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Abstract: Most current land surface models (LSMs) coupled to regional climate models 

(RCMs) have been implemented at the several tens of kilometer spatial scales. Modeling 

land surface processes in LSMs at a finer resolution is necessary for improvements in 

terrestrial water and energy predictions especially for small catchments. This study has 

therefore assessed the applicability of high-resolution simulations for terrestrial processes 

to a small study basin from the Common Land Model (CoLM) using 1-km surface 

boundary conditions (SBCs) based on remote sensing products. The performance of the 

CoLM simulations at finer (1-km) and coarser (30-km) resolutions are evaluated for daily 

runoff and land surface temperature results which have a significant influence on the 

terrestrial water and energy cycles. The daily stream water temperature is also estimated by 

a linear regression function of the 1-km daily land surface temperature prediction. The 

daily stream runoff and temperature results are compared with observations from a stream 

gauge station, and the daily land surface temperature prediction is compared with the 1-km 

remote sensing product. It is observed that the high-resolution CoLM results can 

reasonably capture seasonal variations in both daily runoff and temperatures crucial to the 

terrestrial water and energy budget. 

Keywords: land surface model; remote sensing data; surface boundary conditions; runoff; 

land surface temperature; stream water temperature  
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1. Introduction 

Regional climate models (RCMs) can provide the scientific information for climate variability, 

changes, and impacts at local and regional scales. The Intergovernmental Panel on Climate Change 

(IPCC) addressed the vulnerability of water resources to climate change and emphasized the need for 

high resolution simulations of terrestrial land surface processes in land surface models (LSMs) coupled 

to RCMs [1]. As current hydrology modeling studies have analyzed the hydrologic system complexity 

at higher resolutions, LSMs need to incorporate more sophisticated linkages and process interactions at 

finer scales in supporting of the increasing availability of remote sensing observations and 

computational power. Land surface parameterizations in LSMs that have been developed with a 

detailed representation of the hydrologic cycle have been implemented at the resolutions of several 

tens of kilometers [2–8]. Combined with such improvements in LSMs, finer resolution input datasets 

utilizing remote sensing products are also necessary for high-resolution LSM simulations to improve 

model predictability. Improvements in terrestrial water and energy predictions from high-resolution 

LSM simulations are essential for the watershed forecasting, management and planning. 

For assessment on the applicability of high resolution simulations from LSMs for small basins, this 

study has chosen the Common Land Model (CoLM) [9], a state of the art soil-vegetation-atmosphere 

transfer (SVAT) model, which has been incorporated into the mesoscale Climate-Weather Research 

and Forecasting (CWRF) model with numerous crucial updates for land processes [10–12]. The 

performance of CoLM simulation results has been widely evaluated against field measurements in a 

standalone mode as driven by the meteorological forcing data [6–9,13–19]. The CoLM can simulate 

the comprehensive land state variables of soil moisture, soil temperature, snow water equivalent, 

runoff, and energy fluxes such as net radiation, latent and sensible heat, etc. It has been, however, 

found that an application of the CoLM requires improvements in predicting the terrestrial hydrologic 

cycle [8,19]. Moreover the coarse resolution simulations in the dynamic responses of land surface 

processes to the coupled modeling system ultimately may lead to restrictions on model predictability in 

surface water and energy budget predictions especially for small catchments. The CoLM simulates 

both water and energy exchanges between land and atmosphere, which are controlled in part by the 

terrestrial water and heat fluxes. Hence, this study has focused on evaluating the performance of  

high-resolution simulations for runoff and land surface temperatures from the CoLM at 1-km grid 

spacing. For a performance assessment of high resolution CoLM simulations, this study selects a small 

natural basin, the Yongjeon River Basin in the Nakdong River Watershed, Korea where both runoff 

and temperature observations are available. All terrestrial water and energy schemes in the CoLM are 

implemented at the grid meshes rather than basins or catchments to avoid downscaling and upscaling 

exchanges between atmospheric forcings and CoLM predictions. This study has modeled a small basin 

with the 1-km multiple computational grids under study, which is different from the implementation 

with a large size single column domain for a small study basin in previous studies [2,4–6]. For 

comparison of simulation results with different model resolutions, this study has also implemented the 

CoLM at the 30-km resolution, commonly used in current LSM simulations. 

