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Abstract: In this paper, we estimate the trends and variability in Advanced Very High 
Resolution Radiometer (AVHRR)-derived terrestrial net primary productivity (NPP) over 
India for the period 1982–2006. We find an increasing trend of 3.9% per decade (r = 0.78, 
R2 = 0.61) during the analysis period. A multivariate linear regression of NPP with 
temperature, precipitation, atmospheric CO2 concentration, soil water and surface solar 
radiation (r = 0.80, R2 = 0.65) indicates that the increasing trend is partly driven by 
increasing atmospheric CO2 concentration and the consequent CO2 fertilization of the 
ecosystems. However, human interventions may have also played a key role in the NPP 
increase: non-forest NPP growth is largely driven by increases in irrigated area and 
fertilizer use, while forest NPP is influenced by plantation and forest conservation 
programs. A similar multivariate regression of interannual NPP anomalies with 
temperature, precipitation, soil water, solar radiation and CO2 anomalies suggests that the 
interannual variability in NPP is primarily driven by precipitation and temperature 
variability. Mean seasonal NPP is largest during post-monsoon and lowest during the  
pre-monsoon period, thereby indicating the importance of soil moisture for  
vegetation productivity. 
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1. Introduction 

Terrestrial net primary productivity (NPP) is one of the most important ecosystem variables that have 
been studied extensively during the last 40 years [1]. It is a fundamental ecological variable, not only 
because it measures the terrestrial carbon dioxide assimilation, but it also indicates the type (e.g., crops, 
forests) of the land surface area and status of a wide range of ecological processes. Practical 
considerations for estimating NPP exist in its utility to measure crop yield, forest productivity and other 
economically and socially significant products of vegetation origin. Determining the trend and variability 
of terrestrial NPP and its response to climate change is critical for understanding the potential carbon 
cycle changes in response to temperature, precipitation and other factors such as CO2 fertilization.  

Modern ecology relies heavily on experiments, both in laboratory and in field settings. However, 
true global measurements could only be made using satellite remote sensing which provides large 
sample sizes. Global ecosystem models provide the basis for computing a satellite-based estimate of 
NPP. These models range from simple ones based on light use efficiency (LUE) to more mechanistic 
models based on “Soil-Vegetation-Atmospheric-Transfer” (SVAT) schemes designed to capture 
variability in biospheric processes.  

LUE-based models are less complex and easily use remotely sensed data and map primary 
productivity of the terrestrial biosphere over large areas. Satellite data-driven LUE models such as  
C-Fix [2], Carnegie-AMES-Stanford-Approach (CASA) [3], Global Production Efficiency Model 
(GLO-PEM) [4], Simple Diagnostic Biosphere Model (SDBM) [5], Terrestrial Uptake and Release of 
Carbon (TURC) [6] and Moderate Resolution Imaging Spectroradiometer (MODIS) NPP 
algorithm [7–9] have been developed to produce spatiotemporal pattern of NPP over continents or 
global land surface. Estimates of daily gross primary productivity (GPP) and annual net primary 
productivity (NPP) at the 1-km spatial resolution are now produced operationally for the global 
terrestrial surface using imagery fromthe MODIS sensor [9]. NPP products can also be derived from 
process-based SVAT schemes [10]. 

