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Abstract: Detecting land use or land cover changes is a challenging problem in analyzing 

images. Change-detection plays a fundamental role in most of land use or cover monitoring 

systems using remote-sensing techniques. The reliability of individual automatic  

change-detection algorithms is currently below operating requirements when considering the 

intrinsic uncertainty of a change-detection algorithm and the complexity of detecting changes 

in remote-sensing images. In particular, most of these algorithms are only suited for a 

specific image data source, study area and research purpose. Only a number of 

comprehensive change-detection methods that consider the reliability of the algorithm in 

different implementation situations have been reported. This study attempts to explore the 

advantages of combining several typical change-detection algorithms. This combination is 

specifically designed for a highly reliable change-detection task. Specifically, a fusion 

approach based on reliability is proposed for an exclusive land use or land cover  

change-detection. First, the reliability of each candidate algorithm is evaluated. Then, a fuzzy 

comprehensive evaluation is used to generate a reliable change-detection approach. This 

evaluation is a transformation between a one-way evaluation matrix and a weight vector 

computed using the reliability of each candidate algorithm. Experimental results reveal that 

the advantages of combining these distinct change-detection techniques are evident. 

Keywords: reliability; change-detection; multi-algorithm fusion; fuzzy technique 

 

OPEN ACCESS 



Remote Sens. 2013, 5 1135 

 

 

1. Introduction 

Land use or land cover change is an important area in global environmental change research. 

Inventory and monitoring of land use or land cover changes are indispensable aspects for further 

understanding change mechanisms and for modeling the effect of changes on the environment and 

associated ecosystems at different scales [1]. Remote sensing data provide a wide range of valuable 

information on the surface of the Earth; thus, detecting changes in land cover using remote sensing 

images as data sources is an effective and dominant approach in this research area. After more than 40 

years of study, a variety of approaches to detect changes using two-date remote sensing imagery for 

different methods have been reported. These approaches can be grouped into four general types [2]: 

(1) Algebraic methods, which detect changes by implementing algebraic operations between  

remote-sensing images acquired from the same area at two different dates. Change vector analysis 

(CVA) and its derivatives are examples of well-known algebraic algorithms in change-detection, among 

other methods presented in [1,3–7]; (2) Classification methods, which include post-classification 

comparisons, such as those in [8–10], and direct two-time classifications, such as in [11]. In this method, 

the accuracy of the change-detection result strongly depends on the classification accuracy; 

(3) Transformation-based change-detection methods, such as principal component analysis (PCA)-based 

techniques mentioned in [11], multivariate alteration detection (MAD) transformation, as well as 

combined MAD and maximum autocorrelation analysis transformation techniques, such as those  

in [12–15]; and (4) Visualization change-detection methods, which can be grouped into two general 

types: temporal compositing techniques, such as those presented in [16] and visual interpretation-based 

techniques, such as those in [17,18]. In addition, based on the different applications, we can briefly 

classify the change-detection methods into direction-unrelated and direction-related methods. In the 

direction-unrelated methods, some applications are mainly concerning if changes have been occurred on 

multi-date images, e.g. change-detection for land use update [19], and Sinha [20] gave a comparative 

study for different binary change-detection methods in detecting land cover change/no-change 

information in different seasons. This is called “binary change-detection”. In the direction related 

methods, some applications are not only concerning in the changes, also in the direction of changes. 

Celik, et al. [21], Kempeneers, et al. [22] and Bovolo, et al. [23] presented direction of changes and used 

positive and negative signs to represent the different directions of change, in order to describe the growth 

and loss in forest, lake and crop. Moreover, for different application purposes, some non-spectral data 

have been used to detect changes, such as, in [24], laser altimetry data was used to detect the changes in 

ice sheet surface elevation changes. Also, the research of Frolking, et al. demonstrates that multiyear, 

active Ku-band microwave scatterometry can provide an important geophysical data record documenting 

change in tropical vegetation canopy status [25]. However, the purpose of this study is to develop a 

validity method for detecting changes in land cover in order to update land cover databases.  

Evidently, a large number of change-detection techniques have been proposed as a result of the 

extensive research in change-detection. However, limitations are still observed in existing  

change-detection techniques, e.g., a typical method can only work well on specific images and study 

area. These techniques cannot take advantage of the performance of different methods to implement an 

accurate and reliable change-detection system for various images, research purposes and study area. 

