
Remote Sens. 2013, 5, 1001-1023; doi:10.3390/rs5031001 
 

Remote Sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Impacts of Spatial Variability on Aboveground Biomass 
Estimation from L-Band Radar in a Temperate Forest 

Chelsea Robinson 1,*, Sassan Saatchi 2, Maxim Neumann 2 and Thomas Gillespie 1 

1 Department of Geography, University of California-Los Angeles, Los Angeles, CA 90095, USA;  

E-Mail: tg@geog.ucla.edu  
2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA;  

E-Mails: Sasan.S.Saatchi@jpl.nasa.gov (S.S); Maxim.Neumann@jpl.nasa.gov (M.N.) 

* Author to whom correspondence should be addressed; E-Mail: cmrobins@ucla.edu;  

Tel.: +1-619-300-9194. 

Received: 20 December 2012; in revised form: 17 February 2013 / Accepted: 18 February 2013 /  

Published: 26 February 2013 

 

Abstract: Estimation of forest aboveground biomass (AGB) has become one of the main 

challenges of remote sensing science for global observation of carbon storage and changes 

in the past few decades. We examine the impact of plot size at different spatial resolutions, 

incidence angles, and polarizations on the forest biomass estimation using L-band 

polarimetric Synthetic Aperture Radar data acquired by NASA’s Unmanned Aerial Vehicle 

Synthetic Aperture Radar (UAVSAR) airborne system. Field inventory data from 32 1.0 ha 

plots (AGB < 200 Mg ha−1) in approximately even-aged forests in a temperate to boreal 

transitional region in the state of Maine were divided into subplots at four different spatial 

scales (0.0625 ha, 0.25 ha, 0.5 ha, and 1.0 ha) to quantify aboveground biomass variations. 

The results showed a large variability in aboveground biomass at smaller plot size 

(0.0625 ha). The variability decreased substantially at larger plot sizes (>0.5 ha), 

suggesting a stability of field-estimated biomass at scales of about 1.0 ha. UAVSAR 

backscatter was linked to the field estimates of aboveground biomass to develop parametric 

equations based on polarized returns to accurately map biomass over the entire radar 

image. Radar backscatter values at all three polarizations (HH, VV, HV) were positively 

correlated with field aboveground biomass at all four spatial scales, with the highest 

correlation at the 1.0 ha scale. Among polarizations, the cross-polarized HV had the 

highest sensitivity to field estimated aboveground biomass (R2 = 0.68). Algorithms were 

developed that combined three radar backscatter polarizations (HH, HV, and VV) to 

estimate aboveground biomass at the four spatial scales. The predicted aboveground 
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biomass from these algorithms resulted in decreasing estimation error as the pixel size 

increased, with the best results at the 1 ha scale with an R2 of 0.67 (p < 0.0001), and an 

overall RMSE of 44 Mg·ha−1. For AGB < 150 Mg·ha−1, the error reduced to 23 Mg·ha−1 

(15%), suggesting an improved AGB prediction below the L-band sensitivity range to 

biomass. Results also showed larger bias in aboveground biomass estimation from radar at 

smaller scales that improved at larger spatial scales of 1.0 ha with underestimation of 

−3.62 Mg·ha−1 over the entire biomass range.  
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1. Introduction 

Estimation of forest aboveground biomass (AGB) has become one of the main challenges of remote 

sensing science for global observation of carbon storage and changes in the past few decades [1–3]. 

Accurate estimates of aboveground biomass are important for calculations of the amount of carbon 

dioxide released into the atmosphere from disturbance or removed from the atmosphere through 

photosynthesis and carbon sequestration. The uptake of carbon by terrestrial vegetation, and the effect 

of deforestation and reforestation is a large source of error in carbon flux models [2,4,5]. An accurate 

estimation of the amount of stored carbon and understanding source and sink areas would improve 

accuracy of carbon flux models and thus be advantageous in studies of climate change. However, 

current aboveground biomass estimates are too inaccurate to allow for dependable calculations of 

carbon fluxes [2].  

Past research into carbon sequestration utilizing remote sensing techniques have focused primarily 

on tropical forests, at varying scales from local to regional scales [2,3,6,7]. However, less work has 

been done in temperate to boreal systems, which have distinctly different structure and patterns of 

heterogeneity than tropical forests [8,9]. When higher latitude forest aboveground biomass has been 

studied in the United States, it has typically been focused on the temperate Harvard Forest in 

Massachusetts [10,11], although some studies in Maine have been undertaken, some with lower spatial 

resolution radar data [12–14]. Disturbance intensity patterns and abiotic gradients affect horizontal and 

vertical structural complexity of aboveground biomass in these forests [13–16]. Although temperate 

forests are often assumed to be less heterogeneous than tropical rainforests, there is a high degree of 

small-scale variation within this forest, particularly due to poorly characterized edaphic 

heterogeneity [15]. Changes in soil moisture can have effects on tree growth, and thus on total biomass 

and carbon sequestration. Traditional assumptions are that the carbon content of dry biomass is 50%, 

although this might vary across species [17,18]. The spatial heterogeneity of temperate forests needs to 

be characterized and modeled to allow for accurate extrapolation of biomass estimates to the rest of the 

forest [17–19]. By choosing the number and size of the inventory plots, statistical approaches have 

been developed to estimate aboveground biomass and carbon storage from plot to landscape 

scales [20,21]. A better understanding of the spatial variability of aboveground biomass and plot size 

over temperate boreal forest can provide information on the level of carbon stored in this forest type. 
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The role of remote sensing for estimating and monitoring forest biomass has become significantly 

more important with recent international agreements on climate mitigations through the United 