Investigation of vegetation responses to climatic changes using climatic data and satellite 
observations of vegetation activity for 1982–1999 [8] indicated that the global NPP increased by 6% 
(3.4 peta grams of carbon (PgC) over 18 years). The largest increase was in tropical ecosystems where 
Amazon rain forests accounted for 42% of the global increase, owing mainly to decreased cloud cover 
and the resulting increase in solar radiation [8]. In qualitative agreement with these results, using 
satellite observation and the GLO-PEM model for 1981–2000, an increasing trend in terrestrial NPP 
that was superimposed on large seasonal and interannual variations was found in another study [11]. 
However, estimates for the recent period 2000–2009 [12] suggest a reduction in the global NPP of 
0.55 PgC. Large-scale droughts have been cited as the likely cause during this period. A drying trend 
in the southern hemisphere was found to be associated with a decreased NPP in that area which 
counteracted the increased NPP in the northern hemisphere. 
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Estimates of NPP for India vary widely depending on the observational data and the terrestrial carbon 
cycle model used. For 1980, the annual NPP is estimated at 1.24 PgC, based on observed carbon 
inventory data in various ecosystems [13]; for the mid-eighties, it is approximately 1.32–1.59 PgC [14]. 
Another study [15], using 10-day global NDVI (Normalized Difference Vegetation Index) composites 
along with C-Fix model for June 1998–May 1999 has estimated a value of 2.18 PgC. The estimate of 
NPP for India using the CASA model is 1.57 PgC for 2003, which is slightly higher than the estimates 
by the C-Fix (1.45 PgC) and MODIS NPP algorithms (1.30 PgC) for the same period [16]. A more 
recent work [17] used NOAA-AVHRR satellite data and the GLO-PEM model for 1981–2000 and 
obtained much higher values between 3.56 (1983) and 4.57 PgC (1998). This recent work showed a 
positive trend of approximately 8.5% increase per decade in NPP. A CASA model based study for the 
period 1981–2006 [18] finds that the NPP increased by about 8.5% during this 25-year period, primarily 
due to enhancement in agricultural productivity; the climate had a relatively small role (15%). 

In this paper, we investigate the trends and variability of AVHRR (Advanced Very High Resolution 
Radiometer)-derived NPP over India. Specifically, we focus on the linear trend and interannual and 
seasonal variability in NPP for the period 1982–2006. Multivariate regression is used to understand the 
causes for the trends and interannual and seasonal variability in NPP. The NPP data that we use here is 
different from data that have been used in the past. Investigations using different datasets and methods 
help to identify the robustness and uncertainty in earlier results. For instance, we find trends similar to 
past studies, but our results on interannual variability linking NPP and ENSO are not in agreement 
with earlier studies. 

2. Data  

The study area is India, which is a large country with a total geographical area of 329 million ha. It is 
located between 7° and 40°N and between 68° and 100°E. India experiences climatically four distinct 
seasons: southwest summer monsoon (June to August), northeast winter monsoon (December to 
February), spring or pre-monsoon (March to May) and autumn post-monsoon (September to November) 
inter-monsoonal periods. The southwest monsoon is essentially warm and humid, and the rainfall 
received during this period accounts for about 80% of the total annual rainfall of the country. The NE 
monsoon is cold and dry; however, southeastern parts of the country receive significant rainfall during 
this period. The two inter-monsoonal periods are mostly dry and moderately warm. 

The NPP estimates make use of vegetation greenness observations from the AVHRR [19] in 
conjunction with a light use efficiency model implemented for the MODIS sensor [9]. The algorithm 
uses fraction of absorbed photosynthetically active radiation (fPAR) and leaf area index (LAI) derived 
using AVHRR NDVI and radiative transfer models [20]. Satellite data from multiple AVHRR sensors 
have been processed consistently, accounting for differences and drift in calibration among the sensors, 
as well as atmospheric effects from ozone and water vapor. Climate drivers are from the National 
Center for Environmental Prediction reanalysis. The LUE algorithm first generates an estimate of 
potential GPP as a function of fPAR, incident radiation and biome specific radiation use efficiencies. 
Subsequently, the potential GPP is down regulated using daily temperature and soil moisture 
constraints. An autotrophic respiration component, sum of maintenance and growth components, is 
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computed separately using air temperature, seasonally adjusted Q10 and carbon pools (leaf, root and 
stem) derived from the satellite-derived LAI.  

The Normalized Difference Vegetation Index (NDVI) used in the retrieval of our NPP product has 
been used recently to document the stagnation of food production in water-limited regions of the 
tropics [21].It was also used to characterize year-to-year variations in vegetation dynamics in Central 
Asia [22], to study the trends and variability in vegetation structure in a grassland in Canada [23], and 
to examine vegetation change for a range of agricultural systems in Inner Mongolia, China [24]. The 
algorithm (called MODIS algorithm) used to obtain our NPP dataset has been validated using 
Ameriflux data from North America [25], Bigfoot data for North America and Brazil at nine sites 
representing a range of biomes [26], and global Ecosystem Model-Date Intercomparison (EMDI) NPP 
dataset [7]. GPP from MODIS algorithm has been also validated for a mixed forest site in the Nepalese 
Himalayas [27]. These validation studies have indicated that the NPP product used here are reliable. 
Further, our NPP dataset has been found to represent interannual variability in climate-driven 
vegetation activity reasonably well [8,9].  