Moreover, selecting a suitable threshold is the key to obtaining a highly accurate change-detection 
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result. Improper thresholds result in low change-detection accuracies. However, selecting a proper 

threshold for change-detection is difficult. 

Therefore, this work proposes a novel, reliability-based fusion change-detection approach, providing a 

technique for combining different individual change-detection algorithms. This combination aims to 

generate a comprehensive land cover change-detection method to further improve the performance, 

adaptability and reliability of exclusive land cover change-detection systems to obtain more accurate and 

reliable results than from individual methods. In addition, the proposed comprehensive methods do not 

need a threshold, because the fuzzy comprehensive evaluation technique is used in deciding whether a 

given pixel is changed or unchanged. This characteristic greatly reduces the uncertainty caused by 

improper threshold selection. The approach is then applied to actual land cover satellite images acquired 

from the same area at two or more different dates. Section 2 describes the proposed multi-algorithm 

fusion method and defines reliability indicators in measuring change-detection results. Section 3 tests the 

validity of the proposed approach by providing several case studies and gives experimental results. 

Discussions and conclusions are presented in the final section. 

2. Methodology 

Two registered multi-spectral images, I1 and I2, acquired over the same area at two different dates, 

t1 and t2, respectively, are considered. Supposing that the size of the images is w × h and that the 

images are composed of b spectral bands, then the general idea of the proposed approach is shown in 

Figure 1. 

Figure 1. General scheme of the proposed approach. 
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In Figure 1, the reliability of each change-detection algorithm is the basis of the multi-algorithm 

fusion, that is, evaluating the reliability of each candidate algorithm in detecting land cover changes 

from two-date images is the precondition of the proposed method. Thus, several sample areas need to 

be selected from the given two-date images. Each individual algorithm is applied on the areas to detect 

the changes. Results obtained using each candidate algorithm from the sample areas are used to 

evaluate the reliability of each candidate algorithm in change-detection. Subsequently, the weight of 

each candidate algorithm is determined using the reliability of each algorithm in a fuzzy 

comprehensive evaluation. A reliability-based, fuzzy comprehensive change-detection technique is 

thus generated. Finally, the fusion method is applied on the given two-date images to detect changes in 

land cover or land use.  

2.1. Definitions of Reliability and Evaluation Indicators 

Reliability is defined as the probability that an item can perform its intended function for a specified 

interval under given conditions [26,27]. In a similar manner, change-detection reliability can be 

defined as the probability of an algorithm or method to detect changes from specified satellite images 

under given conditions. Thus, this work proposes measuring the reliability of a change-detection 

algorithm using the following quantized indicators to evaluate the reliability of a  

change-detection algorithm: 

(1) Integrality ( R ) refers to the probability of an algorithm or method to correctly detect changes 

from specified satellite imagery data under the given conditions. Let Ncorrectly_dc be the number of 

changed pixels correctly detected by the algorithm and Nactual_c be the number of actual changed pixels 

in the specified images, we then obtain: 

.
_

_

cactual

dccorrectly

N

N
R   (1) 

In practice, Ncorrectly_dc ≤ Nactual_c is always satisfied; thus, the value of R  must be in [0, 1]. 

(2) Correctness (O ) refers to the probability of correctly detecting changed pixels in all detected 

changed pixels. Let Ndetected_change_pixel be the number of detected change pixels by the algorithm, then, 

the correctness of a change-detection algorithm is defined as: 

pixelchangeected

dccorrectly

N

N
O

__det

_  (2) 

(3) Error detection rate ( E ) refers to the probability of incorrectly detecting changed pixels by an 

algorithm in the overall pixels of an image. Let Nincorrectly_dc be the number of incorrectly detected 

pixels, then, the error detection rate is defined as: 

poverall

dcyincorrectl

N

N
E

_

_  (3) 

(4) Consistency (C ) refers to the ability of an algorithm to maintain its performance in detecting 

changes when applied to different areas under the given conditions. Let r1 ={R, O, E} and r2 ={R, O, E} 

represent the vector consisting of reliability indicators obtained at two different sample areas, 
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regardless of whether the land cover classes are the same or different. Then, the consistency of a 

change-detection algorithm is defined as: 

),(1 21 rrdC   (4) 

where d(r1, r2) is the Euclidean distance between vectors r1 and r2. 

