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Abstract: Long-term global data sets of vegetation Leaf Area Index (LAI) and Fraction of 
Photosynthetically Active Radiation absorbed by vegetation (FPAR) are critical to 
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monitoring global vegetation dynamics and for modeling exchanges of energy, mass and 
momentum between the land surface and planetary boundary layer. LAI and FPAR are also 
state variables in hydrological, ecological, biogeochemical and crop-yield models. The 
generation, evaluation and an example case study documenting the utility of 30-year long 
data sets of LAI and FPAR are described in this article. A neural network algorithm was 
first developed between the new improved third generation Global Inventory Modeling and 
Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) and  
best-quality Terra Moderate Resolution Imaging Spectroradiometer (MODIS) LAI and 
FPAR products for the overlapping period 2000–2009. The trained neural network 
algorithm was then used to generate corresponding LAI3g and FPAR3g data sets with the 
following attributes: 15-day temporal frequency, 1/12 degree spatial resolution and 
temporal span of July 1981 to December 2011. The quality of these data sets for scientific 
research in other disciplines was assessed through (a) comparisons with field 
measurements scaled to the spatial resolution of the data products, (b) comparisons with 
broadly-used existing alternate satellite data-based products, (c) comparisons to plant 
growth limiting climatic variables in the northern latitudes and tropical regions, and  
(d) correlations of dominant modes of interannual variability with large-scale circulation 
anomalies such as the EI Niño-Southern Oscillation and Arctic Oscillation. These 
assessment efforts yielded results that attested to the suitability of these data sets for 
research use in other disciplines. The utility of these data sets is documented by comparing 
the seasonal profiles of LAI3g with profiles from 18 state-of-the-art Earth System Models: the 
models consistently overestimated the satellite-based estimates of leaf area and simulated 
delayed peak seasonal values in the northern latitudes, a result that is consistent with 
previous evaluations of similar models with ground-based data. The LAI3g and FPAR3g 
data sets can be obtained freely from the NASA Earth Exchange (NEX) website. 

Keywords: LAI; FPAR; NDVI3g; MODIS; NASA NEX; artificial neural networks; 
remote sensing of vegetation 

 

1. Introduction 

Monitoring and modeling global vegetation dynamics in the context of climate variability and 
change studies require long-term data sets of key biophysical variables that characterize vegetation 
structure and functioning [1]. Leaf Area Index (LAI) and the Fraction of Photosynthetically Active 
Radiation absorbed by vegetation (FPAR) are two examples of such variables. LAI is defined as the 
one-sided green leaf area per unit vegetated ground area in broadleaf canopies and as one-half the total 
needle surface area per unit vegetated ground area in coniferous canopies. It characterizes the 
physiologically functioning surface area with which energy, mass (e.g., water and CO2) and 
momentum are exchanged between the vegetated land surface and the planetary boundary layer [2]. 
Similarly, FPAR is a relative measure of the vegetation-absorbed radiation in the 0.4–0.7 μm spectral 
region of solar radiation, and hence, characterizes the energy that is potentially used in the process of 
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photosynthesis. LAI and FPAR are therefore key state variables in many biogeochemical, ecological, 
hydrological and crop yield models [3–17].  

There are several different approaches for estimating LAI and FPAR from remotely sensed 
reflectance data in the optical domain, i.e., the wavelength span of solar radiation. They can be broadly 
be categorized as:  

(a) Empirical methods based on relationships between vegetation indices, e.g., the Normalized 
Difference Vegetation Index (NDVI), and LAI or FPAR [18,19]. These relationships are generally 
sensitive to soil background, leaf optical properties, the orientation and spatial distribution of leaves in a 
canopy and the general architecture of vegetation stands within the spatial scale of measurements [20]. 
Site- and vegetation-specific empirical relationships between NDVI and LAI, for example, have been 
used in some studies [21,22]. The relationships tend to vary seasonally and inter-annually. 
Consequently, empirical methods tend to be site-, time-, and species-specific, and are therefore not 
well-suited for large-scale operational use [23]. 