Nations Reduced Emissions from Deforestation and Degradation project (UN-REDD) [20]. Radar 

sensors measure the backscattered energy after the microwaves bounce off surfaces below. Radar with 

long wavelengths allows for good penetration capabilities and is sensitive to moisture content in 

vegetation, which can aid in determining biomass and forest structure [2,22]. In addition, long 

wavelength radar can penetrate clouds and is unaffected by time of day [12]. Because of these 

attributes of the long radar wavelength, it can detect canopy volume and trunk presence and is a useful 

aid in estimating biomass. Radar transmitted energy penetrates into the forest canopy and scatters back 

from different forest structural components, including stems, branches, leaves, and soil. The amount of 

sent and returned energy can be related to the forest structure and properties based on the polarized 

backscatter values. The energy is sent out either vertically (V) or horizontally (H), and is returned to 

the sensor in either the same polarization or the opposite orientation, resulting in HH, HV, and VV 

polarization combinations (and VH, although not available for this study). The diversity of canopy 

structure and gaps affect the scattering and attenuation of the radar signal, and thus forest stands differ 

in their resultant backscatter values. Past research in the use of radar to quantify biomass found that 

cross-polarized HV backscatter has the highest sensitivity to changes in aboveground biomass 

compared to the other polarizations, likely because it is most affected by randomly distributed and 

oriented foliage, branches, and leaves, is the least affected by forest type and ground 

conditions [2,23,24]. Due to the differences between polarizations with respect to sensitivity to 

vegetation biomass, the combination of three of them may allow for the benefits of each to be utilized.  

Incidence Angle 

Radar backscatter also depends on both forest structure and measurement geometry 

parameters [2,3,7]. Forest structural parameters include the size and density of trees per pixel 

resolution, the angular distribution of tree components, soil surface conditions (slope, aspect, terrain 

roughness, and moisture) and the dielectric constant, which relies on plant water content and specific 

gravity [3]. Measurement geometry parameters include incidence angle and spatial resolution of the 

radar in comparison with the chosen field plot size. Since these structural and geometric parameters 

affect radar backscatter, backscatter is sensitive to forest aboveground biomass and can be used as a 

valuable tool for regional analyses [2]. Different incidence angles result in varying backscatter values 

both within an image and between images. When the radar has a smaller incidence angle, it captures 

data closer to nadir and allows better penetration of microwaves into the forest and provides a better 

sensitivity to the forest structure or volume [12]. At the same time, small incidence angles introduce 

additional complexity as direct backscatter from soil surface may also impact the radar 

measurements [25]. Thus there is a need to better understand how different incidence angles impact 

estimations of aboveground biomass.  

Past research into the relationship between aboveground biomass and radar typically utilize Synthetic 

Aperture Radar (SAR) from spaceborne sensors such as ALOS PALSAR (L-band, λ = 23.62 cm),  

ERS-1 (L-band, λ = 24 cm), RADARSAT (C-band, λ= 5.6 cm), and ENVISAT (C-band,  

λ = 5.6 cm) [2,23,24,26]. SAR can detect canopy volume and trunk presence and is a useful aid in 
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estimating biomass [2,5,12,26,27]. SAR backscatter, especially at low frequencies (400–1,500 MHz), are 

sensitive to trunk and crown biomass and moisture content [16,25]. Past studies have found that the radar 

backscatter value varies with increasing forest aboveground biomass for lower levels of AGB but the 

signal saturates at a threshold as aboveground biomass increases, resulting in a logarithmic relationship 

between aboveground biomass and backscatter [3,12,26,28]. The threshold at which the signal saturates 

varies based on the wavelength and forest type, but results using the airborne AirSAR and E-SAR around 

40–50 Mg·ha−1 for L-band radar (15–30 cm wavelength) and 150–200 Mg·ha−1 for P-bands, with a 

wavelength of (~70 cm wavelength) [2,28,29]. These saturation values are approximate and depend on 

the conditions and forest characteristics. While the spaceborne sensors have good global and temporal 

coverage, airborne sensors can provide higher spatial resolution data, which could result in stronger, 

more accurate retrievals of aboveground biomass. While having high spatial resolution could provide 

higher quantity of data points in a small area, it can reduce the radiometric resolution or quality. A larger 

spatial resolution reduces speckle noise and could improve retrieval performance, notwithstanding local 

heterogeneity, although there is a loss of spatial resolution. Currently, there is increasing interest in using 

Unmanned Aerial Vehicles (UAV) that incorporate remote sensing sensors such as lidar and synthetic 

aperture radar to quantify forest aboveground biomass. The advantage of UAV’s is the ability for 

systematic, automated collection of data on aboveground biomass over landscapes and regions, which 

has great potential to provide improved time-series of biomass estimates of landscapes and can be used 

to validate spaceborne sensors. 

We used UAVSAR data over the temperate forests of Maine to identify the best methods for 

measuring aboveground biomass. First, we examine the spatial variability of aboveground biomass in 

field plots to identify the spatial scale with the lowest variability. Second, we identify which 

polarizations and incidence angles most accurately quantify forest aboveground biomass from 

UAVSAR. Third, we identify the impacts of spatial scale on estimations of aboveground biomass. 

Finally we develop algorithms for quantifying aboveground biomass for the entire study region that 

allows for easier regional and global monitoring of biomass and carbon loads. 

2. Materials and Methods 

2.1. Study Area 

This research focuses on the temperate to boreal transitional forests in Howland (45.3°N, 68.8°W) 

and Penobscot (44.8°N, 68.6°W) Experimental Forests located in Maine (Figure 1). The forest is a 

mixed deciduous-coniferous forest and is a natural ecotone between a northern hardwood forest to the 

south and a boreal softwood forest to the north [12]. The dominant species are Eastern Hemlock 

(Tsuga canadensis), Red Spruce (Picea rubens), Balsam Fir (Abies balsamea), Paper Birch (Betula 

papyrifa), Red Maple (Acer rubrum) and several species of Aspen (Populus gradidentata, Populus 

tremuloides) (Appendix 1). The forests are generally fragmented due to both natural disturbance and 

logging or management practices [13,30]. Due to a long history of forest use, the study area is covered 

by a range of unmanaged old-growth forest stands, regeneration of varied ages, and small tree 

plantations [13,30]. Soil drainage classes and soil types can be highly variable within a small area due 

to a history of glaciation [12]. The variability of soil types limits the occurrence of single species 
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stands, and coupled with varied histories of land-use has resulted heterogeneity of tree species and 

forest communities. Because of this, aboveground biomass can differ significantly across space, from 

saturated bogs with low tree biomass to high biomass old growth stands [12].  