Evidently, the values of R, O, E and C are within the range of [0, 1]. Larger R, O and C values lead 

to a higher reliability of the algorithm. By contrast, smaller E values lead to a higher reliability of  

the algorithm. 

2.2. Proposed Reliability-Based Fuzzy Comprehensive Change-Detection Technique 

Unlike traditional individual change-detection methods, the purpose of the proposed fusion method 

is to solve problems, such as threshold selection, accuracy and reliability of change-detection results 

and to generate a robust change-detection algorithm that suits different image data sources, study areas 

and research purposes. These goals are challenging problems faced by most individual  

change-detection algorithms. Furthermore, uncertainties widely exist in the entire change-detection 

procedure, such as difference in geometry, radiometry and resolution between two-date images, as well 

as the performance of the change-detection method. These uncertainties make fuzziness a common 

issue or basic characteristic in change-detection. In other words, using a certain threshold to decide 

whether a pixel is changed or unchanged based on a change-detection algorithm result is difficult. 

However, we can conclude the possibility of change. Therefore, overcoming these limitations in most 

individual change-detection algorithms requires introducing a fuzzy comprehensive evaluation 

combined with a reliability-based weight to solve the fuzziness issue in change decision. The following 

procedure shows the specific steps of the proposed change-detection method. 

(1) Evaluation indicator (EI). Consider a pixel, Ii, in t1 image, in the fuzzy comprehensive 

evaluation technique to evaluate whether the considered pixel is changed or unchanged. Several 

indicators should be set. Taking into account the purpose of this study, results computed using selected 

individual candidate change-detection algorithms are considered to evaluate whether a pixel is changed. 

Suppose that x = [xi]1 × n represents selected individual candidate algorithms used to compare the given 

pixel Ii, with its corresponding pixel in the t2 image to decide if change has occurred, then, the 

evaluation indicator set is defined as: 

T

xxx n
uuu ],,,[

21
U . (5) 

(2) Evaluation grade (EG). The ultimate objective of the case is to determine if object, x, has 

changed; thus, changed, half-changed, unchanged, and so on, may be considered as assessment grades 

to create an evaluation grade, which is set as follows: 

T

Jggg ],,,[ 21 G , (6) 

where gJ represents the change grade. 

(3) One-way evaluation matrix. Let ai,j be the possibility of a change that occurred over a pixel, 

which is computed by comparing x with its corresponding pixel in the t2 image using the individual 

candidate change-detection algorithm, i; thus, the one-way evaluation matrix A  of this case is given by: 
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(4) Reliability-based fuzzy comprehensive evaluation. The purpose of the proposed  

change-detection approach is to improve the reliability and accuracy of the obtained change map. For 

this purpose, this study proposes a reliability-weighted fuzzy comprehensive evaluation approach to 

use the advantages of different individual candidate change-detection algorithms employed in 

comparing two-date images. Let w = [wi]1 × n be the weight of selected individual candidate algorithms 

determined by the aforementioned reliability factors through a fuzzy transformation between w and 

one-way evaluation matrix A, we obtain a fuzzy evaluation set, s, as: 
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where sJ represents the membership grade. We can then conclude that a change occurred over a pixel 

according to the principle of maximum membership. 

2.3. Accuracy Assessment Methods 

Selecting a proper method to assess the accuracy of results obtained by different methods is a key 

procedure of change-detection. Almutairi [28] stated that the results of the accuracy analysis can be 

summarized by an overall accuracy percentage and a kappa statistic. In this study, the overall accuracy 

and kappa coefficient [29,30] were introduced to the study. Here, overall accuracy is defined to be the 

percentage of pixels correctly detected. Let pa be the proportion of agreement, pe be the chance 

agreement, and the kappa coefficient is defined as the proportion of agreement among raters after 

chance agreement has been removed [30], which can be expressed as: 

e

ea

p

pp
Kappa






1
 (9) 

3. Case Study 

3.1. Area and Data 

The following sections quantitatively analyze a specific application of the proposed multi-algorithm 

integrated approach and its potential effects on land cover change-detection. In this study, two  

ortho-rectified 2.5 m SPOT 5 spatial resolution satellite images were obtained in order to generate a 

land cover map of WuQin district in Tianjin, China for the years 2009 (t1 image, Figure 2(a)) and 2010 

(t2 image, Figure 2(b)). Reference data is always a problem for accuracy assessment of land cover 

change-detection; inaccurate reference data will lead to improper assessment result. To assess the 
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accuracy of different methods in land cover change-detection, we prepared a man-made change map 

(Figure 3) as reference data for the accuracy assessment. Since change of land cover is the main focus 

of this study, so, in the manual interpretation, areas where land cover classes are different in two-date 

images have been labeled as change areas (e.g., Figure 4). 