The specification of realistic surface boundary conditions (SBCs) is one of the essential components 

affecting the representation of surface-atmosphere interactions in LSMs. The primary SBCs for use in 

the CoLM have been constructed for North America or Asia domain at the 30-km grid scale [20–23]. 
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A set of high resolution SBCs based on best observational data is desired for a direct application of the 

CoLM at the 1-km grid resolution in the study domain. Following Choi [24] this study has constructed 

two sets of the primary SBCs using remote sensing data for the study basin at 1-km (0.00833 degree) 

and 30-km (0.25 degree) horizontal spacing on the geographic coordinate system. The high quality 

SBCs based on remote sensing products include the terrain SBCs such as surface topography, bedrock 

depth, and soil sand/clay fraction profiles, and the vegetative SBCs such as land cover category, 

surface characteristic identification, fractional vegetation cover, albedo, and leaf area index. For the 

standalone CoLM simulations, the meteorological forcing data are also constructed onto 1-km and 30-km 

computational grids by the inverse distance weighting method from daily observations in the Korea 

Meteorological Administration (KMA) gauge stations around the study basin. The applicability of 

high-resolution simulations of daily runoff and land surface temperatures in 2009 is initially evaluated 

at a small spatial and temporal scale for the study basin. Besides, this study has estimated the stream 

water temperature by the regression analysis between the 1-km simulated land surface temperate and 

the observed stream water temperature. Since most current LSMs are limited in predicting stream 

water temperature which is one of the most important factors in water ecosystem and environment 

managements, an applicable prediction scheme for both stream discharge and water temperature in 

LSMs is required for the climate change impact assessment on the river water resource system. 

This paper is composed five sections as follows: Section 2 presents the key parameterizations for 

runoff and temperature predictions in the CoLM, Section 3 describes study basin, data, and methods 

for the CoLM implementations at a finer (1-km) and a coarser (30-km) resolution, Section 4 evaluates 

the CoLM simulation results at different resolutions against observations over the study basin, and 

Section 5 addresses the final conclusions with a summary and discussion on limitations and future studies. 

2. Model Description 

2.1. General Description on CoLM 

As shown in Figure 1, energy and water balance calculations in the CoLM are performed over each 

computational grid cell for flux exchanges of water and heat between multi-layer soil grids and 

overlying atmospheric grids at every time step. Major characteristics of the CoLM include: a 10-layer 

soil temperature and moisture prediction; a 5-layer snow processes; a mass treatment of liquid and ice 

water in soil and snow with changes in phase; and a canopy photosynthesis-conductance scheme 

including the simultaneous transfer of carbon dioxide and water vapor in vegetation. Choi and Liang [8] 

addressed several deficiencies in the existing formulations for terrestrial hydrologic processes in the 

CoLM and presented improved solutions focusing on runoff prediction. In particular, they incorporated 

a spatial distribution of the realistic bedrock depth for more actual estimates of the soil water capacity. 

The existing equilibrium approximation for the water table depth was replaced with a dynamic 

prediction scheme for more reasonable predictions of the water table depth. An exponential decay 

profile of the saturated hydraulic conductivity with soil depth was incorporated for soil macropore 

effects near the ground surface soil. A set of the abnormal soil water prevention scheme such as an 

effective hydraulic conductivity of liquid water in the frozen soil and a maximum surface infiltration 

limit was employed for numerically stable soil moisture solutions. The baseflow (saturation lateral 
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runoff component controlled by topography) was added for an additional contribution to subsurface 

runoff. They demonstrated that such improvement has a significant influence on runoff predictions 

especially at peak discharges under high flow conditions. 

Figure 1. Conceptual schematic for hydrological and biogeophysical processes simulated 

in the Common Land Model (CoLM). 

