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Abstract: The ‘rain use efficiency’ (RUE) may be defined as the ratio of above-ground net 
primary productivity (ANPP) to annual precipitation, and it is claimed to be a conservative 
property of the vegetation cover in drylands, if the vegetation cover is not subject to  
non-precipitation related land degradation. Consequently, RUE may be regarded as means 
of normalizing ANPP for the impact of annual precipitation, and as an indicator of  
non-precipitation related land degradation. Large scale and long term identification and 
monitoring of land degradation in drylands, such as the Sahel, can only be achieved by use 
of Earth Observation (EO) data. This paper demonstrates that the use of the standard  
EO-based proxy for ANPP, summed normalized difference vegetation index (NDVI) 
(National Oceanic and Atmospheric Administration (NOAA) Advanced Very High 
Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies 3rd 
generation (GIMMS3g)) over the year (ΣNDVI), and the blended EO/rain gauge based  
data-set for annual precipitation (Climate Prediction Center Merged Analysis of 
Precipitation, CMAP) results in RUE-estimates which are highly correlated with 
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precipitation, rendering RUE useless as a means of normalizing for the impact of annual 
precipitation on ANPP. By replacing ΣNDVI by a ‘small NDVI integral’, covering only 
the rainy season and counting only the increase of NDVI relative to some reference level, 
this problem is solved. Using this approach, RUE is calculated for the period 1982–2010. 
The result is that positive RUE-trends dominate in most of the Sahel, indicating that  
non-precipitation related land degradation is not a widespread phenomenon. Furthermore, 
it is argued that two preconditions need to be fulfilled in order to obtain meaningful results 
from the RUE temporal trend analysis: First, there must be a significant positive linear 
correlation between annual precipitation and the ANPP proxy applied. Second, there must 
be a near-zero correlation between RUE and annual precipitation. Thirty-seven percent of 
the pixels in Sahel satisfy these requirements and the paper points to a range of different 
reasons why this may be the case. 

Keywords: rain use efficiency; semi-arid; trend analysis; GIMMS3g NDVI; CMAP 
rainfall; TIMESAT seasonal parameterization 

 

1. Introduction 

The development and prosperity of the African Sahel, a semi-arid transition zone between the 
Sahara desert to the north and the humid tropical savanna to the south, depends strongly on the 
precipitation regime. The grasslands of the Sahel-zone constitute the basis for livestock production, an 
important component of the economies of several Sahelian countries and the livelihoods of millions of 
people. Since the ‘Sahel drought’ of the 1970s and early 80s this zone has been described as a hotspot 
of land degradation, threatened both by recurrent droughts [1] and by human overuse, e.g., through 
overgrazing [1–3]. In recent years a ‘counter-narrative’ has emerged, claiming that the Sahel is 
undergoing a ‘greening’ [4–10]. 

The relationship between precipitation and aboveground net primary productivity (ANPP) in the 
West-African Sahel-Sudanian zone has been discussed extensively since the drought of the early 
70s [4,8,11–17]. It is beyond doubt that the productivity of the semi-natural grasslands of the Sahel is to 
a considerable extent controlled by precipitation. Recent analyses of trends in precipitation [18], as well 
as global precipitation data-sets [19], show that, taken as a whole, precipitation has increased in the Sahel 
since the mid-80s, and the greening, observed in the field and by use of time-series of satellite images, is 
therefore not surprising. However, if the ‘greening’ (supposedly associated with an increase in  
above-ground net primary productivity (ANPP)) is predominantly an effect of increased precipitation, 
this may disguise continued ‘degradation’ caused by other factors, such as overgrazing.  

This is sought to be captured by the concept of ‘rain use efficiency’ (RUE), defined as the ratio of 
ANPP to annual precipitation [4,9,20]. Temporal changes in RUE are supposed to reflect 
degradation—or the reverse—of the vegetation cover, because it ‘normalizes’ for the effects of 
precipitation change. If a separation of precipitation change impacts from other causes for productivity 
changes could be achieved, it would allow us to better assess the (non-precipitation) causes of 
productivity change. Consequently, changes in RUE have been suggested as an integral measure for 
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evaluating land degradation and desertification and a number of authors have attempted to  
assess non-precipitation related land degradation—or the reverse—in the Sahel by use of time-series of 
RUE estimated wholly or partly by use of satellite remote sensing or using only ground 
measurements [4,9,21,22]. However, as noted by Fensholt and Rasmussen [10] as well as  
Hein et al. [21], the results are not consistent.  

The basic assumption involved in the use of RUE is that ANPP, where no non-precipitation related 
land degradation is taking place, is proportional to (or at least linearly related to, see below) 
precipitation. If this assumption does not hold, the ‘normalization for precipitation’, which is the basis 
for the use of RUE, cannot function properly. In this case use of RUE to detect non-precipitation 
related land degradation will be meaningless. Several papers have questioned this proportionality. 
Using ground data from a variety of semi-arid rangelands in the Sahel and elsewhere Hein et al. [21], 
Hein & de Ridder [23], as well as Hein [24] argue that at high precipitation levels RUE will tend to 
decrease, among other things because other production factors than water availability become limiting, 
while at very low precipitation levels RUE will also decrease because most of the precipitation will 
evaporate and thus not be available for vegetation growth. The exact interval of annual precipitation in 
which proportionality may be assumed is debated. Hein et al. [21] cites Breman & Dewit [25] for the 
statement that the proportionality breaks down already at a precipitation of 300 mm per year. They 
further suggest that a quadratic or cubic relationship might replace the assumption of proportionality 
when going beyond 200–300 mm precipitation. Other publications based on in situ measurements 
suggest that biome-specific RUE values should be applied depending on the rainfall regime [26–28]. 
However [28] concludes that inter-annual variation in RUE is not correlated with precipitation at the 
site level. 