The climate data (temperature and precipitation) at a resolution of 0.5° are obtained from Climatic 
Research Unit (CRU) (www.cru.uea.ac.uk/cru/data/hrg) at the University of East Anglia (UEA). The 
global annual mean of atmospheric CO2 is obtained from NOAA/ESRL (National Oceanic and 
Atmospheric Administration/Earth System Research Laboratory) databases (www.esrl.noaa.gov/gmd/ 
ccgg/trends/). The soil moisture data for the top 3.4 m soil (http://hydro1.sci.gsfc.nasa.gov/dods/), 
Global Land Data Assimilation System (GLADS), were acquired as part of the mission of NASA’s 
Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) through the 
Data and Information Services Center (DISC). Though GLADS has datasets from multiple land 
models, we used the 1° dataset from offline Community Land Model (CLM2) which has the largest 
number of soil layers [10] for a total soil depth of 3.4 m. The downward solar radiation at the surface is 
obtained from MERRA (Modern-Era Retrospective Analysis for Research and Applications) data 
(http://gmao.gsfc.nasa.gov/merra) Version 5.2.0 of the GEOS-5 DAS (Data Assimilation System) at 
1/2 × 2/3 degrees resolution. Sea surface temperature (SST) anomalies for the Nino3 region (Nino3-SST) 
are obtained from the CPC (Climate Prediction Centre), NOAA (http://www.cpc.noaa.gov/data/ 
indices/sstoi.indices). The Multivariate Enso Index (MEI) for characterizing ENSO is obtained from 
http://www.esr/noaa.gov/psd/enso/mei.ext. Net irrigated area and fertilizer consumption data 
is obtained from the Department of Agriculture and co-operation, Government of India 
(http://eands.dacnet.nic.in/latest_2006.htm). Forest plantation and afforestation statistics are obtained 
from the Ministry of Environment and Forests, Government of India (http://envfor.nic.in/nfap/ 
table-geographic-area.html#plantation) [28]. 

3. Results 

3.1. Mean and Variance 

The mean NPP and standard deviation over the period (1982–2006) in India are estimated at 
0.83 PgC·y−1 and 0.03 PgC·y−1 which are less than the CASA-model estimate of 1.42 PgC·y−1 and 
0.06 PgC·y−1 for 1981–2006 [18]. The mean and standard deviations are 0.79 and 0.02 PgC·y−1, 
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respectively, when the linear trend is removed. Since all available global scale NPP products are model 
based, it is important to recognize that trends and variability estimated from these products are likely 
more reliable and consistent than the mean values. As can be seen from Figure 1(a), NPP shows a large 
spatial variation across the country with high values (~800 gC·m−2·y−1) in northeast India, parts of the 
Western Ghats and the Himalayan forests. Low values are observed in dry regions, such as northwest 
India, and areas of the western and northernmost parts of India. The spatial pattern of standard deviation 
(Figure 1(b)) resembles the mean NPP: the absolute magnitude of variation is higher where the mean is 
higher. It varies from 0 in low-productivity regions to as high as 40 gC·m−2·y−1 in high productivity regions. 
However, the coefficient of variation (CV) which is the standard deviation normalized by mean NPP shows 
high values in regions with low productivity (Figure 1(d)). The spatial pattern of AVHRR-derived NPP, 
standard deviation and CV are similar to that simulated by the CASA-model [18]. 

Figure 1. Spatial pattern of (a) annual mean, (b) standard deviation, (c) temporal evolution 
of domain-mean NPP, (d) coefficient of variation of NPP, (e) spatial pattern of the annual 
NPP trends, and (f) percentage decadal trends of NPP from 1982 to 2006. 