 

2.1. Runoff Simulation Scheme 

In recent version of the CoLM, the saturated hydraulic conductivity decreases exponentially with 

soil depth as developed by Beven and Kirkby [25], Beven [26,27], and Elsenbeer et al. [28]: 
)( czzf

ssz eKK −−=  (1)

where Ksz is the vertical saturated hydraulic conductivity, Ks is the compacted hydraulic conductivity at 

saturation, f is the decay factor obtained by calibrating the recession curve in the observed hydrograph, 

and zc is the compacted depth representing soil macropore effect near the soil surface [29], especially in 

vegetated areas. The vertical saturated conductivity is assumed to have reached the compacted value at 

the plant root depth [2,3]. The soil hydraulic conductivity K is finally expressed as a function of soil 

wetness w (ratio of the actual soil moisture to porosity) and the pore size distribution index b by 

Brooks and Corey [30]: 
32 += b

sz wKK  (2)

Total runoff is comprised of surface runoff Rs and subsurface runoff Rsb for each grid cell in the 

CoLM. Surface runoff Rs is generated by the Horton and the Dunn mechanisms as: 
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where Qw is the available water supply rate on the surface, Imax is the maximum potential infiltration 

rate, and Fimp is the impermeable area fraction consisting of the fractional saturated area Fsat and the 

frozen area Ffrz as follows: 

frzsatfrzimp FFFF +−= )1(  (4)

The frozen area Ffrz is defined as a function of liquid soil water content θliq and ice content θice at 

soil layer k: 
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Moreover, Niu and Yang [5] simplified the fractional saturated area Fsat determined by the 

topographic characteristics and soil moisture state as: 

∇⋅−= zf
sat eFF 5.0

max  (6)

where Fmax is the maximum saturated fraction, and zQ is the water table depth. The exponent coefficient 

0.5 is derived by the comparison of results with the three-parameter gamma distribution of Niu et al. 

[6]. 

While the original CoLM implements bottom drainage and saturation excess runoff for the 

subsurface runoff prediction, the baseflow (saturated lateral runoff controlled by topography) is 

additionally incorporated in the subsurface runoff scheme in the current CoLM [2–6,8,13]. In the 

CoLM parameterization, therefore, subsurface runoff Rsb consists of the three components as: 
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where Rbas,max is the maximum baseflow coefficient determined by calibrations, θ and θs are the 

volumetric water content and porosity, respectively, Δzk is a layer thickness between vertical 

coordinates zk and zk-1 for the layer k, zN is the bottom of the lowest soil layer, N is the total number of 

model soil layers, and Δt is a computational time-increment. 

2.3. Soil Temperature Simulation Scheme 

The heat flux Φg into the snow or soil surface from the overlying atmosphere is: 

gvgggg ELHLS −−−=Φ  (8)

where Sg is the solar radiation absorbed by the ground [W·m2], Lg is the net longwave radiation 

absorbed by the ground [W·m2], Hg is the sensible heat flux from the ground [W·m2], Lv is the latent 

heat of evaporation for water [J·kg−1], and Eg is the evaporation from ground [kg·m−2·s−1]. LvEg is the 

latent heat flux from the ground [W·m−1]. The heat transfer in soil and snow layers is assumed to 

follow the heat diffusion equation: 
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where T is the soil or snow heat temperature [K], c is the volumetric soil or snow heat capacity [J·m−3·K−1], 

and σ is the latent heat of phase change [W·m−3]. The subsurface heat flux Φ at depth z (positive 

downward) can be described by the Fourier law for heat conduction: 

z

T

∂
∂−=Φ λ  (10)

where λ is the thermal conductivity [W·m−1·K−1]. By combining Equations (9) and (10), the soil and snow 

layer temperatures are computed based on the second law of heat conduction in one-dimensional form: 
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This equation is solved numerically to calculate soil temperatures for a 10-layer soil column with up 

to five overlaying layers of snow with the boundary conditions of the heat flux into the surface snow or 

soil layer from the overlying atmosphere as shown in Equation (8) and zero heat flux at the bottom of 

the soil column. 

3. Model Setup 

3.1. Study Basin 

To appropriately evaluate the performance of high-resolution simulations from the CoLM, this 

study has selected a small natural basin under study, the Yongjeon River Basin in the Nakdong River 

Watershed, Korea. This selected study basin has natural flow conditions without river regulation 

effects on flow discharge and temperature, which are not explicitly simulated in current LSMs. 