Figure 2. Two date images of the same area. (a) t1 image acquired in 2009. (b) t2 image 

acquired in 2010. 

 

(a) 

 

(b) 
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Figure 3. The actual change map referenced in the accuracy assessment. 

 

Figure 4. Example of change area. (a) Example area in t1 image. (b) Before change (residential 

areas). (c) Corresponding area in t2 image. (d) After the change (non residential areas). 

 

 

(a) (b) 

 

 

(c) (d) 
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3.2. Case of Individual Algorithms 

In this study, we selected two typical change-detection algorithms to participate in testing the 

validity of the proposed reliability-based multi-algorithm fusion technique. The following descriptions 

introduce these two algorithms and the obtained change maps after using them. 

Figure 5. Change maps obtained using (a) Change Vector Analysis (CVA)-based  

change-detection method and (b) Principal Component Analysis (PCA)-based transformation 

change-detection method. 

  

(a) 

 

(b) 

CVA is a typical algorithm in algebra-based change-detection method. It is a multivariate  

change-detection technique that processes the full dimension (spectral + temporal) of the image data 

and produces two outputs: change magnitude and change direction [31]. The central idea of CVA, 
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which was given by Malila (1980), states that given multi-date pairs of spectral measurements, one 

computes spectral change vectors and compares their magnitudes to a specified threshold criterion. The 

decision that a change has occurred is made when that threshold is exceeded [3].The major advantage of 

the CVA algorithm is its capability to analyze change concurrently in all data layers as opposed to 

selected bands [31]. In this case, we first generated change vector map using RGB (red, green, blue) 

features of corresponding pixels in the t1 and t2 image. Then, pixels with a magnitude of change vector 

exceeding the given threshold (here, it is 1.2-times the average of all change vectors) would be 

determined as change pixels. Here, we considered the average of the 1.2-times repetition of the change 

magnitude as the threshold. After applying the standardized CVA algorithm presented in [1] to the  

two-date imagery shown in Figure 2(a,b), we obtained the change map shown in Figure 5(a). 

PCA-based change-detection, which captures maximum variances in a finite number of orthogonal 

components based on an eigenvector analysis of the data correlation matrix has been used in  

change-detection for many years and has become one of the most popular techniques, because of its 

simplicity and capability in enhancing information on change [32]. A standardized PCA of  

regional-to-continental scale time series using wide-angle sensors proved to be a powerful technique in 

separating changes taking place at different time frequencies [31]. Thus, the authors recommended the 

PCA approach as a candidate algorithm, because it identifies change in a more consistent and 

interpretable manner. The central idea of the principal components is usually calculated using a 

variance-covariance matrix. The standardization of the covariance matrix into a correlation matrix 

achieved by division with the appropriate standard deviation reduces all variables to equal importance 

as measured by scale. As a result, the dimensionality of a data set consisting of a large number of 

interrelated variables is also reduced, while retaining as much as possible of the variation present in the 

data set [32,33]. In this case, the PCA transformation algorithm was initially implemented on two-date 

images to obtain transformed images using ENVI software. Subsequently, the image difference was 

implemented between the two-date transformed images to obtain the change map shown in 

Figure 5(b). In the change map generation, we considered 1.2-times the average difference in whole 

images as the threshold in transformed image difference. 

3.3. Reliability-Based Multi-Algorithm Fusion 

The fusion of multiple change-detection algorithms to generate a highly reliable and accurate 

method for detecting changes is the central idea of the proposed approach. The reliability of each 

individual algorithm is the basis of the fusion. Thus, the proposed approach must first assess the 

reliability of each candidate algorithm. The next step is to combine the selected candidate algorithms 

based on reliability to generate a new, more reliable change-detection approach. 