 

 

3.2. Trends in NPP 

NPP has an increasing temporal trend as seen in Figure 1(c). We will denote the correlation 
coefficient as “r” and the coefficient of determination which is the fraction of variability explained by 
a linear regression model as “R2”. The total NPP over the country increased from0.78 PgC·y−1 in 1982 
to 0.86 PgC·y−1 in 2006. The increase is consistent with the spatial pattern presented in [8], which 
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shows an increase in NPP from 1982 to 1999. The linear growth rate estimate suggests a positive trend 
of 0.39% per year during the analysis period (r = 0.78, R2 = 0.61) or 3.9% per decade, which is in close 
agreement with the positive trend of 3.5% per decade obtained from a different dataset [18]. Linear 
regression was performed for every grid point to obtain the spatial pattern of linear trends  
(Figure 1(e–f)). Positive trends are observed over the Western Ghats, Himalayan forests in the north, 
parts of northeast India, central and eastern India. Near-zero or slightly negative trends are observed 
over parts of the northwest and northernmost parts of India. 

To examine the role of temperature, precipitation, atmospheric CO2, soil water in the top 3.4 m and 
downward surface solar radiation on the evolution of NPP, we used single and multivariate analysis: 

NPP= C0 + C1X1+C2X2+C3X3…+CNXN + R (1)

where X1, X2, X3,…XN are the independent variables such as temperature, precipitation, soil water, 
downward solar radiation at the surface and global-mean atmospheric CO2, and C0, C1, C2,…CN are 
constants, and R is the residue which represents the nonlinear terms. N = 1 for single variable analysis. 
We have used at most N = 5 in this paper. It should be noted that the variables such as temperature and 
solar radiation, and precipitation and soil water are not truly independent of each other. The NPP time 
series developed using Equation (1) will be called multivariate NPP and we will be mostly interested 
in the correlation (r) between observed NPP and the multivariate NPP and the R2 values to infer the 
influence of a single, or a combination of, variables on NPP. 

Figure 2(a–i) shows the time evolution of spatially averaged NPP, precipitation, temperature, CO2, 
surface solar radiation and soil water in the top 3.4 m in India. The correlation between  
domain-mean NPP versus precipitation, temperature, CO2, solar radiation and soil moisture are 0.18, 
0.42, 0.76, −0.72, and −0.61, respectively (Figure 2, Table 1).The corresponding R2 values are 0.03, 
0.18, 0.58, 0.51 and 0.37, respectively (Figure 3, Table 1). This implies that NPP increase is primarily 
associated with an increase in global mean CO2. The correlations are negative with soil water and solar 
radiation because these variables have a declining trend while NPP has a positive trend (Figure 2). 

Table 1. Correlation coefficient (r) between observed NPP and climate variables and 
multivariate NPP for various cases. R2 (coefficient of determination) values are given in 
parenthesis. P, T, CO2, SW and SR in curly brackets refer to the independent climate 
variables precipitation, temperature, global mean CO2, soil water in the top 3.4 m soil and 
downward solar radiation at the surface, respectively in Equation (1). 

Single Variable 
Linear 

Regression of 
NPP 

Multivariate 
Regression of  

NPP 

Single Variable 
Regression of 

Interannual NPP 
Anomaly 

Multivariate 
Regression of 

Interannual NPP 
Anomaly 

Single Variable  
Regression of  
Seasonal NPP 

Anomaly 

Multivariate  
Regression of  
Seasonal NPP 

Anomaly 
0.18 (0.03) {P} 0.50 (0.25) {P and T} 0.35 (0.12) {P} 0.38 (0.14) {P and T} 0.52 (0.27) {P} 0.65 (0.42) {P and T} 
0.42 (0.18) {T} 0.80 (0.63)  

{P, T and CO2} 
−0.22 (0.05) {T} 0.48 (0.23)  

{P, T and CO2} 
0.01 (0.0001) 

{T} 
0.95 (0.91)  

{SW and SR} 
0.76 (0.58) {CO2} 0.80 (0.64)  

{P, T, CO2 and SW} 
−0.27 (0.07) 

{CO2} 
0.49 (0.23)  

{P, T, CO2 and SW} 
0.95 (0.90) {SW} 0.98 (0.96)  

{P, T and SW} 
−0.61 (0.37) {SW} 0.80 (0.65)  

{P, T, CO2, SWand 
SR} 

0.24 (0.06) {SW} 0.56 (0.31)  
{P, T, CO2, SW and 

SR} 

−0.63 (0.40) 
{SR} 

0.98 (0.96)  
{P, T, SW and SR} 

−0.72 (0.51) {SR}  −0.23 (0.05) 
{SR} 
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Figure 2. Temporal evolutions of domain-averaged NPP and (a) temperature, (b) and 
precipitation, (c) global-mean atmospheric CO2, (d) downward solar radiation at the 
surface and (e) soil moisture in the top 3.4 m soil for 1982–2006. Panels (f–j) are similar to 
(a–e) except the variables are now interannual anomalies (i.e., mean and trends are 
removed from the original data). In each panel, the correlation (r) between the two time 
series is also shown. 