One of the most widely used approaches for EO-based monitoring of vegetation productivity is 
based on the use of the ‘normalized difference vegetation index’ (NDVI), which may be derived from 
several satellite/sensor systems including the National Oceanic and Atmospheric Administration 
(NOAA) Advanced Very High Resolution Radiometer (AVHRR), covering the period back to 1981. 
Daily NDVI-values may be summed over the growing season to give ΣNDVI, which is often assumed 
to be a proxy for ANPP in semi-arid areas like the Sahel [4,29–34]. The data on annual precipitation, 
used in the calculation of RUE, may come from either rain gauges or from data-sets derived from 
satellite data, in some cases calibrated with rain gauge data. The latter option is preferable due to the 
high spatial variability of precipitation. Fensholt & Rasmussen [10] working with satellite-based 
ΣNDVI and annual precipitation, demonstrate that for most pixels in Sahel there is no proportionality, 
but sometimes a linear relation, between ΣNDVI and annual precipitation, and they argue that this 
undermines the general use of satellite-based RUE time-series as a means of identifying  
non-precipitation related land degradation. Yet for pixels for which a high linear correlation between 
ΣNDVI and annual precipitation exists, a meaningful estimation of RUE, based on the Residual Trends 
(RESTREND) technique suggested by Wessels et al. [35], is feasible. RESTREND includes regressing 
ΣNDVI from annual precipitation and subsequently calculating the residuals (the difference between 
observed ΣNDVI and ΣNDVI as predicted from precipitation). Instead of assuming proportionality or 
linearity as being criticised by Hein et al. [21] we suggest to restrict the analysis to regions or pixels 
for which linearity can be shown to exist. This allows us to maintain the basic simple notion of RUE as 
means of normalizing for the effect rainfall on vegetation productivity. Introducing non-linear growth 
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models (even though this might have a theoretical justification) causes an unnecessary complication to 
the use of RUE or RESTREND for land degradation assessment if a strong per-pixel linearity from 
Earth Observation data can be documented.  

Another important difference between studies of NDVI and RUE trends in the Sahel is related to 
which NDVI-related measure is used as a proxy for ANPP. Above we have referred to ΣNDVI, but 
alternative methods of representing the annual/seasonal NDVI variation have been suggested.  
Peak-values of NDVI during then growing season have been used [6,15] and also NDVI integrated 
only for the Sahelian growing season months [4,10,17]. NDVI does not necessarily reach zero during 
the dry season, this may either be caused by the presence of green vegetation even in this period of the 
year, or it may be the effect of reflectance properties of soils and the dead vegetation canopy. In the 
latter case it makes sense to remove the effect by subtracting non-cyclic fraction when  
calculating ΣNDVI.  

Using NDVI as a proxy for ANPP in land degradation assessment is therefore not without problems 
and should be done with caution [4,10,23]. In the present paper we study the relevance and use of the 
concept of RUE to the current discussion on ‘greening’ and land degradation in the African Sahel. We 
test the importance of the specific method applied in EO-based land degradation monitoring when 
based upon time series of productivity and precipitation estimates. The impact of the specific data 
preprocessing of EO-based vegetation productivity on the degradation/recovery assessment results 
obtained is analyzed to study the RUE approach sensitivity to the EO-based proxies used and finally 
preconditions to be fulfilled in order to obtain meaningful results from the RUE per-pixel trend 
analysis are suggested. 

2. Theoretical Aspects of RUE 

The principles of the RUE concept and the impact from different vegetation productivity proxy 
estimates on RUE are illustrated in Figure 1 based on pixels extracted from the Global Inventory 
Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) and CMAP 
precipitation time series. The relationship between ΣNDVI and annual precipitation may be 
approximately linear, but the regression line does not normally pass through (0,0) (Figure 1(A) black 
dots; offset value = 3.05). If RUE is calculated simply as ΣNDVI/precipitation, this obviously implies 
that RUE will depend on precipitation (Figure 1(B) black dots; r2 = 0.86). In the case that precipitation 
increases over time, this will imply that RUE will decrease over time (Figure 1(C) black dots;  
r2 = 0.45). Thus, if RUE is interpreted as an indicator of non-climate land degradation we will observe 
ongoing land degradation, while the opposite would happen if precipitation decreased over time. This 
problem may be remedied by subtracting the intercept (of the regression line on the ΣNDVI-axis) from 
the observed ΣNDVI-values (Figure 1(A) hollow dots), or by using the RESTREND method, in which 
a non-biased temporal development of ‘RUE’ is obtained (Figure 1(B) hollow dots; r2 = 0.00) by 
regressing it against time (Figure 1(C) hollow dots) showing no trend (r2 = 0.09). Using the NDVI 
growing season integral (only the cyclic part) (Figure 1(a) gray dots) produces a regression offset close 
to zero (offset value = 0.01), thereby like the RESTREND approach, produces RUE observations 
independent of precipitation (Figure 1(B), gray dots; r2 = 0.00) showing no trend (Figure 1(C), gray 
dots; r2 = 0.04).  
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Figure 1. (A) Correlation between different estimates of vegetation productivity and 
precipitation. (B) The corresponding correlation between rain use efficiency (RUE) (based 
on different estimates of vegetation productivity) and (C) precipitation and trends of RUE 
over time. 

 

The use of summed ‘effective precipitation’ rather than summed precipitation has been stated by 
Prince et al. [4] to be a better input variable for RUE-calculation since soil evaporation, run-off, 
infiltration and drainage from and storage in the rooting zone (all dependent on crusting and soil 
retention) have impacts on the amount of plant available water. The above-mentioned variables will 
have different impacts, depending on precipitation amount and intensity. However, calculation of the 
effective precipitation requires spatially distributed information on soil properties and terrain, as well 
as high temporal resolution (daily at minimum) precipitation data.  