Figure 1. Study Area: (a) State of Maine with counties and UAVSAR track highlighted in 

red. (b) UAVSAR RGB composite image (HH = red, HV = green, VV = blue) with Howland 

(upper red square) and Penobscot (lower red square), (c) Layout of some of Howland plots, 

(d) Close up of one 1 ha plot and 0.0625 ha divisions (e) Plot layout: 50 m × 200 m with 

sixteen 25 m × 25 m subplots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Field Data Collection 

To capture the landscape variability of the forest aboveground biomass, we established 32 1.0 ha 

plots in both private and public land in forests of varying age and degree of disturbance during the 
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summer of 2009 and 2010. All 1.0 ha plots were 50 m × 200 m and aligned along the range direction 

of radar images and subdivided into 16 quadrants of 25 m × 25 m (0.0625 ha). We measured the 

location of all plots and subplots with GPS units (Garmin GPSMAP 60CSx) with approximately 5 m 

accuracy in the field providing twenty-seven geographical markers per hectare.  

The plot orientation was established to be perpendicular to the known flight direction of the 

UAVSAR mission, with the 200 m side aligned with the range direction of the UAVSAR flight lines, 

so as to encompass as much information as possible across changing local incidence angles and reduce 

the effects of pixel location and tree shadowing in radar backscatter extraction (Figure 1).	
We measured all trees above 10 cm in diameter at breast height (DBH), identified the tree species, 

and mapped them within each plot. The aboveground biomass for individual trees was estimated using 

previously defined genus-specific equations [31]. These equations have been used in Forest Inventory 

and Analysis estimates of the US forest carbon storage [32]. However, while the Forest Inventory and 

Analysis plot data is small (0.4 ha) and may not be very suitable for remote sensing analysis, their 

methods of aboveground biomass estimation are applicable to our field data. The aboveground 

biomass was determined for individual trees based on whether they were hardwood or softwood 

species (Mg), summed to get total AGB per plot size (Mg/area), then divided by the plot area to 

determine AGB normalized to a hectare (Mg·ha−1). We used the combination of subplot data to 

estimate aboveground biomass at different spatial scales of 0.0625 ha, 0.25 ha, 0.5 ha, and 1.0 ha. We 

also estimated the biomass of tree components, such as foliage, branch, and stem using the Jenkins 

equations based on hardwood and softwood tree species and reported the total aboveground biomass, 

basal area, crown aboveground biomass, and stem aboveground biomass for all 1.0 ha plots 

(Appendix 1). Aboveground biomass results from these equations, regardless of any potential errors, 

were assumed to be the estimate of the true aboveground biomass of the forest [3,31,32].  

2.3. Remote Sensing Data  

We use remote sensing data collected by NASA’s Unmanned Aerial Vehicle Synthetic Aperture 

Radar (UAVSAR) in August 2009. UAVSAR is an airborne polarimetric L-band radar sensor, which 

was designed for repeat-pass interferometry differential measurements in order to provide surface 

deformation measurements [33]. The UAVSAR flies at an altitude of 13,800 m and collects data in the 

L-band (24 cm wavelength) at 80 MHz bandwidth. The nominal resolution is 1.66 m in slant range and 

0.6 m in azimuth. The multi-looked imagery is provided in geographic latitude and longitude 

coordinates (with WGS-84 geoid) at a pixel resolution of 0.00005556 degrees, or approximately  

5 m × 5 m. The backscatter was collected and is reported here in power units (m2/m2), instead of the 

typically reported db units, although it is just a logarithmic conversion between the two. Data was 

collected over the study area on four different dates (5, 6, 7, and 14 August 2009). Based on temporal 

variation (See Section 4.3), all analysis was done on three images from 5 August 2009 and one from 6 

August. Before our access to the images, the UAVSAR images were initially corrected for any 

potential terrain effects and ground-projected despite relatively small topographical variations across 

the study area (less than 20 m) [33]. UAVSAR was flown repeatedly over the study area by shifting 

the flight lines along the same headings to change the incidence angle in the middle of the swath by 

10° increments in either direction and to image the field plots at incidence angles from 20 to 70 
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degrees. We refer to these flight lines as FL1, FL2, FL3, and FL4, respectively representing a range of 

low to high incidence angles (20°, 30°, 40°, 50°), respectively.  

2.4. Impact of Radar Incidence Angle 

We used four different images from which the extracted backscatter values were used to analyze the 

effect of the incidence angles. The incidence angle of the radar signal as it interacts with the surface 

has a direct effect on the resultant backscatter, and thus needs to be either corrected or introduced 

implicitly in the algorithm in order to accurately estimate biomass for all the pixels within the image.  

From an incidence angle image across the whole swath, the local incidence angles of each plot were 

derived from the pixels within the plot (Appendix 3). In order to correct, the center of the swath’s 

incidence angle was needed, and was determined to be 52.7°. The extracted backscatter values were 

corrected at the plot level utilizing the individual plot incidence angles across four images and using 

the following normalizing relation: 

௖௢௥௥଴ߪ ൌ ௥௔௪଴ߪ ൬
ߠݏ݋ܿ
଴ߠݏ݋ܿ

൰
௡

 (1)

0 is the average incidence angle at the center of the UAVSAR image swath and is approximately 

52.7°, the power n is approximately 1.4 and is estimated by fitting the above model to the incidence 

angle of the backscatter over all land cover types and image acquisitions [10]. The angle  represents 

the local incidence angle at each pixel. The GPS coordinates collected at the center and side axes of 

each plot were converted to shapefiles and were then used to extract backscatter from the different 

UAVSAR images. The backscatter extraction was performed at all four spatial scales (0.0625 ha, 

0.25 ha, 0.5 ha, and 1.0 ha), and on all dates. All backscatter values from four incidence angle images 

taken on 5 August 2009 were compiled together and corrected in one dataset, using the above equation 

and then aggregated in two manners to compare to the ground data. First, the data was compiled into 

an extensive list with backscatter values from each individual incidence angle image, with three or four 

backscatter values for each plot AGB value. Secondly, the multiple backscatter values from the 

different images were averaged, so there was only one value per plot. This resulted in two different 

estimation algorithms for each spatial resolution to predict the square root of aboveground biomass. 