Figure 2a shows the location of the Korean Peninsula, and Figure 2b denotes the location of the 

study basin overlaid with the main stream networks and the watershed boundary of the Nakdong River 

on the geographic coordinate system. The study basin comprises of 412 computational grid cells at  

1-km (0.00833 degree) horizontal spacing and a single grid at 30-km (0.25 degree) scale, respectively, 

which is a subset of the computational domain for the Nakdong River Watershed in Choi [24]. This 

study basin has a stream gauge station Yongjeon-A (For convenience, this gauge station name is 

referred as to Y-A hereafter.) near the drainage outlet which observes both stream flow discharges and 

water temperatures for 42 times in 2009 by the KMA. There are six meteorological gauge stations 

managed by the KMA around the study basin for daily observations. See the Section 3.3 for details on 

the gauge stations and observations. 

3.2. Surface Boundary Conditions 

For high-resolution CoLM simulations, this study has constructed the most comprehensive SBCs 

based on the best observational data over the Nakdong River Watershed. The primary set of SBCs 

required for the CoLM applications includes the terrain SBCs such as surface topography, bedrock 

depth, and soil sand/clay fraction profiles, and the vegetative SBCs such as land cover category, 

surface characteristic identification, fractional vegetation cover, albedo, and leaf area index. The 

remote sensing based observational data at the finest possible resolution were collected for 

constructing a comprehensive set of SBCs in the study domain. 
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Figure 2. (a) Location map of the Korean Peninsula overlaid with latitude and longitude 

lines and (b) locations of gauge stations and the study basin overlaid with the main stream 

networks and the watershed boundary of the Nakdong River. 

 

Topographic characteristics were constructed from a finer resolution terrain data derived from 

remote sensing techniques, the National Aeronautics and Space Administration (NASA) Shuttle Radar 

Topographic Mission (SRTM) digital elevation model (DEM) based on the global 3-arc-second 

(approximately 90 m resolution) dataset [31]. The CoLM requires the spatially distributed bedrock 

depth to estimate the actual soil water capacity, and soil sand and clay fraction profiles are required to 

parameterize soil thermal and hydraulic properties. These profiles were determined by a new 

comprehensive Harmonized World Soil Database (HWSD) [32] developed by the Land Use Change 

(LUC) project of International Institute for Applied Systems Analysis (IIASA) and the Food and 

Agriculture Organization of the United Nations (FAO). The HWSD soil data are available at a  

30-arc-second (approximately 1 km resolution) raster database with over 16,000 different soil mapping 

units, which combines existing regional and national updates of soil information worldwide. 

This study has constructed the vegetative SBCs following Choi [24]. The land cover information 

and surface characteristic identification in the model were adopted from the US Geological Survey 

(USGS) 24-category land cover classification system [33], developed using the global 1-km resolution 

advanced very high resolution radiometer (AVHRR) satellite–derived normalized difference 

vegetation index (NDVI) composites [34]. Following Zeng et al. [35,36], the fractional vegetation 

cover was derived from the 1-km NDVI data in the Système Pour l’Observation de la  

Terre-VEGETATION (SPOT-VGT) satellite products [37]. The surface albedo was adopted from the 

1-km Moderate Resolution Imaging Spectroradiometer (MODIS) data [38], reclassified with the 1-km 

USGS 24-category land cover categories by Yucal [39]. The monthly mean distributions of leaf area 

index (LAI) were constructed from the MODIS data at 1-km spacing. See Choi [24] for the details of 

data characteristics and construction methods for the vegetative SBCs. 
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Figure 3 depicts the spatial distributions of several SBCs at 1-km computational grids over the 

study basin for terrain elevation ranging from 180 to 802 m, and land cover types consisting of 

irrigated cropland and pasture, cropland/woodland mosaic, savanna, and mixed forest. The albedo 

values vary from 0.13 to 0.20. Besides, red boxes in Figure 3 represent a 30-km computational grid for 

the study basin for which the mean terrain elevation is 399 m, the major land cover type is savanna, 

and the representative albedo value is 0.20. The CoLM identifies the surface characteristics as eight 

categories, namely: urban and built-up, soil, wetland, glacier, shallow lake, deep lake, sea ice, and 

ocean. The surface characteristic identification is determined as the soil only, and the fractional 

vegetation cover is computed as 1.0 for all the computational grid meshes in this natural study basin. 