If a certain amount of annual precipitation is required to generate any productivity as discussed in 
Fensholt and Rasmussen [10], this could cause an offset to be generated on x-axis in Figure 1(A) 
which will potentially also create precipitation dependency in Figure 1(B) and a RUE slope of opposite 
(positive) trend in Figure 1(C). The only way to assess whether the parameterization of both vegetation 
and precipitation variables does not conflict with the general RUE assumption of a constant ratio is to 
check for correlation between RUE and precipitation as illustrated in Figure 1(B). 

Low correlation between ANPP and annual precipitation (for a region or a pixel), invalidating the 
use of RUE for detection of non-precipitation related land degradation, may be due to a number of 
causes that can be grouped into influence on the individual input variable (NDVI or precipitation) or 
the relation between the two: 

Precipitation:  

• Annual precipitation, here derived from the CMAP data set, may be a poor proxy for in situ 
plant water availability: The same annual precipitation will have very different impacts on 
ANPP, depending on whether it falls in few heavy showers or evenly distributed over the 
growing season. Taking this into account will require higher temporal resolution of the  
EO-based precipitation data (daily satellite/gauge blended products only available from 1996 to 
present). Precipitation will be re-distributed within each pixel/grid-cell, depending on  
terrain, soils and vegetation cover as well as the intensity of precipitation. As much as 80% of 
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the precipitation may run-off in extreme cases [36]. This will obviously imply that the impact on 
ANPP may differ greatly, which will add noise to the annual precipitation relationship (ANPP).  

NDVI: 

• In the driest parts of the Sahel, estimation of ANPP on the basis of EO-data is made difficult by 
the dominance of the effects of spatial and temporal variations in soil reflectance properties. 
Again this adds noise to the ANPP—precipitation relation at low precipitation values. 

• Temporal sums or integrals of NDVI are used as proxies for ANPP in this study. Such proxies 
are not perfect. Species and ecosystems may differ considerably with respect to their  
ANPP—NDVI relation, implying that interpretation of spatial patterns and temporal trends in 
RUE may be hampered, especially when species distributions change in time and space, as they 
are known to do in the Sahel [5,37,38].  

NDVI and Precipitation: 

• NDVI as a proxy for ANPP may not be related to precipitation in the same year if the root 
system draws on water resources that depend on precipitation over a longer period. Certain 
woody species in the Sahel have very deep root systems. 

• While annual CMAP precipitation data is resampled to the same 1/12-degree resolution grid as 
the GIMMS3g NDVI the original CMAP data have a much coarser spatial resolution blurring 
the high spatial variability of precipitation in the Sahel. This ‘scale mismatch’ will add noise to 
the per-pixel annual precipitation relation and result in lower correlations (ANPP). 

The exact minimum correlation between vegetation and precipitation, by which making use of RUE 
becomes meaningful, is difficult to specify, since the per-pixel estimation of both ANPP and 
precipitation is hampered by many sources of errors/noise as listed above. We have chosen to use the 
significance of the correlation as a criterion, demanding p ≤ 0.05. 

3. Study Area 

The Sahel stretches from the Atlantic Ocean in the West to the Red Sea in the East (Figure 2) 
forming a transition zone between the arid northern and the humid southern eco-regions. In the current 
study the Sahel is demarcated according to the average annual precipitation and covers the area 
between the 150–700 mm isohyets (Figure 2).  

The northern parts of the Sahel are primarily dominated by open and sparse grasslands and 
shrublands, while cropland, open woody vegetation and deciduous shrubland characterize the southern 
parts [39,40]. The region is dominated by C4 type plants, accounting for roughly 80% of the 
herbaceous layer on average [38]. 

The dynamics of the Intertropical Convergence Zone (ITCZ) is the primary driving force 
controlling the amount, timing and distribution of the Sahelian precipitation [18]. Large scale 
convection, carrying moisture to great heights, is associated with the location of the ITCZ and forms 
the basis for the seasonal precipitation regime [1,41]. The Sahelian rainy season is directly linked to 
the West African Monsoon (WAM), with a length of 1–4 months and an annual peak in precipitation 
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intensity in August. The length of the rainy season decreases with increasing latitude, and lasts 
approximately 1–2 months in the north and 4 months in the south [1].  

Figure 2. Sahel delineation (150–700 mm/year precipitation isohyets) and annual average 
precipitation (Climate Prediction Center Merged Analysis of Precipitation, CMAP  
1982–2010). 

 

4. Data and Method 

4.1. GIMMS 15-Day Composite NDVI Product (GIMMS3g) 

Currently, the GIMMS3g data archive is the only global coverage dataset spanning 1981 to the 
present day that is subject to continuous validation. At present the GIMMS3g archive is considered the 
best dataset available for long-term NDVI trend analysis [42]. The GIMMS NDVI dataset is based on 
the GAC 1B product [43]. No atmospheric correction is applied to the GIMMS data except for  
volcanic stratospheric aerosol periods (1982–1984 and 1991–1994) [44]. A satellite orbital drift  
correction is performed using the empirical mode decomposition/reconstruction (EMD) method of  
Pinzon et al. [45], minimizing effects of orbital drift by removing common trends between time  
series of Solar Zenith Angle (SZA) and NDVI. The GIMMS3g NDVI data is provided in  
1/12-degree resolution.  