(b) Physical methods based on the physics of radiation interaction with elements of a canopy and 
transport within the vegetative medium. These methods provide a physically-based linkage between 
biophysical variables and vegetation canopy reflectance at different wavelengths [24–26]. These 
methods can be categorized into four broad groups: (1) radiative transfer models [24,25], 
(2) geometric-optical models [27], (3) hybrid models that incorporate both radiative transfer as well as 
geometric-optics [28], and (4) Monte-Carlo simulation models [29,30]. The methods involve iterative 
techniques and are thus computationally intensive for operational use. But, methods to alleviate this 
have also been developed, e.g., use of Look-Up-Tables [25].  

(c) Machine learning algorithms that are accurate, fast and require less computational power are 
increasingly being used lately to mimic the underlying physical processes in the remote sensing of 
vegetation [31–33]. The efficacy of these algorithms is dependent on a knowledge-based inference 
paradigm that is dependent on the robustness and availability of training data.  

LAI and FPAR products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and 
the Système Pour l’Observation de la Terre (SPOT) sensor have gradually acquired a large user 
community due to ease of access, provision of pixel-level quality indicators and validation 
information. Research on inter-sensor product consistency and collaborative validation efforts have 
helped provide accuracy and precision information of existing products [34–40]. A decade-long global 
and regional data sets of LAI and FPAR from these sensors are now available for scientific use. These 
records will likely be extended by the Visible/Infrared Imager Radiometer Suite instrument onboard 
the Suomi National Polar-orbiting Partnership, the Advanced Baseline Imager onboard the 
Geostationary Operational Environmental Satellite-R series satellite, the Charge-Coupled Device 
onboard the Huan Jing series satellites and the Advanced Visible and Near Infrared Radiometer 
onboard Advanced Land Observation Satellite [41–45]. These existing products are of short time span, 
thus precluding determination of long-term trends. Thus, there is a continuing interest and need for 
utilizing data from the Advanced Very High Resolution Radiometers (AVHRR) sensors, which is now 
more than three decades long and continuing. 

The first generation NDVI data (NDVIg) from AVHRR sensors onboard the National Oceanic and 
Atmospheric Administration (NOAA) 7 to 14 series of satellites have been processed by the Global 
Inventory Modeling and Mapping Studies (GIMMS) group to a consistent time series of NDVI and is 
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made available to the research community [46]. The latest version, termed the third generation NDVI 
data set (GIMMS NDVI3g) has been recently produced for the period July 1981 to December 2011 
with AVHRR sensor data from NOAA 7 to 18 satellites. This data set specifically aims to improved 
data quality in the high latitudes where the growing season is shorter than 2 months. It has also 
improved calibration that is tied to the Sea-Viewing Wide-Field-of-View Sensor, as opposed to earlier 
versions of GIMMS NDVI data sets that were based on inter-calibration with the SPOT sensor. The 
availability of this new improved NDVI3g data set and its overlap with the Terra MODIS LAI and 
FPAR products for the period 2000 to 2009 provides an opportunity to design and implement a neural 
network algorithm to generate and evaluate the corresponding LAI and FPAR data sets—that is the 
objective of this article. These data sets will be termed LAI3g and FPAR3g henceforth and have the 
following attributes: 15-day temporal frequency, 1/12 degree spatial resolution and temporal span of 
July 1981 to December 2011. 

This following presentation is organized as follows. Section 2 describes the algorithmic details and 
generation of the LAI3g and FPAR3g data sets. Section 3 is focused on validation and evaluation of 
these data sets in order to assess their suitability for research use in other disciplines. Section 4 
describes a test case where the seasonal profiles of LAI3g are compared to simulations from 18  
state-of-the-art Earth System Models to document the utility of these data sets. Concluding remarks are 
briefly stated in Section 5. 