 

We caution that a statistical analysis like this cannot establish firm casual relationships and thus we 
cannot make robust attribution statements. Recently, it was found that the increase in NPP in India is 
mainly contributed by enhancements in cropland areas [18]. Therefore, it is possible that land use 
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management practices may have also played an important role in NPP increase. We discuss in detail the 
role of land use management practices on NPP increase in forest and non-forest areas in Section 3.5. 

When precipitation and temperature are used as independent variables in Equation (1), the 
correlation between the observed and multivariate NPP is 0.50 and R2 is 0.25 (Figure 3, Table 1) 
which indicates that a combination of temperature and precipitation have a stronger control on NPP 
than either precipitation or temperature individually. The correlation and R2 increase to 0.80 and 0.63, 
respectively (Figure 3, Table 1) when multivariate NPP is generated from precipitation, temperature 
and CO2 confirming the stronger relationship between observed NPP and CO2. The correlation and R2 
do not increase any further when soil water and surface solar radiation are used in the multivariate 
regression (Table 1). 

Figure 3. Scatter plots between the annual-mean observed NPP over India and 
(a) temperature, (b) precipitation, (c) CO2 concentration, (d) multivariate NPP using 
precipitation and temperature as independent variables and (e) multivariate NPP using 
precipitation, temperature and CO2 as independent variables. Panels (f–j) are similar to  
(a–e) except that the variables NPP, temperature, precipitation and CO2 are interannual 
anomalies (the linear trends are removed from the original data). In each panel, R2 
(coefficient of determination) values for the regression model is also shown.  
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Figure 3. Cont. 

 
Over all, this analysis indicates that increasing atmospheric CO2 is probably the main driver for the 

positive trend in NPP, although other causes such as land use change cannot be ruled out. In the 
absence of other limiting factors, increasing atmospheric CO2 concentration has the potential to 
stimulate photosynthesis (or Gross Primary Productivity when scaled up) and, hence, NPP. This is an 
effect known as CO2 fertilization [24,29,30]. Experimental studies provide evidence for CO2 
fertilization: for example, free-air CO2 enrichment experiments in forest stands show ~23% median 
increase in NPP for a CO2 change from 376 to 550 ppm [31]. Long-term tree ring studies suggest a 
more complex picture and perhaps a lack of universality of the CO2-fertilization effect [32]. 

Coupled climate-carbon models all show increases in terrestrial carbon uptake as a result of  
CO2 fertilization [33–36]). In a recent paper, the bounds on terrestrial carbon uptake over India that 
arises solely due to CO2 fertilization were investigated [37]. It was found that NPP increased by 84% 
solely due to CO2 fertilization by the year 2100 relative to 1975 and decreased by 13% due to climate 
change for the SRES A2 emissions scenario. Since the CO2-fertilization effect was about 4 to 5 times 
stronger than climate effect in that modeling study, the net effect was an enhancement in NPP by about 
71% between 2100 and 1975.  

Global carbon budgets studies have also indicated that the global land is a sink for carbon [38,39]: 
in spite of deforestation in the tropics, about 20%–25% of the fossil emissions have been taken up by 
land in past decades. Therefore, it is likely, as shown by our analysis, that CO2 fertilization is the main 
driver for the increase in NPP in India and also, possibly, for the positive trend in global mean 
NPP [8]. More research is needed to find out the extent to which CO2 fertilization is responsible for 
present terrestrial carbon uptake and potential future terrestrial ecosystem carbon sink. 