2.5. Spatial Analysis 

We developed parametric models based on regression models between backscatter at different 

polarizations and aboveground biomass. Although regression models do not provide detailed 

information about variables that impact the radar backscatter, they appear to be realistic in terms of 

demonstrating the impact of radar configuration such as incidence angles or environmental variables 

on radar sensitivity to aboveground biomass [2,13,16,29,34]. The models were developed at different 

spatial scales by extracting the backscatter values over the 1.0 ha plots. We had 32 1.0 ha ground plots, 

with sixteen 25 m by 25 m subplots within each hectare, with a total of 512 subplots of 0.0625-ha. The 

analysis began with the smallest segment of ground data at 25 m by 25 m subplots, and then scaled up 

to 50 m × 50 m (0.25 ha), 50 m × 100 m (0.5 ha), and last 50 m × 200 m (1.0 ha). The impact of spatial 

scale on the variability of field-estimated aboveground biomass was assessed before relating it to radar 
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backscatter. A calculation of the coefficient of variation (CV) was done for each plot size, by dividing 

the standard deviation by the mean, and multiplying by 100 to get a percentage.  

2.6. Radar Estimation of Aboveground Biomass 

We used a multivariate regression approach to examine the relationship between forest aboveground 

biomass and polarimetric backscatter from different acquisition dates. It was determined that the best 

relationship with AGB was with the data acquired on 5 August, so the remainder of the analysis focused 

on flight lines FL1, FL2, and FL3 from 5 August, and FL4 from 6 August 2009 collections. By 

comparing the extracted backscatter with the ground estimated AGB values, we sought to determine the 

best spatial scale to assess biomass of this forest type solely through remotely sensed data.  

Since the relationship between backscatter and aboveground biomass levels off at a certain value 

depending on frequency and incidence angle [2,16], the models were developed with the square root of 

aboveground biomass to develop the backscatter (in power units (m2/m2)) and aboveground biomass 

estimation algorithm [3]. By using R statistical software, linear regression models were developed at 

various scales with the three radar polarizations (HH, HV, VV) in the following form: 

ܤܩܣ√ ൌ ܽ଴ ൅ ܽଵߪுு
଴ ൅ ܽଶߪு௏

଴ ൅ ܽଷߪௐ
଴  (2)

The unknown coefficients (a0, a1, a2, a3) at four spatial scales are provided in Table 1. By combining 

the three different polarizations, we aimed to include different forest structural information represented 

in scattering mechanisms by polarimetric measurements in the algorithm [35]. Once the equations 

were developed, we determined RMSE of the entire dataset, as well as for the plots with initial  

AGB < 150 Mg·ha−1, where the sensitivity decreases. We reported the error estimation of both the 

compiled and averaged models at each spatial resolution to understand the accuracy and capabilities of 

SAR estimation of aboveground biomass.  

3. Results 

3.1. Variability of Stem Number and Plot Aboveground Biomass 

We first assessed the variability of AGB within each plot and across spatial scales. We identified 

24,906 stems > 10 cm DBH from a total of 39 tree species from 32 1.0 ha plots, with an average of 778 

individuals per plot, and a range from 58 to 2,253 individuals per hectare. At all spatial scales, the 

average aboveground biomass was 158.1 Mg·ha−1, while the coefficient of variation decreased with 

increasing plot size (Figure 2). 

As plot size increased, standard deviation decreased, from 60.9 Mg·ha−1 at the 0.0625 ha scale to 

44.1 Mg·ha−1 at the 1.0 ha scale. In addition the coefficient of variation drops significantly from 0.38 

to 0.27 from the smallest scale to the largest scale. This shows that the initial variability of our field 

data increases as plot size decreases. At smaller scales (0.0625 ha), subplots may be disturbed and in a 

state of regeneration with low AGB, while being adjacent to a high AGB subplot. At larger scales, 

these differences become averaged out and less severe, resulting in a lower coefficient of variation 

across the plots at the 1.0 ha scale. 
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Figure 2. Along left Y-axis, mean and standard deviation of aboveground biomass density 

estimates for plots in old growth forest at four different spatial scales of analysis, depicted 

by bars. On right Y-Axis, percent coefficient of variation ([sd/µ] × 100) for aboveground 

biomass across spatial scales, depicted by line. 

 
3.2. Incidence Angle Effect  

The raw extracted backscatter values from each UAVSAR image were compared with aboveground 

biomass. As incidence angle increased, the correlation between field plot estimated aboveground 

biomass and radar backscatter decreased Figure 3(a). The relationship for the HV polarization resulted 

in R2 values of 0.51, 0.48, 0.37, and 0.31 from low to high incidence angles along the flight line 

(Figure 3(a)). After applying the correction to the backscatter values, the R2 values all increased, to 

0.61, 0.62, 0.51, 0.57, respectively (Figure 3(b)). In addition, the regression curves lie much more 

closely together, meaning that the relationship between the field aboveground biomass and the 

different backscatter values across incidence angles for each plot are more similar. 

3.3. Radar Backscatter Sensitivity to Biomass 

The relationship of aboveground biomass to the uncorrected UAVSAR backscatter shows that 

lower incidence angles have higher backscatter values than the same plot at a higher incidence angle, 

as well as higher R2 values (Figure 3(a)). After the reduction of the effect of incidence angle on the 

radar backscatter values, all polarizations were compared to the field plots at the four spatial scales. 

For all polarizations (HH, HV, and VV), the R2 of this relationship increased as plot size increased, 
with the most dispersion at 0.0625 ha and the least variability at 1.0 ha. This relationship for the 
corrected HV backscatter had the highest R2 of the three polarizations at all spatial scales (0.46, 
0.51, 0.59, and 0.68) as plot size increased (Figure 4).  