4.2. Système Pour l'Observation de la Terre (SPOT) VEGETATION (VGT) Net Primary 
Productivity (NPP) 

The NPP dataset derived from the SPOT VGT has been processed by VITO (Flemish Institute for 
Technological Research). The methodology of estimating NPP is based on the light use efficiency 
approach originally defined by Monteith [46]. The detailed formulation adopted for this SPOT VGT 
NPP data set [47] has been modified to input daily meteorological data (air temperature and 
irradiance). This daily data set is used to estimate the daily maximum NPP with Fraction of Absorbed 
Photosynthetically Active Radiation (fAPAR) equal to 1. The average value of these daily NPPmax 
values over the compositing period is then multiplied by the 10-day fAPAR product (estimated directly 
from 10-day composites using a neural network approach [48]). The 10-day NPP product is 
subsequently averaged into a monthly dataset covering a 12-year time series of monthly observations 
(1999–2010).  
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4.3. Precipitation Data 

The precipitation data selected for the current study is CMAP. The CMAP data-set consists of 
global monthly precipitation estimates produced in a 2.5° latitude-longitude grid for the period  
1979–present. Estimates are based on a combination of gauge station measurements and a variety of 
different satellite observations [49]. The number of rain gauge stations used for calibration varies 
considerably in space on a global scale with an average of 11 stations for the 2.5° pixels covering the 
Sahelian zone. The absolute values given are generally less worthy of confidence than the variability 
and global averages appear to be accurate to within 5%–10% [49].  

4.4. Data Post-Processing 

The original GIMMS 15-day NDVI composite data covering the period from January 1982 to 
December 2010 were aggregated to monthly data using a maximum value composite approach to 
further reduce the influence from clouds and to match the temporal resolution of the SPOT VGT NPP 
data. The conversion of the GIMMS NDVI into NPP was done from per-pixel correlations between 
overlapping years of GIMMS NDVI and SPOT VGT NPP. The per-pixel strength of linear association 
between the two datasets was determined by calculating the Pearson product moment correlation 
coefficient (r) for the 12-year time series of monthly observations (1999–2010). The outputs of the 
regression correlation analyses (per-pixel regression slope and offset values) were used for the 
conversion of NDVI into NPP. The per-pixel significance of the NDVI-NPP relation was assessed 
from the per-pixel correlation coefficient (Figure 3).  

Figure 3. Advanced Very High Resolution Radiometer (AVHRR) Global Inventory 
Modeling and Mapping Studies (GIMMS) normalized difference vegetation index 
(NDVI)/Système Pour l’Observation de la Terre (SPOT) VEGETATION (VGT) net primary 
productivity (NPP) per-pixel correlation based on monthly observations (1999–2010). 

 

Precipitation data is resampled to match the GIMMS data using a bilinear resampling algorithm to 
preserve the 1/12 degree spatial resolution of the NDVI data (as in Herrmann et al. [8]). 

4.5. Calculation of ΣNDVI 

The ΣNDVI was calculated in different ways to study the implications of the selected method on 
the derived trends in RUE. (1) Annual ΣNDVI was calculated as the sum of the 12 monthly 
composites. (2) Annual sums of NPP were produced from the 12 monthly composites of GIMMS 
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NDVI transformed into NPP (using GIMMS NDVI/SPOT VGT NPP correlation regression output). 
(3) The GIMMS NDVI growing season integral is defined as sum of “greenness” appearing within the 
growing season (referred to as the “small integral” or the cyclic fraction). The growing season NDVI 
small integral is computed from time series parameterization using a Savitsky–Golay filter available in 
the TIMESAT software package (designed for analyzing time-series of satellite sensor data) [50,51]. 
The onset and end of growing season is determined for individual years from the per-pixel polynomial 
fit based on a parameterization of the fitted seasonal NDVI curve. The parameters applied in the 
TIMESAT analysis are: seasonal parameter = 0.5, Number of envelope iterations = 1,  
adaptation strength = 2, Savitzky–Golay window size = 2. The onset and end of growing season are 
defined in two different ways (a) as the points in time where the seasonal NDVI curve reaches 30% of 
the annual maximum for any given year and (b) using fixed threshold of NDVI. In method (a) the 
seasonality is calculated from percentage values of NDVI relative to the maximum of a given year and 
in (b) the small integral is calculated from absolute values of NDVI irrespective of the maximum of a 
given year. The threshold of optimal seasonal parameterization in (b) varies as a function of vegetation 
intensity. Therefore, the Sahelian zone was subdivided into five zones according to the dry-season 
NDVI base-level (0.10–0.15, 0.15–0.20, etc.). Both (a) and (b) were tested to study the importance of 
the threshold when calculating the NDVI small integral. Thirty percent of the maximum NDVI value 
as defining the onset/end of growing season was selected as the optimal value when performing a 
curve fitting to a North-South transect of Sahelian pixels (characterized by relatively low NDVI values 
during the dry season). Using a percentage threshold (a) tends to reduce inter-annual integral 
variability since a lower/higher maximum NDVI value will force the base level of the integral also to 
be lower/higher and therefore also (b) was tested despite the challenge of finding a fixed NDVI value 
being above the dry season level but low enough to enable the integral to capture the major part of the 
signal inherent to the recurrent vegetation (annual grasses).  

A precondition for the seasonal parameterization, as based on per-pixel polynomial fitting, to work 
is that a certain level of seasonality (phenology) must be present. Pixels for which a parameterized 
using TIMESAT is not possible have been used to create a mask excluding pixels from further 
analysis. This mask (applied in Figures 3–9) corresponds well with areas with annual NDVI standard 
deviations < 0.02 used as masking criteria in Fensholt and Proud [19]. In either case, pixels with very 
low NDVI that are known to be most susceptible to soil background contamination will be excluded 
from further analysis.  