3.3. Interannual Variability in NPP 

Past studies have indicated that the interannual variability of terrestrial NPP over different parts of 
the globe have been related strongly to the interannual variability of climatic parameters [8,40]. The 
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spatial pattern of correlation between observed NPP and precipitation and NPP and temperature  
(Figure 4(a,b)) shows that NPP has a positive correlation with precipitation almost everywhere except 
in the Himalayan forest region in the north and negative correlation with temperature except in central 
eastern India and the Himalayan forest areas. The correlation shown in Figure 4(a,b) has contributions 
from correlations in trend and variability. In order to show only the contribution from variability, we 
subtract the trends before calculating the correlations (Figure 4(c,d)). Correlation with temperature is 
negative for temperature in most regions (Figure 4(c)). The spatial pattern of correlation between NPP 
and precipitation in Figure 4(d) is in good agreement with a recent study [18] which concluded that 
there is a significantly large correlation between NPP and precipitation. Our results are also similar to 
the findings by another study [11] which concluded that interannual variations in NPP are positively 
correlated with precipitation and negatively with temperature everywhere except high latitudes 
(>50°N) where NPP is enhanced by warming. The spatial pattern of the temperature trend over India 
from 1982 to 1999 also indicates negative correlation with the NPP trend (negative temperature trend 
in Figure 1 and positive NPP trend in Figure 2 in [8]).  

Figure 4. Correlation of NPP with (a) temperature and (b) precipitation. Correlation 
of interannual NPP anomaly (trend and mean removed) with (c) temperature anomaly and 
(d) precipitation anomaly. 
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In order to cleanly separate interannual variability from the effects of trends, we subtracted the 
linear trend and mean from the observed time series of annual mean NPP, precipitation, temperature, 
soil water, solar radiation in India and global mean CO2 to create interannual anomalies. The 
correlation and multivariate analysis is subsequently performed on these anomalies (Figures 2 and 3). 
We find that the correlation between observed NPP and precipitation anomalies is 0.35 (R2 = 0.12) but 
the correlation is only −0.22 (R2 = 0.05) between NPP and temperature anomalies (Figure 3; Table 1). 
This analysis clearly indicates that the interannual variations in NPP are positively correlated with 
precipitation and negatively but weakly with temperature. The correlation between NPP and CO2 

anomalies is also weak and negative at −0.27 (R2 = 0.07) which suggests that interannual variations in 
NPP are inversely correlated to interannual variations in global mean CO2.While the correlation with 
soil water is positive (Figure 2(j); r = 0.24; R2 = 0.06), the correlation with solar radiation (Figure 2(i); 
r = −0.23, R2 = 0.05) has the same sign as with temperature (Figure 2(f); r = −0.22; R2 = 0.05), thus 
indicating the dependence of temperature on solar radiation. 

The correlation between NPP and multivariate anomaly is 0.38 (R2 = 0.14) when the multivariate 
NPP anomaly is created using precipitation and temperature as independent variables (Table 1 and 
Figure 3). The correlation increases to 0.48 (R2 = 0.23) when CO2 is also included as an independent 
variable along with precipitation and temperature (Table 1).The correlation increases marginally when 
soil water (r = 0.49, R2 = 0.23) is added and further when solar radiation is added (r = 0.56, R2 = 0.31). 
The main inference on the interannual anomalies is that precipitation variability is the main driver for 
interannual variations in NPP in India since precipitation anomaly has the largest correlation with NPP 
anomaly in the single variable regression analysis (Table 1). 

There have been indications from earlier studies that regional NPP over India is also controlled by 
remote events such as ENSO. For instance, negative NPP anomaly during El Nino and positive 
anomaly during La Nino have been shown by recent studies [11,18]. Specifically, it is found that NPP 
declined during the recent four major ENSO events (1982–1983, 1987–1988, 1997–1998 and  
2002–2003) [18]. Further, it has been also shown that NPP in India is inversely correlated to 
atmospheric CO2 growth rate anomalies [18]. On a global scale, reduced terrestrial carbon uptake 
during ENSO leads to larger growth rates of atmospheric CO2, although terrestrial NPP accounts for 
only part of the biosphere–atmosphere carbon exchange [8,11]. However, it is not clear if the 
relationship between global NPP, global atmospheric CO2, and ENSO would be unchanged when we 
consider NPP only over India. 