For HH, the R2 values for increasing spatial scale were 0.28, 0.39, 0.49, 0.58, while for the VV 

polarization, they were 0.11, 0.31, 0.38, and 0.46. The cross-polarized HV has the highest correlation 

to field aboveground biomass, followed by HH, then VV for all spatial scales. Because of these 

differences between polarizations, all three were combined into a single algorithm for each spatial 

scale in order to emphasize the benefits of each.  
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Figure 3. Effect of Incidence Angle: Hectare level analysis (a) Uncorrected HV 

backscatter values for 4 incidence angle images taken on 8/5/09, (b) Corrected HV 

backscatter values, (c) Uncorrected HV backscatter values across local plot incidence 

angles (d) Corrected HV backscatter values across local plot incidence angles. 

(a) (b) 

(c) (d) 

Figure 4. (a–d): Aboveground biomass versus corrected HV backscatter values by spatial 

scale, averaged across incidence angles. 

(a) (b) 

Plot	 
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Figure 4. Cont. 

(c) (d) 

3.4. Impact of Spatial Scales on Radar Estimation of Biomass 

Several different linear regression models were developed comparing the square root of 

aboveground biomass to corrected backscatter values. These predictive algorithms were determined for 

four different spatial scales: 0.0625 ha, 0.25 ha, 0.5 ha, and 1.0 ha and for the full compiled dataset and 

the averaged dataset. The results were compared to our field AGB density for each plot. A graph 

comparing field AGB density to our predicted AGB density would ideally have a 1:1 relationship. For 

both the full compiled and the averaged values that were used to make the predictions, the RMSE 

values increased with decreasing plot size. The model results for the averaged data only can be seen in 

Figure 6. Overall, the average backscatter analysis resulted in higher R2 values and lower RMSE than 

the compiled data. The model with the best relationship was the model using the average backscatter 

across images at the 1.0 ha spatial scale, with an R2 of 0.67, p value of 1.54e-7, and an overall RMSE 

of 44 Mg·ha−1 (Figure 5, Table 1). 

RMSE was calculated for both the compiled and averaged datasets, reported in Table 1. For both 

sets of analyses, the RMSE values decreased with increasing plot size, meaning that there are more 

errors associated with smaller plot size (Table 1). RMSE was lower for the averaged data, which 

resulted in the best model. Due to the loss of sensitivity of SAR data at high levels of AGB, RMSE 

was also assessed for just the plots with 150 Mg·ha−1 or less of AGB. For this case, at 1 ha using 

averaged backscatter values, RMSE dropped to 23.05 Mg·ha−1, from 44.03 Mg·ha−1 on the entire 

dataset. Similarly, at the 0.0625 ha scale, RMSE dropped to 45.29 Mg·ha−1 from 62.24 when looking 

at just plots less than 150 Mg·ha−1. Bias was calculated on the residuals for both the compiled data and 

the averaged values. In both cases, the predicted aboveground biomass underestimates the measured 

aboveground biomass at all spatial scales, ranging from −3.6 (1 ha) to −7.5 (0.0625 ha) for the 

averaged backscatter values. The underestimation is slightly more for the compiled dataset than the 

averaged dataset, but not significantly so. 
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Figure 5. Field AGB density versus UAVSAR Model Predicted AGB density by plot size. 

 

  

Table 1. Derived algorithm coefficients at each spatial scale and respective statistical 

values. The resultant values for predicted square root of AGB were then squared and 

compared to the ground AGB to determine R
2
, P value, bias, and RMSE. 

In form: √(AGB) = a
0
 + a

1


HH
 + a

2


HV + a
3


VV
. 

  

UAVSAR 
Averages 

A0 A1 A2 A3 R2 P Value Bias 
Overall 
RMSE 

RMSE 
<150 
AGB 

1 −4.15 3.16 246.16 −9.9 0.671 1.54e-07 −3.6 44.03 23.05 
0.5 −0.93 −7.30 271.59 −24.7 0.607 8.00e-13 −4.7 47.57 30.72 

0.25 −0.03 −13.48 279.35 −25.3 0.534 <2.2e-16 −6.3 53.54 39.88 
0.0625 −0.56 2.91 232.38 −18.5 0.451 <2.2e-16 −7.5 62.24 45.29 

UAVSAR 
Compiled 

  
       

  

1 0.62 −13.50 276.36 −18.3 0.500 <2.2e-16 −5.9 49.20 34.90 
0.5 1.48 −24.82 280.28 −17.1 0.482 <2.2e-16 −5.8 53.06 40.27 

0.25 4.48 −18.28 193.35 −4.2 0.291 <2.2e-16 −7.1 58.10 45.80 
0.0625 5.99 −2.40 111.94 −6.2 0.187 <2.2e-16 −10.4 69.02 50.17 
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3.5. Mapping Landscape Aboveground Biomass 

The resulting best models from the average backscatter values relating multiple radar polarizations to 

aboveground biomass were used to create AGB maps at 25 m and a 100 m pixel resolution (Figure 6). 

The images were resampled to these resolutions to match the scales used to create the regression 

equations. At the 100 m resolution, there were less than three pixels with any portion within the 1.0 ha 

plots, while at the 25 m scale, there are up to 20 pixels encompassed partially within the plot.  

Figure 6. (a) AGB map at 100 m resolution (1 ha), (b) Subset of the 100 m map, and (c) is 

the same area from the 25 m resolution map. 
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4. Discussion 

4.1. Impact of Radar Resolution for Estimating AGB 

The coefficient of variation drops significantly from 0.38 to 0.27 from the smallest plot size to the 

largest plot aggregation based solely on the field data, suggesting that the initial variability of forest 

structure in the plot data increases as plot size decreases, which in turn has an impact on estimation 

approach. The results also show that for all models there is a power relationship between aboveground 

biomass and backscatter values up to biomass values about 150 Mg·ha−1, which is especially 

pronounced in the smaller plot size analyses. The sensitivity of the L-band radar to AGB declines 

drastically above this value indicating large errors with a significant underestimation (negative bias) at 

high values of aboveground biomass, especially at smaller scales. The RMSE reflects this, especially 

when analyzing the strength of the model only on the plots with less than 150 Mg·ha−1 field 

aboveground biomass (Table 1). When assessing the maps of aboveground biomass, we can see that 

there are more high biomass pixels (>200 Mg·ha−1) in the 25 m pixel size than the 100 m pixel size 

(Figure 6(b,c)). However, these low values are reduced when scaled up to 100 m pixel size. At smaller 

scales (0.0625 ha), there is more heterogeneity in forest structure and AGB with areas of natural 

disturbance and recovery along with forest thinning occurring at small scales. At larger scales, these 

differences become averaged out and less severe, resulting in a fewer pixels with higher biomass.  