The HWSD soil data provides a single value uniformly over the study basin such as 80 cm of the 

bedrock depth, and 0.59 and 0.56 (0.25 and 0.27) of the sand (clay) fractions for the upper five layers 

and the rest soil layers, respectively in the CoLM soil layers. Figure 4 illustrates seasonal LAI 

variations of spatial distributions of 1-km grids along with the 30-km grid value for MAM  

(March-April-May), JJA (June-July-August), SON (September-October-November), and DJF 

(December-January-February) average over the study basin. 

Figure 3. Spatial distributions of 1-km grids and representative values of a 30-km grid (red 

box and value) for (a) surface topography, (b) albedo, and (c) land cover category over the 

study basin. 
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Figure 4. Spatial distributions of 1-km grids and representative values of a 30-km grid (red 

box and value) for the seasonal average leaf area index (LAI) in (a) March-April-May 

(MAM), (b) June-July-August (JJA), (c) September-October-November (SON), and  

(d) December-January-February (DJF) over the study basin. 
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3.3. Meteorological Forcing and Initial Conditions 

The standalone CoLM simulations are driven by the meteorological forcing data constructed from 

daily observations in six gauge stations by the KMA such as Andong, Uiseong, Yeongcheon, Pohang, 

Yeongdeok, and Uljin stations shown in Figure 2b. Table 1 shows the atmospheric variables required 

for the CoLM simulations in the offline mode. The daily meteorological data measured from six KMA 

gauge stations are required for both spatial and temporal interpolations for the CoLM runs. Most 

forcing data are constructed onto the computational grids from six meteorological stations around the 

study basin by the inverse distance weighting method, which is a type of multivariate interpolation 

with a scattered set of point values. The computational grid point values at 1-km and 30-km resolutions 

are calculated with a weighted average of the values available at six gauge station points by the 

weighting of the inverse of the distance to each gauge point. The daily forcing data are also linearly 
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uncertainty in initial conditions. The model is started at 00:00 on 1 January 2009 by the assumed initial 

values and run repeatedly for five cycles throughout the whole year of 2009. The results at the end of 

the fifth cycle are used as the initial conditions for the subsequent CoLM simulation. 

Table 1. Meteorological forcing data required to drive the CoLM in the offline mode. 

Variable Unit 

pressure at the lowest atmospheric layer Pa 

temperature at the lowest atmospheric layer  K 

specific humidity at the lowest atmospheric layer kg/kg 

zonal wind at the lowest atmospheric layer m/s 

meridional wind at the lowest atmospheric layer m/s 

the lowest atmospheric layer height m 

pressure at surface Pa 

convective rainfall mm 

resolved rainfall mm 

snow mm 

planetary boundary layer height m 

downward long wave radiation onto the surface W/m2 

downward short wave flux at ground surface W/m2 

4. Results and Discussion 

For the performance evaluation of the CoLM simulations at finer and coarser resolutions, the runoff 

and temperature simulation results were compared with observations of comparatively sparse data. A 

stream gauge station Y-A around the outlet has both stream discharge and temperature observations 

measured for 42 times in 2009 by the KMA, and the 8-day MODIS land surface temperature data are 

available at 1-km grid spacing for the study basin. Hence daily runoff directly simulated from the 

CoLM at 1-km and 30-km resolutions and daily water temperature estimated from the 1-km land 

surface temperature result were compared with 42 observations available at irregular intervals. The  

1-km and 30-km simulation results of daily land surface temperatures were compared with 46 

observations available at every 8 days over the study basin in 2009. The relative agreement between 

results and observations were evaluated by using the Nash-Sutcliffe coefficient (NSC) [40] and the 

mean absolute error (MAE): 
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where n is the total number of data for comparison, Oi and Si are the observed and simulated values at 

day i respectively, and Oa is the average value of Oi. NSC can measure the model ability to simulate 

observation amplitudes, and MAE is used to evaluate how close predictincsons are to observations.  
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4.1. Runoff Results 

Both CoLM simulation results at finer (1-km) and coarser (30-km) resolutions are first evaluated for 

runoff results against stream flow observations at the KMA stream gauge station Y-A around the outlet 

in the study basin. Total runoff results consisting of surface and subsurface runoff from the CoLM 

simulations are averaged for 1-km grids and selected for a 30-km grid point, respectively, 

corresponding to the study basin to be compared with stream flow observations at the gauge station  

Y-A in the study basin. 