In Figure 5(a), we show the time series of interannual NPP anomaly (trend and mean removed) and 
CO2 growth rate anomaly for 1982–2006. CO2 growth rate anomaly is calculated as the departure from 
the averaged CO2 growth rate which is calculated as the difference in CO2 between successive years. 
In contrast to other studies [18], we find that the NPP anomaly is weakly but positively correlated  
(r = 0.23, R2 = 0.05) to the CO2 growth rate anomaly. This suggests that the NPP anomaly over India is 
not in phase with global NPP anomaly. Figure 5(b) shows that the correlation between NPP anomaly 
and Nino3-SST anomaly is also weak (r = 0.14, R2 = 0.02). This result is also in contrast to the recent 
study [18] which finds declines in NPP during ENSO years (positive Nino3-SST anomaly). The 
growth in NPP anomaly after the Mount Pinatubo eruption in 1991 (Figure 5) is in agreement with the 
global study [8]which found that the cooling from the eruption may have promoted plant growth in 
low latitudes by reducing evapotranspiration and respiration losses.  
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Figure 5. Temporal evolutions of interannual NPP anomaly over India and (a) CO2growth 
rate anomaly, (b) Nino-3 SST anomaly, and (c) Multivariate ENSO Index (MEI). The right 
panels show the corresponding scatter plots. The coefficient of correlation (r) and R2 values 
are also shown. 

 

 

As an alternate to Nino-3 SST index and as in other studies [8,18], we also used the multivariate 
ENSO index (MEI) as the ENSO index (Figure 5(c)). MEI is the multivariate measure of the ENSO 
signal as expressed in the first principal component of six observed variables in the tropical 
Pacific [41]: sea-level pressure, zonal and meridional components of the surface wind, sea surface 
temperature, surface air temperature, and total cloudiness fraction of the sky. In this case, as well, in 
contrast to [18], we find the correlation is too low (r = 0.09, R2 = 0.01). In summary, we do not find a 
strong correlation between the NPP anomaly over India and the CO2 growth rate anomaly, nor between 
the NPP anomaly and ENSO. The cause for the discrepancy between our results and a previous 
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Figure 7. Spatial pattern of decadal trends in NPP for (a) forest areas and (b) non-forest 
areas.Temporal evolution of domain averaged NPP in (c) forest and (d) non-forest areas. 
Correlation of forest NPP with cumulative afforestation (e), correlation of non-forest NPP with 
irrigation area (f) and correlation of non-forest NPP with fertilizer consumption in India (g). 

 

 

Forested areas are also heavily managed, albeit not as intensely as the non-forest areas. India has 
been implementing an aggressive afforestation and reforestation program especially since the early 
1980s, when large-scale afforestation and reforestation under the social forestry program and later 
under the Joint Forest Management initiative (1990s) were initiated. The cumulative area planted 
during the period 1980 to 2005 is estimated to be about 34 million ha (Mha) at an average annual rate 
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of 1.32 Mha [28]. Despite the rapid rate of planting, the overall forest area largely remained stable and 
increased only marginally from 64.20 Mha in 1987 to 67.71 Mha in 2005 [43,44] because the new 
plantation programs were taken up in already-existing forests which were either less dense or 
degraded. This suggests that most of the new plantations were aimed at restoring the degraded forests 
and increasing the productivity of the existing forests. Therefore, the NPP increase in forest areas is 
strongly correlated (r = 0.75, R2 = 0.56) with the cumulative new plantation area (Figure 7(e)). 

4. Discussion 

One major limitation of the NPP dataset used in this study is the lack of its validation in the region 
of interest (India). Several studies over the past 10 years have addressed the issue of field validation of 
LAI and NPP estimates from satellite data. In general, these studies conclude that while LAI can be 
estimated to within 0.5 LAI units for many biomes (needle leaf forests are an exception), the NPP 
estimates can deviate from observations by as much as 50%. Observed NPP data are rare, mostly 
concentrated in mid and high-latitude ecosystems. However, the logic behind NPP estimation is quite 
robust based on radiation absorption by vegetation canopies. Though data for flux towers is being used 
to validate NPP estimates, we believe it is still not a direct validation, as flux towers only measure net 
ecosystem exchange and not NPP. Robust validation of global NPP estimates is challenging because, 
as in the case of field observations, towers are also located mostly in mid and high-latitude ecosystems. 
For example, in the case of India, we only know of two towers established recently. The data collected 
from these towers is still being diagnosed and not yet released to the science community. We intend to 
use these data once they become available. Furthermore, our analysis here aims to address the 
interannual variability and trends in NPP and the underlying causes. While the absolute magnitudes are 
important, the errors associated with them would likely be uniform through the time series. 

