY 189  

(b) Based on the correlation between satellite derived Red edge Normalized Difference 

Vegetation Index (ReNDVI, Equation (4)) and measured Ψstem (R2 = 0.47; RMSE = 0.36 MPa; 

Figure 4), a Ψstem map was derived. To avoid effects related to the canopy discontinuity, as 

a result of the alternation between canopies, shadows and grasses, a 3 × 3 pixel  

moving-average filter was applied. The filtering operation smoothed the image and 

facilitated visual interpretation, in similar fashion to [9]. 

(a) (b) 

4.2. Limitations of High Spatial and Multispectral Satellite Imagery  

In this study, no distinction was made between different management systems, irrigation setup, 

phenology and location, and still we could demonstrate the robustness of the WorldView-2 derived 

ReNDVI in estimating Ψstem. However, so far we only incorporated imagery with a viewing angle that 

allowed fully sunlit canopies. The distinction between sunlit and shaded scenes was based on  

the difference between the row azimuth and the relative azimuth between sensor and sun. Other studies 

have shown that the inclusion of shaded canopy parts could cause a decrease in correlation [13,14].  

In Figure 8, all the acquired images (Table 2) were taken into account, including imagery with 

different viewing geometry. 

Similar to other studies [13,14], the predictive power of the ReNDVI decreased after the inclusion 

of all the shaded scenes, as is shown in Figure 8 (R2 = 0.18; RMSE = 0.49 MPa). On the other hand, 

Figure 8a,b also showed a clear influence of viewing geometry on the ReNDVI index value.  

In addition to the light conditions in the plot, namely sunlit or shaded canopy, the off-nadir viewing 

angle was also shown to be important. The ReNDVI was only affected by the combination of high  
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off-nadir viewing angles (i.e., off-nadir viewing angles over 20°) and a viewing geometry opposite to 

the sun with regards to the rows. The relative position of the sensor was important for larger off-nadir 

viewing angles (>20°), as it determined whether the scene was fully sunlit or fully shaded. However, 

for smaller off-nadir viewing angles (<20°), the relative position of the sensor with regards to the sun 

and row orientation was found not to be important, as most of the canopy would still be sunlit. With 

the shaded scenes with small off-nadir viewing angles (<20°), the R2 increased to 0.56 and RMSE 

remained at 0.36 MPa (Figure 8c). 

Figure 8. Red edge Normalized Difference Vegetation Index (ReNDVI; Equation (4)) 

against measured stem water potential (Ψstem; MPa) for the satellite level, labeled for  

off-nadir viewing angle of the sensor (a), scene light conditions based on the sensor’s 

relative azimuth (b) and a combination of both (c). 

 

One influential parameter that could hamper applicability of the ReNDVI index is the background, 

i.e., the bare soil, cover crop or shadow. The influence of background on the use of the ReNDVI was 

not investigated here, as both the (deficit) irrigated and rainfed orchard had grass sown in between  

the rows to minimize soil erosion. However, some researchers have already indicated that soil background 

effects could decrease the correlation between vegetation indices and biophysical variables [14,47]. 

Ongoing research is focusing on developing and applying specific spectral mixture analysis 

techniques [48–50] to address these issues. As such, we hope to further advance the operational 

implementation of high resolution multispectral satellite observations, such as WorldView-2, in 
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precision agriculture. The results presented in this work show great promise for the remote steering of 

irrigation management. 

5. Conclusions  

This study aimed at investigating the potential of WorldView-2 satellite imagery for monitoring of 

stem water potential (Ψstem). To this end, Ψstem was monitored throughout three consecutive growing 

seasons in a (deficit) irrigated and non-irrigated (rainfed) pear orchard and related to spectral 

observations of leaves, canopies and WorldView-2 satellite imagery. Through ground measurements of 

leaf and canopy level, a robust spectral indicator of Ψstem was sought, independent of orchard 

parameters (i.e., phenology, tree structure and irrigation setup) and environmental conditions (i.e., soil 

conditions). Through satellite imagery, the sensitivity of the spectral indicator towards sensor 

parameters (i.e., off-nadir view angle, viewing geometry) was investigated. 

For hyperspectral ground measurements, it was shown that next to the Shortwave Infrared Region 

(SWIR) (combinations of the reflectance at 1,430 nm (R1430) and R2230), also the Visible-Near Infrared 

Region (VIS-NIR) showed regions with significant R² values for leaf level measurements. This was 

more pronounced at canopy level, for which combinations within the blue/green region (R500 to R570) 

together with the red/red-edge region (R670 to R720) were strongly related to Ψstem. Yet,  

the combinations of the red-edge (R700 to R750) with the NIR region (R800 to R900) were more suited for 

application on the broad satellite bands, as they showed a strong correlation with Ψstem for a larger 

range of wavelengths for both leaf and canopy level. 

The Red-edge Normalized Difference Vegetation Index (ReNDVI), derived from the Red-edge 

(705–745 nm) and NIR1 (Near InfraRed 1; 770–895 nm) band of WorldView-2, was shown to be 

highly dependent on Ψstem and could be used in the remote estimation hereof, independent of 

management systems, irrigation setup, phenology and environmental conditions. In addition, results 

showed that the relation between Ψstem and ReNDVI was independent of the off-nadir viewing angle 

and almost independent of viewing geometry. For larger off-nadir viewing angles, the relative position 

of the sensor determined whether the scene was fully sunlit or fully shaded, while for smaller off-nadir 

viewing angles the scene would be mostly sunlit, independent on the azimuth of the sensor. With the 

inclusion of these partly shaded but mostly sunlit scenes, the correlation improved (R2 = 0.56;  

RMSE = 0.36 MPa). 

With further research focusing on issues related to viewing geometry and shadows, high spatial 

water status monitoring with space borne remote sensing is achievable. 
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