2. Production of LAI3g and FPAR3g Data Sets 

2.1. Input Data and Preprocessing  

We used improved versions of Collection 5 Terra MODIS LAI and FPAR products and the 
NDVI3g data for developing the algorithm. The MODIS BNU (Beijing Normal University version) 
LAI product is an improved version of the standard MODIS LAI product (MOD15A2) which provides 
8 day global LAI data from 2000 to 2009 at 1 km spatial resolution [47]. The MODIS BU (Boston 
University) FPAR product is also an improved version of the standard MODIS FPAR product which 
provides monthly global FPAR data from 2000 to 2010 at 0.072 degree spatial resolution [48]. The 
accuracy of the MODIS LAI and FPAR products are 0.66 LAI units RMSE and 0.12 FPAR units 
RMSE respectively [49]. The improved MODIS LAI and FPAR all provide higher accuracy due to 
spatial temporal filtering and introducing of quality flags [47,48]. The three data sets—GIMMS 
NDVI3g, MODIS BNU LAI and MODIS BU FPAR—were resampled and composited to a uniform 
spatial grid and temporal frequency. The details are given in Sections S5 and S6 of the supplementary 
material. The generation of LAI3g and FPAR3g required a land cover classification product. We used 
the Collection 5 MODIS land cover product (MCD12C1) with International Geosphere Biosphere 
Programme (IGBP) classes. This product was resampled to match the spatial resolution of the NDVI3g 
data (1/12 degree) using the nearest neighbor algorithm. The IGBP classes are defined in [50]. It 
should be noted that we used the constant land cover map because we do not have access to land cover 
maps of equal quality and accuracy for the entire research period. This may lead to some uncertainties 
in our products due to the land cover change in the thirty-year period [2,51,52]. 
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2.2. Algorithm Development  

We used Feed-Forward Neural Network (FFNN) as the algorithm to generate LAI3g and FPAR3g 
data sets. The FFNN models consisted of four neurons in the input layer (four input parameters 
corresponding to the land cover class, pixel-center latitude, pixel-center longitude, and NDVI3g), 11 
neurons in the hidden layer and 1 neuron in the output layer (LAI3g or FPAR3g). These models were 
trained through Back-Propagation process, which is one of the most popular and widely-used method 
for training neural networks [53]. A FFNN model was generated for each month; thus producing a set of 12 
FFNN models for generating LAI3g and another set of 12 FFNN models for generating FPAR3g. These 24 
FFNN models were developed with the data sets described in Section 2.1. To prevent over-fitting and test 
the performance of the FFNN, the training data set was split into three sets: 70% as training data, 15% 
as validation data and 15% as test data. The network was trained with training data until its 
performance began to decrease on the validation data, which means that generalization has peaked. 
Ten networks with different initial values were trained independently. The network providing the best 
performance was selected as the final FFNN model that was used for generating LAI3g and FPAR3g 
data sets. More detailed technical descriptions are given in Section S7 of the supplementary material.  

2.3. LAI3g and FPAR3g Production 

The NDVI3g data from July 1981 through December 2011 were used together with the 24 trained 
FFNN models to generate the corresponding LAI3g and FPAR3g data sets. These data sets have the 
same attributes as the input NDVI3g data: 1/12 degree spatial resolution and 15-day temporal 
frequency. Figure 1(a,b) shows color-coded maps of 30-year averages of annual mean LAI3g and 
FPAR3g. Figure 1(c,d) shows the time series of LAI3g anomalies for different latitudinal zones and 
land cover classes. The impact of Mount Pinatubo eruption in mid-1991 and significant orbit loss of 
NOAA 11 is clearly visible in the time series, especially in the tropics and in the forested regions of the 
globe. Data from year 2011 also exhibit significant positive anomalies, reasons for which are not known. 

3. Assessment of LAI3g and FPAR3g Data Sets 

The two objectives of our assessment of LAI3g and FPAR3g data sets are: (a) to provide uncertainty 
estimates through comparisons with field measurements and (b) to evaluate their suitability for use in 
research related to climate, hydrological, ecological, biogeochemical and crop yield models [3–17]. 
Analyses related to meet these objectives are described below.  

3.1. Uncertainty Assessment 

Providing uncertainty estimates for coarse resolution (1/12 degree) LAI3g and FPAR3g data sets is 
a challenging task as it requires a large number of comparable values derived from ground 
measurements. Further, the comparisons should be made for all major vegetation types and also cover 
the phenological cycle. Field campaigns are man-power intensive and therefore expensive. There have 
been very few suitable field campaigns before the NASA Earth Observing System (EOS) era, i.e., prior 
to year 2000. However, since the launch of Terra MODIS instrument, the scientific community has 
collaboratively developed a network of sites—e.g., BigFoot, AErosol RObotic NETwork, FLUXNET, 
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EOS Land Validation Core Sites, VAlidation of Land European remote sensing Instruments, etc.—data 
from which have been used to validate moderate resolution (1 km) MODIS LAI and FPAR 
products [36,54–63]. In the process, the community has also developed common protocols for 
sampling the field sites and scaling methodologies that translate point-based field measurements of 
LAI and FPAR to the spatial scale of remotely-sensed products to facilitate accurate validation [35,64]. 
These efforts have resulted in establishing uncertainty estimates for the MODIS LAI and FPAR 
products [36].  