Another limitation relates to our statistical analysis and evaluation of correlations which cannot 
establish firm casual relationships. Furthermore, the R2 values and correlations obtained are also small 
in many cases. This indicates the interplay of multiple variables that exert influence on the terrestrial 
carbon cycle. Additional sources of uncertainty may arise from the resolution of the data: since the 
terrestrial ecosystems are very heterogeneous and patchy, 25-km resolution for the NPP product is 
insufficient to characterize the spatial variations accurately. It is believed that global land observations 
at the scale of 1 km would be needed to better understand the terrestrial carbon dynamics. Therefore, 
our conclusions on attribution of trends and variability require careful observation and modeling 
evaluation in the future. Specifically, multiple global and regional scale modeling based on detailed 
process representation and their validation using multiple observations are needed for reaching  
robust conclusions. 

5. Conclusions 

NPP is an important ecosystem variable which provides a metric for the rate of carbon fixed in the 
terrestrial ecosystems. It is also an indicator of the health of ecosystems. We used AVHRR-derived 
NPP [8] to analyze the linear trends and variability over India for the period 1982–2006. For this 
period, the mean and standard deviation of NPP are estimated at 0.83 PgC·y−1 and 0.03 PgC·y−1, 
respectively. Our regression analysis shows a linear trend of 3.9% per decade (r = 0.72,  
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R2 = 0.61) which indicates that the rate of carbon-fixing by terrestrial ecosystems has increased in the 
past two decades. This result is in close agreement with other recent studies which also found an 
increasing trend [17,18]. Studies based on long-term observations plots also conclude that observations 
“over a period of 25 years indicates that the forests are in the process of recuperation, sequestering 
atmospheric carbon and providing environmental service” [45]. 

Spatial maps of the trends show large increasing trends in the Western Ghats, Himalayan forests in the 
north, northeast India, peninsular and central-east India and near-zero or decreasing trends over northern 
and northwest India. A multivariate linear regression of NPP with temperature, precipitation and  
global-mean atmospheric CO2 concentration (r = 0.80, R2 = 0.64) indicates that the increasing trend is 
likely driven by CO2 fertilization of the terrestrial ecosystems. There are many modeling and observational 
studies in the literature that suggest enhanced carbon uptake due to CO2 fertilization. However, we also 
find a major influence of irrigation (r = 0.77, R2 = 0.59) and fertilizer use (r = 0.73, R2 = 0.53) on the non-
forest areas of the country. India initiated a large-scale forest conservation, afforestation and reforestation 
program starting in the early 1980s. We find that this forest management could have also contributed to the 
NPP increase over the forested areas in the country (r = 0.75, R2 = 0.56).  

A multivariate regression of NPP anomaly with anomalies in temperature, precipitation, soil water, 
solar radiation and global mean CO2 suggests that the interannual variability in NPP is primarily driven 
by precipitation and temperature variability (Table 1 and Figure 4). In general, we find that the 
interannual variations in NPP are positively and strongly correlated with precipitation, and negatively 
but weakly with temperature and global-mean CO2. Mean seasonal NPP is highest during  
post-monsoon and lowest during the pre-monsoon period. Though climatic conditions (in terms of 
rainfall, temperature and solar radiation) are most conducive for plant growth during the monsoon 
period, NPP does not peak during that period. We find that the seasonal maximum of NPP is 
associated with the seasonal maximum of soil moisture that occurs during the post-monsoon period. 
This indicates the dominant role of soil moisture for vegetation productivity. Our multivariate 
regression analysis shows a strong correlation of 0.95 (R2 = 0.91) between observed seasonal cycle of 
NPP and multivariate NPP that is generated using soil water content and solar radiation as  
independent variables. 
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