Table 2. Comparison of the CoLM performance at 1-km and 30-km resolutions for total 

runoff by the Nash-Sutcliffe coefficient NSC and the mean absolute error MAE with the 

decay factor f (in·m−1) and the maximum baseflow coefficient Rbas,max (in mm/sec) changes 

for the study basin in 2009. 

For the model calibration in runoff simulations of the year 2009 from the CoLM at both 1-km and 

30-km resolutions, this study has examined the sensitivity of the two parameters, the decay factor f 

(2 to 8 m−1) and the maximum baseflow coefficient Rbas,max (1 × 10−4 to 4 × 10−4 mm/s), as suggested 

by Choi et al. [41]. It was found that changes of both calibration parameters f and Rbas,max do not 

strongly affect the runoff results, mainly due to lower baseflow generation in the CoLM, similarly to 

the results obtained by Choi and Liang [8]. It is also caused by a relatively shallower HWSD bedrock 

depth data (80 cm) and the exponentially decayed hydraulic conductivity that may limit soil water 

availability and confine soil water at upper soil layers. As illustrated in Table 2, the decay factor f of 6 m−1 

and the maximum baseflow coefficient Rbas,max of 1 × 10−4 mm/s are selected for the model calibration 

parameters at both 1-km and 30-km resolution simulations for the study basin. For all simulated runoff 

results, a finer (1-km) resolution CoLM shows an improved performance (higher NSC and lower MAE 

scores) compared to the results from a coarser (30-km) resolution CoLM. Simulated runoff using the 

two calibrated parameters yields an NSC of 0.997 and 0.961 for the 1-km and 30-km resolutions, 

respectively, and an MAE of 0.174 and 0.354 for 1-km and 30-km results, respectively. Especially, 

MAE is reduced by around 49% for the 1-km runoff results compared to the 30-km simulations. 

Figure 5 compares the time series of specific discharges (per unit drainage area) during 2009, daily 

simulated from the CoLM at 1-km and 30-km resolutions under the calibrated parameter values (f = 6 m−1 

and Rbas,max = 1 × 10−4 mm/s) and observed for 42 times at the KMA gauge station Y-A in the study 

basin. The hyetographs of the observed total precipitation over the study basin are plotted along the 

 max,basR  = 1 ×10−4 max,basR  = 2 × 10−4 max,basR  = 3 × 10−4 max,basR  = 4 × 10−4 

NSC MAE NSC MAE NSC MAE NSC MAE 

1-km 

f  = 2 0.989 0.226 0.990 0.210 0.989 0.202 0.990 0.197 

f  = 4 0.993 0.203 0.994 0.205 0.991 0.220 0.991 0.214 

f  = 6 0.997 0.174 0.996 0.192 0.991 0.229 0.993 0.218 

f  = 8 0.997 0.186 0.995 0.207 0.995 0.209 0.992 0.224 

30-km 

f  = 2 0.958 0.463 0.958 0.490 0.959 0.481 0.960 0.443 

f  = 4 0.959 0.367 0.957 0.405 0.959 0.370 0.959 0.365 

f  = 6 0.961 0.354 0.960 0.364 0.959 0.368 0.959 0.362 

f  = 8 0.959 0.361 0.959 0.370 0.958 0.386 0.958 0.410 
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secondary vertical axis. In general, both 1-km and 30-km CoLM runoff simulation results show quick 

responses to rainfall events with less recession time, which are similar regardless of different values of 

the two calibration parameters f and Rbas,max in this study basin. Especially, under high flow conditions, 

the 30-km CoLM for a grid point simulates runoff with higher and sharper peaks than the basin-wide 

mean result from the 1-km CoLM. As illustrated in Table 2 and Figure 5, the performance of a finer 

(1-km) resolution CoLM runoff is better than a coarser (30-km) resolution result. Seasonal variations 

of the high resolution CoLM runoff can generally capture the seasonal variability of stream flow 

discharges, although runoff results cannot be fully evaluated by the limited 42 observations available 

in 2009. 