Figure 1. Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation 
(FPAR)3g products. (a) Thirty year average annual mean LAI3g. (b) Thirty year average 
annual mean FPAR3g. (c) Time series of LAI3g anomalies for different latitudinal bands. 
(d) Time series of LAI3g anomalies for different vegetation types. The background 
shading in (c) and (d) shows the occurrence and intensity of EI Niño-Southern Oscillation 
(ENSO) events as defined by the Multivariate ENSO Index. The black dashed lines 
indicate transition times for the various National Oceanic and Atmospheric Administration 
(NOAA) satellites (N07 to N18). The two major volcanic eruptions (El Chichón and Mount 
Pinatubo) and the two recent Amazonian droughts are depicted by the orange and purple 
dashed lines, respectively.  

(a) (b) 

(c) (d) 

Most of the field campaigns, and therefore, the validation efforts have been focused on the MODIS 
LAI product. The FPAR product is a by-product of the MODIS LAI algorithm and the underlying 
relationship between LAI and FPAR is based on the physics of radiative transfer [25]. The underlying 
relationship alleviates the need for independent and comprehensive validation of the FPAR3g product.  
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In this study, we selected sites with field measurements recorded over regions with more or less 
homogeneous groups of land cover classes, called biomes. Even then, a pixel-by-pixel comparison 
between LAI3g and field-measured LAI values scaled to LAI3g spatial resolution is not feasible 
because: (a) the spatial location of the satellite pixel contains uncertainties due to geo-location errors 
and pixel-shift errors resulting from the point spread function [65], and (b) point field measurements 
scaled to the resolution of the sensor necessarily involves uncertainty arising from the scaling 
methodology [55–59,64]. Therefore, the comparisons were performed on groups of pixels belonging to 
a particular biome and the assessment was based on the distribution properties of the respective 
values [36,57–59]. Specifically, the LAI3g data were compared to 45 sets of appropriately scaled field 
measurements from 29 sites listed in Table A4 of [40]. Monthly LAI3g values from nearby pixels of 
the same biome type were used for comparison purposes. The results indicate satisfactory agreement 
between LAI3g and scaled field measurements (p < 0.001; RMSE = 0.68 LAI) (Figure 2). This RMSE 
value may be taken as the uncertainty estimate of the LAI3g product, i.e., the average difference 
between LAI3g and ground truth value of LAI at the spatial resolution of the LAI3g product 
(1/12 degree). 

Figure 2. Comparison of LAI3g with scaled field measurements from six biomes 
representative of the global land cover classes. A total of 45 field data sets from 29 sites 
listed in Table A4 of [40] were used (details of field data handling to derive LAI values 
comparable to satellite retrievals of LAI can be found in [36]).  

 

3.2. Evaluation-Part 1: Comparison with the CYCLOPES LAI and FPAR Products 

The goal of evaluation of LAI3g and FPAR3g products is to further imbue confidence in the use of 
these data sets in studies on monitoring of global vegetation dynamics and in modeling and 
applications research. One way to achieve this goal is to compare the new products (LAI3g and 
FPAR3g) with those already in use by the research community. The Carbon Cycle and Change in Land 
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Observational Products from an Ensemble of Satellites (CYCLOPES) LAI and FPAR products 
(version 3.1) derived from the SPOT VEGETATION sensor are available at 1/112° Plate-Carrée 
spatial resolution and 10-day temporal frequency [66]. These products have reached a level of maturity 
comparable to the MODIS LAI and FPAR products [38]. We compared LAI3g and FPAR3g products 
with CYCLOPES LAI and FPAR products at global and site scale-information regarding the required 
preprocessing for these comparative analyses is given in Section S3. All data from the overlapping 
period between the two product sets, years 1999 to 2007, were used. 