4.6. Trend Analysis 

Temporal trends in the datasets were examined by applying the Theil–Sen (TS) median slope trend 
analysis which is a robust trend statistical method [52–54] calculating the median of the slopes 
between all n(n − 1)/2 pair wise combinations over time. The TS trend analysis is known to be 
resistant to the impact of outliers (noise) and was used to quantify the NDVI and RUE trend 
(magnitude of change over time) with time as the independent variable and NDVI, RUE as the 
dependent variable. This method is based on nonparametric statistics and is particularly effective for 
the estimation of trend in small and noisy series. Because it is based on the median, approximately 
29% of the samples can be unrelated noise and have no impact on the statistic [52]. Non-parametric 
trend indicators have been used in several recent studies analyzing consistency between various long 
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term NDVI dataset [55–57]. The outputs of the trend analyses are maps of correlation coefficients  
(r-values) and regression slope values, indicating the strength and magnitude of the calculated trend. 

Statistical significance was tested using a Mann-Kendall significance test producing z scores 
providing information on both the significance and direction of the trend. The Mann-Kendall 
significance test is measuring the significance (z-scores) of a monotonic trend (a non-linear trend 
indicator) but is commonly used as a trend test for the TS median slope operator. A positive slope  
(z ≥ 1.96) represents a significant increase (α > 0.05) and a negative slope (z ≤ −1.96) indicates a 
significant decrease (α < −0.05) over time. 

5. Results 

The per-pixel temporal trend (slope values) in NDVI for the Sahel 1982–2010 was calculated based 
on the annual NDVI sum (Figure 4(A)) and the growing season integral (Figure 4(B)) using method (a) 
(small integral; calculated from percentage values of NDVI relative to the maximum of a given year). 
Units are NDVI over the total period of analysis and only NDVI slope values significant at the 95% 
level (p < 0.05) are shown. Slopes based on annual NDVI sums (Figure 4(A)) generally show a 
positive trend with an average NDVI slope for Sahel of 0.01 (Table 1) with 33.7% of the Sahelian 
pixels being analyzed showing a significant trend (30.7% positive and 3.0% negative). Only smaller 
areas in Mali, Niger, Chad and Sudan are characterised by negative slope values. The average NDVI 
slope, for pixels showing a significant trend (p < 0.05), is 0.029. NDVI trend values (slopes) based on 
the seasonal integral (Figure 4(B)) show a more pronounced positive trend in NDVI. 75% of the 
Sahelian pixels analyzed show a significant trend (74.6% positive and 0.4% negative) with an average 
NDVI slope of 0.035 over the period 1982–2010. The NDVI slope based upon only pixels of a 
significant trend (p < 0.05) is 0.046. Only few pixels in Niger and Sudan are characterised by negative 
slope values. 

Linear regression analysis of GIMMS NDVI against the CMAP precipitation was conducted for the 
period 1982–2010 (Figure 5) based on annual NDVI sums (Figure 5(A)) and the growing season 
NDVI integral (Figure 5(B)). An overall strong linear correlation between NDVI and precipitation is 
observed for the Sahel with 66.4% (annual NDVI sum) and 65.1% (seasonal NDVI integral) of the 
pixels analyzed being significantly correlated (p < 0.05) (Table 2). When conducting the linear 
regression analysis as based on growing season NDVI integrals a marked shift in the number of pixels 
being highly significant (p < 0.01) is obtained (47.7% of all pixels) as compared to 40.7% when using 
annual NDVI sum as input. There is a clear tendency towards larger areas of pixels being characterized 
by a more significant relation (p < 0.01) in the Western Sahel when using the growing season NDVI 
integral as compared to the annual NDVI sum. In Eastern Sahel (primarily Sudan and Eritrea) the 
opposite is the case with annual sums of NDVI yielding higher correlations with precipitation. 
Regional differences in the NDVI/precipitation correlation are observed with low values in the 
southernmost Western Sahel (areas of significant negative correlation can be observed), around the 
Niger delta, Northern and Eastern Chad and larger parts of Sudan). 
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Figure 4. Global Inventory Modeling and Mapping Studies (GIMMS) normalized 
difference vegetation index (NDVI) linear trend 1982–2010 based on (A) annual GIMMS 
NDVI sums and (B) growing season NDVI integral. 

Table 1. Summary statistics from Global Inventory Modeling and Mapping Studies 
(GIMMS) normalized difference vegetation index (NDVI) linear trend analysis  
1982–2010. 

 
Slope (Avg. All Pixels 

Analyzed)  
(n = 27902) 

Slope  
(Pixels of 

Significant Trend 
(p < 0.05))  

Pixels of Positive 
Trend (p < 0.05)  
(% of All Pixels 

Analyzed)  
(n = 27902) 

Pixels of Negative 
Trend (p < 0.05)  
(% of All Pixels 

Analyzed) 
(n = 27902) 

Annual summed 
NDVI 

0.011 0.029 (n = 9399) 30.7 3.0 

Seasonally 
integrated NDVI 

0.035 0.046 (n = 20930) 74.6 0.4 

Figure 5. Global Inventory Modeling and Mapping Studies (GIMMS) normalized 
difference vegetation index (NDVI)/Global Precipitation Climatology Project (GPCP) 
precipitation correlation 1982–2010 based (A) annual GIMMS NDVI sums and 
(B) growing season NDVI integral. 
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Figure 5. Cont. 

The per-pixel regression offsets from the linear regression analysis (Figure 6) reveal large 
differences depending on the two different NDVI integration approaches with important consequences 
for the use in RUE calculations (as explained in Figure 1). When using annual NDVI sums the  
per-pixel offset values from the NDVI/precipitation linear regression are positive (Figure 6(A)) with 
an average of 2.83 (and std. dev. of 2.50) for the pixels of analysis within the Sahelian zone (Table 2). 
For the northern part of Sahel the pixel offset values are generally in the interval 1–3 whereas for the 
pixels in Southern Sahel the offset values increases to the interval 3–5. Converting NDVI into NPP 
from the per-pixel correlation (Figure 3) does not eliminate the offset on productivity for zero 
precipitation (Sahel NPP/precipitation linear regression NPP offset average of 516.8 kg/ha, figure not 
shown). Using the growing season NDVI integral (small integral) for the linear regression produces 
per-pixel regression offset values with an average of 0.01 (and std. dev. of 0.46) (Figure 6(B)). There 
is a tendency towards a spatial zonation with moderately positive values in the southern and northern 
periphery of the pixels being analyzed whereas the pixels in central Sahel are characterized by 
moderately negative values with the exception of Burkina Faso where negative offset values are also 
observed in the Southern Sahel. 