The results also showed larger bias in aboveground biomass estimation from radar at smaller scales, 

making the aggregation from small to larger scales an error-prone process, and suggesting significantly 

improved biomass estimation directly at scales of 1.0 ha. This also suggests that the Forest Inventory and 

Analysis plot data at 0.4 ha may not suitable for remote analyses of forest aboveground biomass [28]. 

The future analyses of aboveground biomass utilizing similar radar sensors may be most accurate at the 

1.0 ha spatial scale and field data at smaller plot sizes may introduce too much variation or error into 

aboveground biomass estimates. We expect that the sensitivity to AGB may improve at large spatial 

sales when effects of forest structure and minor geolocation errors are averaged out. However, the 

maximum plot size available for this study does not allow us to test the above hypothesis. 

4.2. Role of Polarization and Incidence Angle in Estimating AGB 

Our results support past studies that the cross-polarized HV has the best correlation to forest 

aboveground biomass [2,19,20]. The importance of the HV backscatter value in the regression model 

is clear in the coefficients that are heavily weighted towards the HV value. To make our models more 

accurate, we combined three polarizations into one multivariate regression to estimate aboveground 

biomass, although the results of the model highly relied towards the HV value.  

Having multiple incidence angles may allow for more information to be gleaned from the radar 

backscatter of forest but results in complications if corrections are not applied. Our correction for 

incidence angle made the backscatter have a stronger relationship to field estimated AGB for each 

image, as well as making it possible for the averaging across images, effectively making our 

assessment more robust. In general, radar backscatter observations at different incidence angles impact 

the inherent scattering mechanisms controlling the backscatter values at different polarization. 

Observations at closer to nadir incidence angles (20°–30°) will allow better penetration into the forest 
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canopy and potentially larger sensitivity to AGB. However, at these incidence angles, radar backscatter 

becomes more sensitive to the underlying soil moisture variations and hence prone to larger AGB 

estimation errors. At steeper incidence angles (50°–60°), the scattering effects on the radar 

measurements are almost the opposite, suggesting lower sensitivity to AGB. For temperate forest of 

this type, data collected at 30°–40° incidence angles appear to be the most suitable for estimating AGB 

from L-band radar. Other biomes with varying canopy closure may be more sensitive to a different 

angle range.  

4.3. Impact of Environmental Factors 

Differing levels of soil moisture can affect radar signals, particularly in areas with low biomass 

densities. In these areas, radar can penetrate through the trees and hit the surface, which is when soil 

moisture can affect backscatter [24]. Ranson et al. [13] previously determined that drainage 

characteristics vary widely in the study area, and since soil moisture information was not collected 

concurrently in our plot sites it could be a confounding factor in the AGB estimation. Comparing 

UAVSAR backscatter data collected on 5, 7 and14 August 2009, we found distinct differences in 

values between days (Figure 7). See Appendix 5 for plot of each date’s backscatter compared to AGB, 

which shows clear differences between the curves. 

Figure 7. Temporal differences in backscatter across polarizations. 

 

These short-term variations in the data collection could be due to a variety of factors including 

effects of rain, impacting soil moisture, and wind, impacting orientation of leaves, as well as error in 

the initial data calibration [14]. Since vegetation and soil moisture have an impact on backscatter 

values, precipitation events could have caused the differences between the UAVSAR images on 5, 7, 

and 14 August 2009. The images are still useful and possible for analysis but since moisture 

parameters can change backscatter values, the developed algorithms are site and environmental 

condition specific. Our analysis used three flight lines from 5 August, and one from 6 August (50° 

incidence angle). The relationship derived from 5 August performed well across polarizations, and was 
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between the lowest values from 7 August and the highest values from 14 August. Radar flights should 

be planned during the driest season to reduce temporal fluctuations in backscatter due to moisture. 

4.4. Other Sources of Errors 

Although this analysis found reasonable correlations between radar backscatter measurements and 

aboveground biomass, and resulted in predictive equations of aboveground biomass at the 1.0 ha scale 

with an R2 of 0.67, there are several sources of errors to our estimation of AGB from radar imagery 

that are not accounted for in our analysis. The most dominant sources of errors include the errors 

associated with the use of allometric equations in inventory data and the accuracy of plot geolocation.  

Allometric Estimating 

The aboveground biomass assumed to be accurate, though in actuality is only an estimate of true 

tree biomass based on previously derived allometry developed by Jenkins [27], since to get the true 

aboveground biomass would require destructive sampling. Since this would destroy the forest stocks, 

estimating based on genus level relationships are the best method of quantifying biomass available for 

this species assemblage. Another shortcoming in the ground collected biomass values is that 

measurements were limited to trees 10 cm DBH, while smaller trees, and coarse woody debris and 

perhaps dead trees are also important pools of aboveground forest biomass that were left out of this 

assessment and may impact the radar backscatter [2].  

Geolocation 

Errors associated with the geo-referencing of plot corners and the relative location of these points 

with respect to the radar resolution can introduce large errors in radar backscatter analysis. These 

errors are likely to be more pronounced at the smaller subplot level than on the whole hectare. The 

AGB maps created over central Maine show the differences in analysis using different spatial 

resolution of the underlying image. When the pixels are 100 m × 100 m, there are only a few pixels 

that are encompassed by the plot borders that are averaged for the 1.0 ha (Figure 7(b)), while at the 

25 m × 25 m resolution, there is much more variation present in the data (Figure 7(c)). If the entire 

hectare plot is geo-located with 5–10 m error, there is likely to be little difference of the overall plot 

structure. However, at the 25 m × 25 m level, 5–10 m off could entirely change the forest structure 

within the subplot, and thus the aboveground biomass density. Geo-referencing errors, both in the field 

and within the image processing and projection, likely affect the subplot biomass accuracy to a greater 

extent than at a larger scale. It is important to note that for all of the analyses, the R2 value was found 

to be higher for the hectare plots, where there is less potential for geo-referencing errors to affect the 

data. The differences in spatial resolution of the two aboveground biomass maps show how pixel size 

of the remote sensing data could affect the analysis, had they not been averaged at each spatial scale 

from the initial high-resolution data.  
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5. Conclusions 