3.2.1. Global Scale Comparison  

Figure 3 shows a comparison between LAI3g and corresponding CYCLOPES LAI values for four 
broad vegetation classes (Table S5) at the monthly time scale. The analysis suggests: (a) only in 
cropland/natural vegetation mosaics, the two products show satisfactory agreement (slope close to 
unity and minimal bias, (b) the slopes are considerably larger than unity in the case of forests and other 
woody vegetation classes, and (c) the slope is less than unity in the case of herbaceous vegetation. To 
investigate the general disagreement between the two LAI products, annual mean LAI from the two 
data sets for each of the IGBP land covers was evaluated (Table 1). Annual mean LAI3g is greater than 
the corresponding CYCLOPES LAI for all IGBP land covers with the exception of mixed forests and 
evergreen needleleaf forests. It is evident that the large disagreement in the case of forests (Figure 3(a)) 
is largely due to the Evergreen broadleaf forest cover type, which occupies 12.87% of the global total 
vegetated area (46.40% of the total forested area) and contributes to the maximum difference between 
the two data sets (1.03 in absolute LAI units). The CYCLOPES algorithm in general produces 
saturated LAI values at low values of LAI [38,39]. Results from a similar analysis between FPAR3g 
and CYCLOPES FPAR are shown in Figure S4. Besides, comparisons of multi-year average monthly 
values from CYCLOPES and our products are presented in Figure S5 (CYCLOPES LAI and LAI3g) 
and Figure S6 (CYCLOPES FPAR and FPAR3g).  

Figure 3. Comparison of monthly LAI values from CYCLOPES and LAI3g data sets for 
four broad vegetation classes (forests, herbaceous vegetation, other woody vegetation and 
cropland/natural vegetation mosaics) for the period 1999 to 2007. These classes are groups 
of International Geosphere Biosphere Programme (IGBP) land cover types as per Table S5.  

(a) (b) 
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Figure 3. Cont. 

(c) (d) 

Table 1. Comparison of annual mean values of LAI3g and CYCLOPES LAI for different 
IGBP land covers. The table is sorted by descending order of the area fraction of the land 
covers. The data are averages for the years 1999 to 2007. 

IGBP Land Covers GIMMS LAI3g CYCLOPES LAI Area Fraction (%)
Open shrublands 0.56 0.45 19.18 

Grasslands 0.6 0.45 13.89 
Evergreen broadleaf forests 4.19 3.16 12.87 

Woody savannas 1.72 1.44 12.29 
Croplands 1.05 1.01 10.77 
Savannas 1.51 1.17 8.1 

Cropland/natural vegetation mosaics 1.89 1.59 6.71 
Mixed forests 1.94 1.95 5.86 

Evergreen needleleaf forests 1.43 1.69 5.35 
Deciduous needleleaf forests 1.46 1.4 2.08 
Deciduous broadleaf forests 2.34 1.91 1.58 

Closed shrublands 0.81 0.57 1.33 

3.2.2. Site Scale Comparison 

In this exercise, CYCLOPES LAI values from the Benchmark Land Multisite Analysis and 
Intercomparison of Products (BELMANIP) sites [67] were compared to corresponding LAI3g values. 
We chose sites representative of four broad vegetation classes (Table S5), each of areal extent 24 × 24 km2 
(about 3 × 3 GIMMS pixels) and calculated monthly LAI values. Figure 4 shows comparison plots 
between the two products for 323 BELMANIP sites. In all cases, LAI3g and CYCLOPES LAI values 
lie in the proximity of the 1:1 line (slopes of 1.05, 1.11, 1.06 and 1.02, respectively, with 
corresponding offsets of 0.53, 0.26, 0.22 and 0.20). LAI3g explains 72.0%, 84.0%, 82.0% and 81.0% 
of the variability in the CYCLOPES LAI data and, on average, shows an error of 0.92, 0.54, 0.45 and 
0.52 (in absolute LAI units). These results indicate that the agreement between the two data sets is 
better at the site scale than at global scale analysis, probably because of higher homogeneity of 
vegetation types at the sites. Results from a similar analysis between FPAR3g and CYCLOPES FPAR 
are shown in Figure S7. 
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Figure 4. Density scatter plots of monthly LAI3g and CYCLOPES LAI for 323 
BELMANIP sites for the time period from 1999 to 2007. The plots show correlation 
between the two products for four broad groups of vegetation which are grouping of the 
IGBP land covers (Table S5). The black dash line is the 1:1 line. The solid black lines are 
regression lines derived from the scatter plot.  