Figure 6. Global Inventory Modeling and Mapping Studies (GIMMS) normalized 
difference vegetation index (NDVI)/Climate Prediction Center Merged Analysis of 
Precipitation (CMAP) linear regression offset values (1982–2010). (A) Advanced Very 
High Resolution Radiometer (AVHRR) GIMMS NDVI annual sum (B) AVHRR GIMMS 
growing season NDVI integral. Note the unevenly distributed color ramp for better 
illustration of offset value variability around zero. 
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Figure 6. Cont. 

Table 2. Summary statistics from linear regression analysis of Global Inventory Modeling 
and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI)/Climate 
Prediction Center Merged Analysis of Precipitation (CMAP) precipitation 1982–2010. 

 

Number of Pixels of 
Significant 
Correlation  

(p < 0.05) (% of All 
Pixels Analyzed) 

(n = 27902) 

Number of Pixels 
of Significant 

Correlation (p < 
0.01) (% of All 

Pixels Analyzed) 
(n = 27902) 

Linear 
Regression 
Offset (Avg. 

All Pixels 
Analyzed)  
(n = 27902) 

Std. Dev. of 
Offset (Avg. 

All Pixels 
Analyzed) 
(n = 27902) 

GIMMS NDVI (annual sum)/ 
CMAP precipitation correlation 

66.4 40.7 2.832 2.497 

GIMMS NDVI (Seasonally integrated)/ 
CMAP precipitation correlation 

65.1 47.7 0.009 0.462 

Calculation of linear trends in RUE for the Sahel using different vegetation productivity 
parameterization (Figure 7) produces markedly different results. Using annually summed AVHRR 
GIMMS NDVI (Figure 7(A)) and NPP (Figure 7(B)) (obtained from per-pixel correlation between 
GIMMS NDVI and SPOT VGT NPP) produces similar trend outputs. The overall trend is negative 
with primarily the Western and Central Sahel being characterized by significant (p < 0.05) trends. The 
exception from the negative trends is the southernmost Western Sahel (Senegal and Mali) where an 
area of positive trends is visible. The RUE mean value (Figure 7(A); RUE × 1,000) of the Sahelian 
pixel analyzed is −0.058 for the GIMMS NDVI based analysis and −0.047 for the NPP based analysis. 
41.0% of the pixels are showing significantly negative trends whereas only 2.8% of pixels show 
positive trends (p < 0.05) regardless of whether NDVI or NPP is used as input for RUE. Average slope 
values for Sahelian pixels analyzed are -0.058 (Figure 7(A)) and −0.047 (Figure 7(B)) (Table. 3). The 
RUE linear trend analysis based on input from growing season NDVI integration (Figure 7(C,D)) from 
determination of onset and end of growing season calculated as a per-pixel relative fraction of the 
annual NDVI maximum (Figure 7(C)) and constant (but regional-specific) thresholds of NDVI  
(Figure 7(D)) show very different results as compared to Figure 7(A,B). The majority of pixels with a 
significant RUE trend (p < 0.05) are characterized by positive trends (55.5% and 41.5% in  
Figure 7(C,D) respectively) and positive trends are found across the entire Sahelian belt. The average 
RUE trend (RUE × 1,000) for pixels analyzed in Sahel is 0.029 and 0.039 for Figure 8(C,D) 
respectively. Only a limited number of pixels show negative trends (2.3%) when based on per-pixel 
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relative fraction of the annual NDVI maximum (primarily located in the northern part of Sahel;  
Figure 7(C)) and 0.9% when using constant thresholds of NDVI for the growing season integral 
(primarily in the Southern Niger; Figure 7(D)). 

Figure 7. RUE linear trends 1982–2010 based on (A) Advanced Very High Resolution 
Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) 
normalized difference vegetation index (NDVI), (B) net primary productivity (NPP), 
(C) growing season NDVI integration using a per-pixel relative fraction of the annual 
NDVI maximum and (D) growing season NDVI integration using a constant region 
specific threshold of NDVI. All productivity estimates are divided by Climate Prediction 
Center Merged Analysis of Precipitation (CMAP) precipitation to obtain rain use 
efficiency (RUE). 
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Figure 8. Correlation between RUE and precipitation 1982–2010 with RUE calculation 
based on (A) Advanced Very High Resolution Radiometer (AVHRR) Global Inventory 
Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI), 
(B) net primary productivity (NPP), (C) growing season NDVI integration using a  
per-pixel relative fraction of the annual NDVI maximum and (D) growing season NDVI 
integration using a constant region specific threshold of NDVI. 