Figure 5. Comparison of daily time series of total runoff simulated from the CoLM at  

1-km and 30-km resolutions along with 42 stream flow observations at the Korea 

Meteorological Administration (KMA) stream gauge station Y-A and the daily observed 

total precipitation for the study basin in 2009. 

 

4.2. Land Surface Temperature Results 

This study has also performed the comparison of land surface temperatures daily simulated from 

the CoLM at 1-km and 30-km resolutions and observed at 8-day interval from the MODIS for the 

study basin. Note that the performance of land surface temperature results was compared with respect 

to the two hydrologic parameters since no parameter was calibrated for the land surface 

temperature simulations. As shown in Table 3, with the same values of the two parameters (f = 6 m−1 

and Rbas,max = 1 × 10−4 mm/s) in runoff results, the 1-km land surface temperature results have a good 

agreement with observations with NSC = 0.868 and MAE = 2.258, while all of the daily NSC and MAE 
values from the 30-km CoLM results are below 0.7 and above 3.8, respectively. Especially, the 

performance of the 1-km land surface temperature results show around 58% reduction in MAE 

compared to the 30-km simulation results. 
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Table 3. Comparison of the CoLM performance at 1-km and 30-km resolutions for land 

surface temperatures by the Nash-Sutcliffe coefficient NSC and the mean absolute error 

MAE with the decay factor f (in·m−1) and the maximum baseflow coefficient Rbas,max  

(in mm/s) changes for the study basin in 2009. 

Figure 6 compares the time series of the land surface temperature during 2009, daily simulated from 

the CoLM at 1-km and 30-km resolutions and 8-day observed from the MODIS over the study basin. 

Both 1-km and 30-km CoLM simulation results generally capture the seasonal trend and variability of 

the observed land surface temperature for the study basin, but a coarser (30-km) resolution result 

shows more seasonal fluctuations and biases to the observation than a finer (1-km) resolution result. It 

is mainly caused by a single value representation at the 30-km scale for the study basin. Although this 

initial 1-km resolution result from the CoLM overestimates land surface temperatures in summer and 

produces underestimation in winter, it is expected that the high resolution CoLM simulation can 

improve the land surface temperature predictability, crucial to the terrestrial water and energy budget.  

Figure 6. Comparison of daily time series of land surface temperatures simulated from the 

CoLM at 1-km and 30-km resolutions along with 8-day MODIS observations from the  

1-km MODIS for the study basin in 2009. 
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 max,basR  = 1 × 10−4 max,basR  = 2 × 10−4 max,basR  = 3 × 10−4 max,basR  = 4 × 10−4 

NSC MAE NSC MAE NSC MAE NSC MAE 

1-km 

f  = 2 0.832 2.632 0.830 2.648 0.829 2.651 0.830 2.645 

f  = 4 0.860 2.366 0.859 2.376 0.859 2.378 0.859 2.376 

f  = 6 0.868 2.258 0.868 2.261 0.868 2.263 0.868 2.261 

f  = 8 0.866 2.270 0.866 2.269 0.866 2.269 0.866 2.269 

30-km 

f  = 2 0.669 3.957 0.667 3.975 0.668 3.965 0.671 3.923 

f  = 4 0.673 3.888 0.673 3.891 0.672 3.906 0.672 3.898 

f  = 6 0.675 3.883 0.675 3.883 0.675 3.883 0.675 3.883 

f  = 8 0.673 3.898 0.673 3.898 0.673 0.898 0.672 3.899 
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Figure 7 also illustrates the seasonal variations of land surface temperatures simulated from the 

CoLM at 1-km and 30-km resolutions for MAM, JJA, SON, and DJF average values over the study 

basin. While a coarser resolution CoLM results are determined by a single 30-km gird value only, a 

finer resolution CoLM can simulate the spatial variability of land surface temperatures for 1-km grids 

over the study basin. 

Figure 7. Spatial distributions of 1-km grids and representative values of a 30-km grid (red 

box and value) for the seasonal average of land surface temperatures simulated from the 

CoLM in (a) MAM, (b) JJA, (c) SON, and (d) DJF over the study basin. 

 
(a) (b) 

 
(c) (d) 

4.3. Stream Water Temperature Estimations 

Like most LSMs, the current CoLM cannot predict directly the stream water temperature which 

may significantly affect the water quality and the habitat suitability of aquatic species. Hence this 

study has proposed a method to estimate the stream water temperature by the regression analysis of the 

relation between the simulated land surface temperature and the observed stream water temperature data.  