(a) (b) 

(c) (d) 

3.3. Evaluation-Part 2: Comparison with Climatic Variables 

A second method of evaluating LAI3g and FPAR3g data sets is to assess the degree of statistical 
association between these and climatic variables that limit plant growth [40,68]. Temperature, solar 
radiation and precipitation are the three key climatic variables that govern plant growth [69]. Vegetated 
areas showing temperature limitations to plant growth are mostly located in the northern latitudes, 
while areas strongly governed by precipitation are located in the tropical latitudes [69]. Therefore, 
examining the statistical association between covariations of LAI3g (and FPAR3g) and temperature in 
the northern latitudes and precipitation in the tropical regions provides an independent means of 
evaluating the new data sets. It is important to note that the LAI3g and FPAR3g data sets were 
generated without using climatic data—thus, the following statistical analyses are indeed independent 
evaluations of these data sets.  
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Figure 5(b), indicates a statistically significant relationship (R2 = 0.988, p < 0.001). The dispersion in 
annual mean LAI3g (standard deviation plotted along the y-axis of Figure 5(b)) is greater than the 
dispersion in annual total precipitation (plotted along the x-axis of Figure 5(b)). This indicates that 
although precipitation may be the dominant control of plant growth in the tropical regions, other 
factors also play an important role [69]. Results from a similar analysis with FPAR3g are shown in 
Figure S8(b). 

3.4. Evaluation-Part 3: Identifying Dominant Modes of Interannual Variability Using CCA 

The correlations observed between LAI3g and temperature (Figure 5(a)) and between LAI3g and 
precipitation (Figure 5(b)) can be explained in terms of large-scale circulation anomalies, such as the 
EI Niño-Southern Oscillation (ENSO) and Arctic Oscillation (AO) [40,77]. The canonical correlation 
analysis (CCA) is well-suited to explore these connections as it seeks to estimate dominant and 
independent modes of co-variability between two sets of spatio-temporal variables [77], e.g., LAI3g 
and temperature.  

The CCA is designed to select those temporal features in the LAI3g, or FPAR3g, fields that are best 
correlated with temporal features in springtime climatic variables such as temperature and/or 
precipitation. The methodology is illustrated here with LAI3g and “climatic variables” below denote 
either temperature or precipitation. Springtime (March to May) average values of LAI3g and the 
corresponding climatic variable for each pixel is denoted as a variable (for temperature, the total 
number of variables is the number of pixels in the latitudinal zone 10°N to 90°N; for precipitation, the 
total number of variables is the number of pixels in the latitudinal zone 40°S to 40°N). Further, each 
year is denoted as an observation, i.e., 28 observations for the overlapping time period—years 1982 to 
2009. The anomaly fields of these variables for each pixel were weighted by the respective pixel area 
to avoid geometrical effects. Each set of variables was then transformed into principal components 
(PCs) using singular value decomposition. In each case, only the first six PCs were retained as they 
explain a large fraction of the variance in the input set of variables (LAI3g: 58.34%; FPAR3g: 56.55%; 
temperature: 69.88%; precipitation: 47.34%). PCs of LAI3g and climatic variables were input to the 
CCA. The CCA generates two canonical loading matrices, one for PCs of LAI3g and the other for PCs 
of the climatic variable. These are then used to construct canonical factors (CFs) from the original PC 
time series. This results in an eigenvalue matrix that depicts the correlation between the CFs. These 
eigenvalues (Table 2) suggest that the correlations between the first two CFs are reasonably high (r > 0.6), 
with the next two being moderate and the last two showing the weakest correlation. Table 2 indicates 
that: (1) there are strong correlations between CFs of LAI3g (and FPAR3g) and climatic variables; 
(2) the first two CFs are suitable to explore correlations with ENSO or AO.  