 

 

Annual RUE based on the different productivity estimates (Figure 7(A–D)) was correlated against 
annual CMAP precipitation to check for the ability of RUE estimates to correctly normalise for 
variability in precipitation (Figure 8(A–D)). For a successful normalisation there should be no 
significant correlation between RUE and precipitation during the period 1982–2010. Using annually 
summed AVHRR GIMMS NDVI and NPP as input for RUE (Figure 8(A,B)) produces a strong 
negative correlation (p < 0.05) for all (99.9%) Sahelian pixels analyzed (average r value of −0.91) 
(Table 3). The strong correlation found is identical to the AVHRR GIMMS NDVI pixels (black dots) 
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illustrated in Figure 1. When correlating precipitation and RUE using growing season NDVI integrals 
(determined from NDVI relative fraction and NDVI constant threshold) as input (Figure 8(C,D)) 
produce very different results with areas of both significant negative and positive correlations and 
large areas without significant correlation. 34%, 57% and 9% of the Sahelian pixels were found to 
have significant negative, not significant and significant positive correlation respectively for the 
correlation analysis based on NDVI relative fraction integrals as input for RUE (average r value of 
−0.149). For the correlation analysis based on NDVI constant threshold integrals as input to RUE the 
numbers are 28%, 57% and 15% with an average r value of −0.079. The two integration approaches 
thereby produce an equal amount of pixels (57%) characterized by a successful normalization of 
precipitation variability. 

RUE trends based on growing season NDVI integration (Figure 7(C,D)) for pixels where no 
significant correlation between RUE and precipitation is present (Figure 8(C,D)) and at the same time 
with a significant positive correlation between precipitation and growing season NDVI integral  
(Figure 5(B)) are combined (Figure 9). The RUE trend analysis using a per-pixel absolute threshold 
(regionally graduated) of the annual NDVI maximum was selected for Figure 9 since this integration 
approach produces the same amount of pixels of non-significant correlation between RUE and 
precipitation but an r value (Sahel average) closer to zero (−0.079) indicating the most successful 
normalization for precipitation. This combined masking of RUE trends based on the growing season 
NDVI integration approach provides the basis for correct interpretation of magnitude and extent of 
potential land degradation/recovery as inferred from significantly negative and positive trends. Pixels 
not masked by either RUE/precipitation correlation or lack of seasonal NDVI integral/precipitation 
correlation constitute 37% of the Sahelian pixels being analyzed (10350/27903). Out of these pixels 
0.6%, 56.7% and 42.8% (Table 3) were found to be characterized by significant negative, not 
significant and significant positive trends in RUE respectively. 

Figure 9. Rain use efficiency (RUE) trends 1982–2010 based on small integral (relative 
values) Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference 
vegetation index (NDVI)/Climate Prediction Center Merged Analysis of Precipitation 
(CMAP) precipitation correlation. 
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Table 3. Summary statistics of rain use efficiency (RUE) linear regression slopes and 
RUE/precipitation correlations for varying normalized difference vegetation index (NDVI) 
integration approaches 1982–2010. 

 

Average 
(All Pixels 
Analyzed)  
(n = 27902) 

Std. Dev. 
(All 

Pixels 
Analyzed) 

Pixels of 
Positive 

Trend (p < 
0.05)  

(% of All 
Pixels 

Analyzed)  

Pixels of 
Negative Trend 

(p < 0.05)  
(% of All Pixels 

Analyzed) 

RUE Slope (RUE × 1,000) 
 (GIMMS NDVI (annual sum)/CMAP precipitation) −0.058 0.043 2.8 41.0 

 (NPP/CMAP precipitation) −0.047 0.052 2.8 41.0 
RUE slope (GIMMS NDVI (seasonal integral; relative 

threshold values)/CMAP precipitation) 
0.029 0.019 55.5 2.3 

 (GIMMS NDVI (seasonal integral; absolute threshold 
values)/CMAP precipitation) 

0.039 0.021 41.5 0.9 

Masked data (n = 10350)* 
(GIMMS NDVI (seasonal integral; absolute threshold 

values)/CMAP precipitation) 
0.03* 0.0175* 42.9* 0.6* 

Rue/Precipitation Correlation 
RUE based on GIMMS NDVI (annual sum) -0.908 0.048 0.0 99.9 

RUE based on NPP −0.907 0.059 0.0 99.9 
RUE based on GIMMS NDVI (seasonal integral; relative 

threshold values) 
−0.149 0.333 9.1 34.4 

RUE based on GIMMS NDVI (seasonal integral; absolute 
threshold values) 

−0.079 0.349 15.1 28.3 

6. Discussion 

The general greening of the Sahel (1982–2010) (Figure 4) is in accordance previous findings 
reported from earlier AVHRR based datasets [6–8,10,14,16,17,58]. However, the magnitude of the 
average slope (0.011, Table 1) from the annually summed NDVI values (Figure 4(A)) is considerably 
smaller than what has reported as based on earlier versions of the GIMMS NDVI dataset. Fensholt and 
Rasmussen [10] reported an average annual slope of Sahel=0.025 for the period 1982–2007. The 
average slope value as produced from linear trend analysis of seasonally integrated NDVI 
(Figure 4(B)), claimed to be a more accurate representation of the greening/browning [6,8–10,58] 
produce a much higher average slope value (0.035). 