Figure 8 illustrates the scatter plot of the observed stream water temperature versus the simulated 

land surface temperature from the 1-km CoLM. The observed stream water temperature Tstr for the 

study basin shows a linear relation to the simulated land surface temperature Tsfc with the high 
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coefficient of determination R2 = 0.929. The regression equation for estimating stream water 

temperatures in this study basin from the CoLM land surface temperatures is: 

718.28367.0 += sfcstr TT  (14)

Figure 8. Comparison of trends between 1-km simulated land surface temperatures and 

observed stream water temperatures for the study basin in 2009. 

 

Figure 9 depicts that daily stream water temperatures estimated Equation (14) track closely through 

the seasonal trend of 42 observations at the KMA stream gauge station Y-A in 2009. It is expected that 

the regression equation can be used to estimate the stream water temperature variations and the daily 

water temperature at a local stream reach can be continuously predicted by the land surface temperature 

result from the CoLM under more evaluations with long-term data for this study basin. 

Figure 9. Comparison of daily time series of stream water temperatures estimated from the 

regression analysis with the 1-km CoLM land surface temperature simulation results along 

with 42 stream water temperature observations at the KMA stream gauge station Y-A in 2009. 
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5. Conclusions 

This study has assessed the performance of the Common Land Model (CoLM) in a set of offline 

simulations of daily runoff and land surface temperatures for a small natural basin, the Yongjeon River 

Basin under study in the Nakdong River Watershed of Korea for its applicability to high resolution 

simulations. The high-resolution simulations from the CoLM were feasible with the high resolution 

surface boundary conditions (SBCs) from remote sensing data and meteorological forcings constructed 

for the study basin at 1-km horizontal spacing. This study has constructed high quality SBCs and 

meteorological forcing data at both 1-km and 30-km resolutions to drive the CoLM model in the 

offline mode. The comparison of the CoLM simulation results indicates that performance of a finer  

(1-km) resolution result is much better than a coarser (30-km) resolution result in both runoff and land 

surface temperature predictions. The 1-km high-resolution simulation results for runoff and 

temperatures from the CoLM showed generally favorable correspondence with the stream gauge 

historical data and the Moderate Resolution Imaging Spectroradiometer (MODIS) observations in 

2009. It is observed that the daily runoff simulated from the CoLM at the 1-km scale can capture the 

temporal variations in stream flow discharge observations for the study basin, although the limited 42 

observations in 2009 are not sufficient to fully evaluate the model runoff predictability especially for 

the high flow season. The land surface temperature result from the CoLM at the 1-km scale can 

simulate well the seasonal trend of 8-day observations from the 1-km MODIS product for the study 

domain. These results indicate that the CoLM incorporating high quality SBCs based on remote 

sensing products can reasonably estimate the water and energy fluxes at a 1-km resolution. This study 

has also demonstrated that the stream water temperature can be estimated by the 1-km land surface 

temperature simulation result through a linear regression equation, which needs to be fully evaluated 

for further simulation results. A robust technique for the stream water temperature prediction at a local 

stream scale is required to develop comprehensive maps of water temperature distribution for stream 

networks throughout the year, which can provide the significant information on water quality and 

ecosystem managements for river water resources. 

In the context of such issues and challenges for the small watershed forecasting, management, and 

planning, this study has initially implemented high-resolution simulations for runoff and land surface 

temperatures from the CoLM at the 1-km grid for a small spatial and temporal scale in the offline 

mode. It is expected that high-resolution simulations from the current LSMs can improve model 

predictability for better predictions of the surface water and energy balance crucial to climate 

variability and change studies. Future studies will be required to construct more consistent and realistic 

SBCs and meteorological data from more remote sensing products at finer resolutions for long-term 

periods, and an upcoming paper will address the RCM climate analysis sensitivity to various scales. In 

addition, based on the high-resolution implementations of land surface models (LSMs), an advanced 

explicit scheme for the stream temperature computation needs to be incorporated into LSMs for the 

better prediction and decision-making in stream environmental managements against climate change. 
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