We used the September to November of the preceding year (SON-1) NINO3 index to represent 
ENSO and the January to March (JFM) average AO index because strong correlations between these 
indices with springtime climatic variables and NDVI were previously reported [77]. Figure 6(a) shows 
a low correlation between SON-1 NINO3 index and the first CFs of temperature and LAI3g (0.17 and 
0.10, respectively). Compared to a previous study [77], the decline in correlation may be attributed to 
weak ENSO activity during the past decade [40]. We did observe a strong correlation between SON-1 
NINO3 and the first CFs of temperature and LAI3g during the period 1982 to 1998 (0.66 and 0.67, 
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respectively; figure not shown for brevity), consistent with results reported in [77]. Figure 6(b) shows a 
moderately strong correlation between JFM AO index and the second CFs of temperature and LAI3g 
(0.57 and 0.45, respectively), which is concordant with earlier studies [40,74]. 

Table 2. Eigenvalues from the canonical correlation analysis (CCA) of springtime 
anomalies of vegetation biophysical (LAI3g and FPAR3g) and climate variables 
(Temperature, abbreviated as TEMP; Precipitation, abbreviated as PRECIP). The 
eigenvalues represent the squared correlation between the reconstructed temporal canonical 
factors of biophysical and climatic variables. 

Canonical Factors Eigenvalues 
LAI3g/TEMP LAI/3gPRECIP FPAR3g/TEMP FPAR3g/PRECIP 

1 0.93 0.90 0.93 0.86 
2 0.86 0.63 0.91 0.72 
3 0.69 0.49 0.80 0.49 
4 0.57 0.40 0.78 0.47 
5 0.33 0.29 0.54 0.12 
6 0.02 0.09 0.00 0.04 

Figure 6. Correlations between the standardized time series of the first and second 
canonical factors (CF1 and CF2) of land surface temperature, precipitation and LAI3g with 
NINO3 and AO indices in the northern (10°N to 90°N) and tropical/extra-tropical regions 
(40°S to 40°N) for the period 1982 to 2009. The standardized September through 
November average NINO3 index time series of the preceding year and the January through 
March average AO index are shown in these plots as black dash lines.  

(a) (b) 

(c) (d) 
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Reasonable correlations were also observed between SON-1 NINO3 and the first CFs of 
precipitation and LAI3g (0.50 and 0.48, respectively; Figure 6(c)). This is consistent with previous 
reports of ENSO influence on interannual variability of tropical and extra-tropical precipitation [78]. 
The second CFs of precipitation and LAI3g are uncorrelated with the JFM AO index (Figure 6(d)), 
which is expected as the AO is not known to be a prime driver of precipitation in the 40°S to 40°N 
latitudinal zone [78]. The CCA was also performed on the FPAR3g data set. The results are similar to 
those reported here (Figure S9).  

In summary, in the northern hemisphere in contrast to the period 1982 to 1998, ENSO driven linked 
variations between surface temperature and vegetation activity have weakened since 2000. In the 
tropical and extra-tropical regions, ENSO is still a strong driver of precipitation and vegetation 
variability. The influence of AO remains a factor in the interannual variability of temperature and 
vegetation activity in the northern hemisphere over the past three decades. These results reproduce 
published reports [40,77] but also reflect an updated picture. Additional analysis to assess the impact 
of loss of NOAA 11 orbit on these results is presented in Section S8. 

4. Simple Case Study to Illustrate the Utility of LAI3g and FPAR3g Data Sets 

Earth System Models (ESMs) are being used to project changes in different components of the 
climate system for various forcing scenarios [79]. The latest generation of ESMs include dynamic 
vegetation models that simulate global vegetation dynamics [80]. The confidence in model projections 
depends to a large degree on how well these models can simulate present-day climatic variables and 
several studies are geared to address this e.g., [81]. Here, we illustrate the utility of the newly 
developed LAI3g and FPAR3g data in the context of model evaluation with a simple case study where 
we compare LAI3g to model simulated values (the ESM output did not include the FPAR variable). 

A strict comparison is difficult, if not impossible, because of the manner in which vegetation is 
modeled within the grid cell in each model and lack of this quantitative information. Comparisons at 
the grid cell-level are also difficult because of differences in spatial resolution of the ESMs (model 
grid cells varying from 0.938 to 3.75 degree) and satellite products (1/12 degree). Therefore, we 
performed comparisons at the zonal scale. We chose six latitudinal bands that may be approximately 
characterized as: (a) Arctic (65°N–90°N), (b) Boreal (45°N–65°N), (c) Northern Temperate (23°N–45°N), 
(d) Northern Equatorial (0°–23°N), (e) Southern Equatorial (0°–23°S) and (f) Southern Temperate 
(23°S–90°S). We evaluated the vegetated fraction of each model grid cell using the satellite-data based 
land cover map (Section S5.2) because of the difficulty of evaluating this quantity for each model grid 
cell and for all the 18 models used in this exercise. 