The per-pixel linear regression analysis of GIMMS NDVI against CMAP precipitation showed a 
strong linear correlation for the majority of Sahelian pixels (Figure 5 and Table 2) including both the 
drier and wetter parts of the Sahel. This supports the bulk of scholars studying the spatio-temporal 
relation between NDVI and precipitation from rain gauges [4,10–17,59] all suggesting a linear relation 
to exist until precipitation amounts of 700–1,000 mm/year. Time series of air temperature was tested 
by [60,61] as explanatory variable for NDVI variability but only small areas of Sahel was 
characterized by significant correlations. A lower fraction of the pixels in the Sahel was found to be 
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characterized by a significant correlation between NDVI and precipitation as compared to [10] based 
on data covering the period 1982–2007. The larger area of pixels with a significant correlation reported 
here is likely to be caused by the use of a newer re-processed precipitation dataset (also including more 
years) and a different NDVI seasonal integration approach. However, other findings suggest that this 
precipitation threshold from where linearity disappears is reached at considerably lower values of app 
300 mm/year [21,23,24]. This threshold has important implications for the use of the RUE approach 
(Figure 1) based on both linearity and a constant ratio between productivity and precipitation. Much of 
the disagreement found on the use and interpretation of RUE [9,21,23,35] in fact stems from whether 
the relation can be described as linear, since it is argued that if a non-linear relation exists also for 
dryland areas a constant values of RUE over time could indicate ongoing land degradation [21,23]. 
The EO-based results as reported here nevertheless show a highly significant linear relation (Table 2) 
for large areas of Sahel (as defined by the 150–700 mm precipitation isohyets) as also supported by 
other EO-based analyses [8,10,17] suggesting no violation in the interpretation of RUE as suggested 
by Prince et al. [4,9]. Hein et al. [21] discuss the implication of spatial variability in the relation 
between productivity and precipitation and thereby RUE (caused by relief, soil type, runoff and  
run-on, plant communities, woody biomass cover, grazing and burning history) for the interpretation of 
remote sensing data. They argue that the assumptions of a uniform relation between productivity and 
precipitation will lead to an overestimation of the RUE in some areas, and an underestimate of RUE in 
other areas. This argument however, neglect that satellite based RUE analyses are conducted as  
per-pixel trend analyses thereby rendering the above concern irrelevant unless it can be shown that 
these variables have changed over time for a given pixel. 

The offset in the regression between NDVI and precipitation (Sahel average of 2.83) does lead to a 
non-constant ratio between NDVI and precipitation (Figure 6(A)) (as also illustrated in Figure 1) for 
all pixels in the Sahel. This causes the calculated RUE to remain highly correlated with precipitation 
(Figure 8(A,B)) and the negative trends in rain use efficiency (RUE) (Figure 7(A,B)) may therefore be 
caused by a general increase in precipitation. The negative trends could be interpreted as land 
degradation, as has been done in Hountondji et al.[62], but we would claim that precipitation 
variability has not been properly normalized for in the RUE calculation, thereby rendering RUE 
inappropriate for the purpose of assessing land degradation. The conversion of the GIMMS NDVI into 
NPP using per-pixel linear correlation between SPOT VGT NPP/GIMMS NDVI 1999–2010 monthly 
observations (Figure 3) does not produce RUE time series data that are uncorrelated with precipitation 
time series due to a considerable per-pixel NPP offset when correlating NPP and precipitation; hence 
also RUE using this vegetation parameterization is deemed unsuitable for land degradation assessment. 
When applying the growing season integration of the NDVI signal (NDVI small integral) as input for 
RUE a much better normalization for the precipitation variability is obtained. Independent on the 
integration approach (relative fraction of NDVI or absolute threshold NDVI values) 56% of the pixels 
(Table 3, residual of pixels with a significant correlation) analyzed meet the criteria of RUE 
observations being uncorrelated to precipitation. This is also apparent in the growing season 
NDVI/precipitation linear regression offset (Figure 6(B)) (Sahel average of 0.009, Table 2) being close 
to zero which is a requirement for the adequate use and interpretation of trends in RUE.  

From the combined use of these criteria (Figure 10) 37% of the Sahelian pixels are remaining for 
degradation assessment and it becomes clear that analysis of RUE-trends provides little evidence of 
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widespread land degradation in the Sahel (0.6% of pixels show negative RUE trends), if land degradation 
is defined as a non-precipitation related loss in ANPP. It should be noted, however, that many other 
definitions and interpretations of the concept of land degradation exist, which are not covered by the 
present analysis. Further, the analysis does not tell us anything about possible land degradation in the 
63% of the area for which the conditions of the present analysis were not fulfilled. Finally, land 
degradation, even in the specific meaning used here, may well take place at sub-pixel level. 

7. Conclusions 

The main findings of our analysis can be summarized as follows: 

1. The use of rain use efficiency (RUE)-trends to identify land degradation (or the opposite) is 
based on the assumption that annual precipitation is the primary factor controlling  
above-ground net primary productivity (ANPP). Our analyses confirm earlier findings that a 
high (and statistically significant) linear correlation exists between annual precipitation and 
seasonally integrated normalized difference vegetation index (NDVI) (derived from the 
Climate Prediction Center Merged Analysis of Precipitation (CMAP) data-set) for 65% of the 
pixels in the Sahel. Only for these pixels is it meaningful to use RUE as a means of 
normalizing for precipitation variations.  

2. The calculation of RUE is very sensitive to the choice of proxy for ANPP, and widely different 
conclusions concerning land degradation in the Sahel may be obtained depending on the 
vegetation parameterization approach. 

3. The high positive offsets observed when calculating the per-pixel linear relationships between 
annual precipitation and annual ΣNDVI imply that in the case of a positive temporal trend in 
annual precipitation (as experienced in the Sahel over the period studied) RUE will decrease, as 
we observe. Yet this cannot be interpreted as an indication of land degradation; it must be seen 
as an artifact. 

4. Conversion of ΣNDVI into ANPP, using the statistically significant (p ≤ 0.05) per-pixel linear 
relationship between ΣNDVI and the Système Pour l'Observation de la Terre (SPOT)-based net 
primary productivity (NPP) estimate, does not solve the problem associated with the  
large offset. 

5. The large positive offset may be removed by using some version of the ‘small NDVI integral’, 
e.g., by applying the TIMESAT NDVI parameterization approach. The RUE calculated from 
this ‘small integral’ comes out as statistically weakly related to annual precipitation. 

6. For the pixels fulfilling both conditions (high correlation between the ‘small NDVI integral’ 
and annual precipitation and low correlation between RUE and annual precipitation), the trend 
in RUE is on average positive, and pixels with negative trends are few. Thus RUE-based 
analysis does not indicate widespread non-precipitation related land degradation in the Sahel 
over the period studied. 
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