The objective of this research was to determine a method for estimating aboveground biomass over 

temperate mixed forest landscapes in the Maine using the data from a SAR sensor that can be deployed 

on unmanned vehicles in the future to increase temporal and spatial resolution of forest aboveground 

biomass. Ground measurements over 32 ha plots with 512 25 m × 25 m subplots in 2009 and 2010 were 

used to calculate aboveground biomass values to determine relationships with data collected from the 

backscatter of the active UAVSAR sensor. This research developed useful regression equations to relate 

L-band radar to forest aboveground biomass density in the transitional mixed forest of Maine. Through 

this technique, the feasibility and scale of a L-band airborne radar sensor to estimate aboveground 

biomass was assessed. It was determined that the highest accuracy in estimation is at the 1.0 ha spatial 

scale, likely as errors due to heterogeneity are reduced when averaged over the larger scale.  

Algorithms were developed that combined three radar backscatter polarizations (HH, HV, and VV) to 

estimate aboveground biomass at the four spatial scales. Among polarizations, the cross-polarized HV 

had the highest sensitivity to field estimated aboveground biomass. The predicted aboveground biomass 

from these algorithms resulted in decreasing estimation error as the pixel size increased. The model with 

the best relationship was the model using the average backscatter across images at the 1.0 ha spatial 

scale, with an R2 of 0.67, p value of 1.54e-7, and an overall RMSE of 44 Mg·ha−1 (Figure 5, Table 1). 

Due to the loss of sensitivity of SAR data at high levels of AGB, RMSE was also assessed for just the 

plots with 150 Mg·ha−1 or less of AGB. For this case, at 1 ha using averaged backscatter values, RMSE 

dropped to 23 Mg·ha−1, from 44 Mg·ha−1 on the entire dataset. Similarly, at the 0.0625 ha scale, RMSE 

dropped to 45.29 Mg·ha−1 from 62.24 when looking at just plots less than 150 Mg·ha−1. Bias was 

calculated on the residuals for both the compiled data and the averaged values. In both cases, the 

predicted aboveground biomass underestimates the measured aboveground biomass at all spatial scales, 

ranging from −3.6 (1 ha) to −7.5 (0.0625 ha) for the averaged backscatter values. This study helped to 

determine algorithms that aided in modeling aboveground biomass for central Maine using L-band radar 

and resulted in the production of maps of aboveground biomass for the landscape. 

Because our findings indicate highest accuracy of biomass retrieval with larger spatial resolution, it 

may not be necessary to rely on airborne collections of radar data with limited spatial coverage. With a 

spaceborne radar platform, data could be collected at a lower spatial resolution across larger geographic 

areas for global mapping. However, high-resolution datasets are immensely important to determine 

small-scale forest heterogeneity and the end goal of the research should dictate the platform used. 
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Appendix 

Appendix 1. Ground estimates of Above Ground Biomass (AGB) and component AGB, 

developed with individual tree DBH and allometric equations. 

Plot Plot Area 
AGB Density  

(Mg·ha−1) 
Basal Area  

Density (m2·ha−1) 
Crown AGB 

(Mg·ha−1) 
Stem AGB  

(Mg/ha) 
Old Growth 

or 2nd Forest 
H02_2009 1 ha 27.39 5.81 7.25 20.13 SF 
H03_2009 1 ha 38.86 8.80 9.72 25.75 SF 
H05_2009 1 ha 109.65 22.43 27.40 82.25 OG 
H06_2009 1 ha 62.46 12.80 16.52 45.95 SF 
H07_2009 1 ha 216.48 44.76 60.16 156.32 OG 
H08_2009 1 ha 17.40 4.65 4.39 13.01 SF 
H09_2009 1 ha 123.59 24.28 30.43 91.56 OG 
H10_2009 1 ha 235.35 46.07 57.19 178.16 OG 
H12_2009 1 ha 178.43 38.26 44.56 133.88 OG 
H17_2009 1 ha 147.74 27.92 36.95 110.79 OG 
H18_2009      1 ha 136.12 26.20 34.78 101.34 OG 
H04_2010 1 ha 131.63 26.82 33.42 98.21 OG 
H07_2010 1 ha 145.57 25.58 37.28 108.29 OG 
H08_2010 1 ha 124.78 25.01 34.39 90.26 OG 
H20_2010 1 ha 114.54 25.44 30.95 83.59 OG 
H21_2010 1 ha 113.46 26.99 29.39 84.06 OG 
H22_2010 1 ha 174.27 24.86 45.05 129.22 OG 
H23_2010 1 ha 114.72 22.87 28.65 86.08 OG 
HT1_2010 1 ha 203.22 22.48 51.18 152.20 OG 
HT2_2010 1 ha 191.72 24.10 46.58 145.15 OG 
P01_2009 1 ha 257.19 46.21 61.83 195.36 OG 
P03_2009 1 ha 137.31 37.18 38.90 98.41 OG 
P04_2009 1 ha 49.26 12.35 15.82 33.44 SF 
P05_2009 1 ha 147.43 27.41 34.48 112.95 OG 
P06_2009 1 ha 60.50 13.76 16.60 43.90 SF 
P07_2009 1 ha 141.39 26.47 33.23 108.17 OG 
P09_2009 1 ha 1.70 7.71 0.76 0.94 SF 
P10_2009 1 ha 138.98 26.17 35.10 103.88 OG 
P11_2009 1 ha 108.81 21.13 24.30 72.59 OG 
P13_2009 1 ha 201.87 34.08 54.66 147.21 OG 
P14_2009 1 ha 22.21 4.42 6.97 15.24 SF 
P15_2009 1 ha 226.5 41.43 57.68 168.82 OG 
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Appendix 2. Species found in forest in Howland and Penobscot, Maine. 