Figure 7 shows the annual cycle of LAI3g and the ensemble mean LAI from 18 ESMs from the 
Coupled Model Intercomparison Project 5 (CMIP5) for the six latitudinal zones. The annual cycle of 
LAI3g is generally about the ensemble mean LAI minus one standard deviation of the ESM LAI. The 
bell-shaped patterns of LAI3g and the ensemble mean ESM LAI in the six latitudinal zones are 
approximately consistent. However, the timing of maximum ESM LAI is delayed by about 1 month 
relative to the LAI3g in the Arctic and Boreal zones. Comparison of MODIS LAI with the Community 
Land Model and Carbon-Nitrogen model simulations, also show that the timing of the maximum LAI 
lagged the observations by 1–2 months [82]. The fact that the ESMs are “greener” and their 
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phenological cycle lags observations has important implications for simulated fluxes of energy, mass and 
momentum in the ESMs. Could it be that the dynamic vegetation models overestimate carbon fixation 
and/or allocation of biomass to leaves? This simple exercise illustrates the utility of satellite-data based 
products by highlighting an area of research that requires refinement in ESMs [83].  

Figure 7. Comparison of 1982 to 2005 average seasonal cycle between LAI simulated by 
18 Earth System Models (ESMs) and LAI3g. The shaded area shows the standard variation 
for the 18 ESMs. This analysis is based on the assumption that ESM LAI is defined with 
respect to the vegetated area of the model grid cell. In the southern hemisphere, dates for 
regions south of 23°S are shifted by 6 months.  

(a) (b) 

(c) (d) 

(e) (f) 
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5. Concluding Remarks 

The objective of this work was to generate, assess and document the utility of long-term (30-year) 
global LAI and FPAR data sets. The availability of a new improved NDVI data set from the NASA 
GIMMS research group, termed the third generation NDVI, or NDVI3g, and its overlap with the Terra 
MODIS LAI and FPAR products provided an opportunity to design and implement a neural network 
algorithm to generate the corresponding LAI3g and FPAR3g data sets with the following attributes: 15-day 
temporal frequency, 1/12 degree spatial resolution and temporal span of July 1981 to December 2011. 

The suitability of LAI3g and FPAR3g data sets for monitoring and modeling global vegetation in 
the context of climate, biogeochemistry, eco-physiology, hydrology and agriculture [3–17] was 
comprehensively assessed. The LAI3g data were compared to 45 sets of appropriately scaled field 
measurements from 29 sites representative of all major biomes. The results indicated satisfactory 
agreement (p < 0.001; RMSE = 0.68 LAI). Compared to the widely-used alternate CYCLOPES LAI 
and FPAR products, the LAI3g and FPAR3g showed higher values, especially in forests—this is 
concordant with previous reports of CYCLOPES products as underestimates of ground truth values of 
LAI and FPAR. The LAI3g and FPAR3g products exhibited expected behavior with respect to their 
relationship with climatic variables: temperature in the northern latitudes and precipitation in the 
tropical regions. The interannual variability embedded in the LAI3g and FPAR3g data sets was 
evaluated for its relationship to large scale circulation anomalies that are dominant modes of interannul 
variability in climatic variables. The resulting strong correlations between the two dominant modes of 
variability in LAI3g (and FPAR3g) with ENSO and AO imbued confidence in the interannual 
variability of these data sets. 

The utility of these data sets was documented by comparing the annual profile of LAI3g with 
profiles generated by 18 Earth System Models for various latitudinal zones. The results indicated that 
the models consistently overestimated satellite-based estimates of leaf area. Moreover, the models’ 
simulation of the seasonal cycle in the northern latitudes is at odds with the satellite product. Ground 
based studies have confirmed this inability of models to simulate the phenological cycle, which lends 
support to the seasonal cycle observed in the satellite-based LAI3g product. Finally, the LAI3g and 
FPAR3g data sets can be obtained freely from the NASA Earth Exchange (NEX) web site. 
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