Code Genus Species Common Name Tree Type 
ACSA1  Acer saccharum Sugar Maple Decid. Broadleaf 
ACSP  Acer spicatum Mountain Maple Decid. Broadleaf 
ACRU  Acer rubrum Red Maple Decid. Broadleaf 
ACPE  Acer pensylvanicu. Striped Maple Decid. Broadleaf 

ACSA2 Acer Saccharinum Silver Maple Decid. Broadleaf 
FAGR  Fagus grandifolia Beech  Decid. Broadleaf 
BEAL  Betula alleghaniens. Yellow Birch Decid. Broadleaf 
BEPA  Betula papyrifera Paper Birch Decid. Broadleaf 
BEPO Betula populifolia Gray Birch Decid. Broadleaf 
BECO Betula cordifolia Mountain Paper Birch Decid. Broadleaf 
POGR  Populus grandidentata Bigtooth Aspen Decid. Broadleaf 
POTR  Populus tremuloides Trembling Aspen Decid. Broadleaf 
POBA Populus balsamifera Balsam Poplar Decid. Broadleaf 
SOAM  Sorbus americana American Mountain Ash Decid. Broadleaf 
FRNI  Fraxinus nigra Black Ash Decid. Broadleaf 

FRAM  Fraxinus americana White Ash Decid. Broadleaf 
FRPE Fraxinus pennsylvanica Green Ash Decid. Broadleaf 
TIAM Tilia americana Basswood Decid. Broadleaf 
HAVI  Hamamel. virginiana Witchhazel Decid. Broadleaf 
PRPE  Prunus pensylvanica Pin Cherry  Decid. Broadleaf 
PRVI  Prunus virginiana Choke Cherry Decid. Broadleaf 
PRSE Prunus serotina Black Cherry Decid. Broadleaf 
JUCI  Juglans cinerea Butternut Decid. Broadleaf 
OSVI   Ostrya virginiana E.Hophornbeam Decid. Broadleaf 

QURU  Quercus rubra Northern Red Oak Decid. Broadleaf 
QUMA Quercus macrocarpa Burr Oak Decid. Broadleaf 
ULAM  Ulmus americana American Elm Decid. Broadleaf 
COAL  Cornus alternifolia Alternate-Leaf Dogwood Decid. Broadleaf 
SADI  Salix   Willow species Decid. Broadleaf 
ALIN Alnus incana Speckled Alder Decid. Broadleaf 
ABBA  Abies balsamea Balsam Fir Everg. Needleleaf 
PIRU  Picea rubens Red Spruce Everg. Needleleaf 
PIMA Picea mariana Black Spruce Everg. Needleleaf 
PIGL Picea glauca White Spruce Everg. Needleleaf 
PIAB Picea abies Norway Spruce Everg. Needleleaf 
TSCA  Tsuga candensis Eastern Hemlock Everg. Needleleaf 
PIRE  Pinus resinosa Red Pine Everg. Needleleaf 
PIST  Pinus strobus Eastern White Pine Everg. Needleleaf 

THOC  Thuja occidentalis Northern White Cedar Everg. Needleleaf 
LALA  Larix laricina Tamarack Decid. Needleleaf 
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Appendix 3. Individual plot incidence angles, in degrees, for each incidence angle image. 

Converted to radians for backscatter correction. 

Plot FL1 FL2 FL3 FL4 
P01_09 39.87 46.42 50.98 65.68 
P03_09 40.04 46.55 50.86 65.73 
P04_09 38.97 45.69 51.57 65.42 
P05_09 39.49 46.10 51.24 65.57 
P06_09 42.20 48.29 49.31 66.35 
P07_09 40.52 46.94 50.54 65.86 
P09_09 39.47 46.09 51.26 65.56 
P10_09 37.33 44.36 52.58 64.95 
P11_09 36.85 43.97 52.86 64.82 
P13_09 34.59 42.14 54.08 64.18 
P14_09 33.85 41.57 54.26 63.98 
P15_09 43.36 49.23 48.36 66.69 
H02_09 36.73 43.90 52.72 64.79 
H03_09 36.53 43.74 52.83 64.73 
H05_09 34.70 42.26 53.82 64.22 
H06_09 39.79 46.37 50.82 65.66 
H07_09 32.64 40.58 54.84 63.64 
H08_09 33.82 41.54 54.27 63.97 
H09_09 40.34 46.81 50.45 65.81 
H10_09 41.86 48.04 49.34 66.26 
H12_09 41.69 47.90 49.47 66.21 
H17_09 43.67 49.49 47.91 66.79 
H18_09 40.66 47.07 50.26 65.91 

H04_2010 23.37 32.94 58.45 61.08 
H07_2010 24.34 33.75 58.14 61.35 
H08_2010 25.10 34.38 57.88 61.56 
H20_2010 23.91 33.40 58.24 61.23 
H21_2010 22.67 32.36 58.64 60.89 
H22_2010 24.01 33.48 58.24 61.26 
H23_2010 22.91 32.55 58.60 60.95 
HT1_2010 41.76 47.96 49.41 66.23 
HT2_2010 40.41 46.87 50.40 65.83 

Appendix 4. Parameters used in allometric equations, by genus. From Jenkins et al. [27]. 

AGB (kg) = Exp(B0 + B1ln(dbh), Converted to Megagrams (Mg) = kg/1000. 

 Genus Group B0 B1 

Hardwood 

Aspen/alder/cottonwood/willow −2.2094 2.3867 
Soft Maple/Birch −1.9123 2.3651 
Mixed Hardwood −2.4800 2.4835 

Hard maple/oak/hickory/beech −2.0127 2.4342 

Softwood 

Cedar/larch  −2.0336 2.2592 
Douglas-fir  −2.2304 2.4435 

True fir/hemlock −2.5384 2.4814 
Pine  −2.5356 2.4349 

Spruce  −2.0773 2.3323 
Woodland Juniper/oak/mesquite  −0.7152 1.7029 
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Appendix 5. Temporal differences in backscatter across polarizations: (a) HH, (b) HV, 

and (c) VV at 1 ha scale. 

 
(a)    (b)    (c) 
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