3.3.1. Reliability and Weight Evaluation 

In general, we consider selecting several sample areas from the given two-date images to evaluate 

the reliability of the individual candidate algorithms. The size of the selected study area is small; thus, 

the entire area of the two-date images is used in evaluating reliability. Comparing the results shown in 

Figure 5 with the reference change map in Figure 3 and combining the definition of reliability factors 
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described in Section 2.2, we obtain the value for each reliability factor and accuracy factor of the two 

aforementioned candidate algorithms. These values are shown in rows 1–2 of Table 1. 

Based on the definition of reliability factors, we note that the error detection rate depends on 

correctness rate values. Thus, in this case, only integrality, correctness and consistency are used to 

determine the weight of each individual candidate algorithm. The weight of each individual candidate 

algorithm is estimated using the entropy of each algorithm. Let ei be the entropy computed based on 

reliability indices of algorithm i, then, we obtain: 





n

i

xxi ii
uuKe

1

ln  (10) 

subjected to: 

n
K

ln

1
 . (11) 

In addition, let vi be the information utility value of candidate algorithm, i, then we have: 

ii ev 1 . (12) 

The information utility value of a candidate algorithm directly determines its weight in the fusion 

algorithm. Generally, the larger the value of information utility, the greater the importance of the 

algorithm in evaluation and the greater weight is given to this algorithm in algorithm fusion. Thus, the 

weight of each individual algorithm is defined as: 





n

i

iii vvw
1

/ . (13) 

Based on the reliability of each candidate algorithm combined with the aforementioned weighting 

method, we obtain the weight vector consisting of the weights of the selected candidate algorithms 

(CVA- and PCA-based algorithms) as: 

}.0.475247,0.524753{w  (14) 

3.3.2. Fusion Algorithms and Obtaining Reliable Result 

The idea of multi-algorithm fusion is to combine candidate change-detection algorithms to 

generate an integration approach based on the reliability of each candidate algorithm in  

change-detection. The specific idea can be summarized as follows: 

(1) In setting EI, the selected algorithms (CVA-based and PCA-based) consist of the EI. In other 

words, let ucva and upca be the selected CVA- and PCA-based algorithms, then we have: 

},{ pcacva uuU  (15)  

(2) In setting EG, changed and unchanged are generally two common assessment aspects for a 

given pixel or object, x, n change-detection. Thus, when setting changed and unchanged as the 

evaluation grades in this study, we then obtain: 

},{},{ 21 unchangedchangedgg G  (16)  
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(3) To compute the value of each element in A, the value of each element in the one-way evaluation 

matrix, A, is expressed by comparing the properties of the given pixel in the t1 image and its 

corresponding pixel in the t2 image using the selected candidate algorithms. Specifically, the changed 

grade of a pixel is expressed by N(an, 1), which is a normalized value compared with the 

corresponding pixels in t1 and t2 images using each candidate algorithm in EI. Conversely, the 

unchanged grade of a pixel can be expressed as 1 − N(an, 1). We thus obtain the one-way evaluation 

matrix of this case as: 


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1,21,2

1,11,1

22
aNaN

aNaN
A  (17)  

(4) To compute for the fuzzy evaluation set of a pixel and to determine if change has occurred, a 

fuzzy transformation between w, shown in Equation (14), and A, shown in Equation (17), is 

implemented to obtain a 1 × 2 fuzzy evaluation set, s , and to determine if the pixel has changed based 

on the maximum membership principle. 

Figure 6(a) shows the change maps obtained using the proposed fusion approach. Table 1 shows the 

comparison of reliability and accuracy between the results obtained using the proposed fusion 

approach and each selected individual algorithm. 

Table 1. Comparison of reliability and accuracy. 

Methods Integrality Correctness Consistency Error Detection Rate Overall Accuracy Kappa 

CVA-algorithm 0.497291 0.457155 0.647084 0.129322 0.760583 0.756656 

PCA-algorithm 0.609330 0.355154 0.485954 0.242294 0.672147 0.662357 

Fusion-method 0.600460 0.514805 / 0.123939 0.788560 0.787185 

Figure 6. Change maps obtained using the proposed multi-algorithm fusion applied to  

(a) data set 1 and (b) data set 2. 

  

(a) 
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Figure 6. Cont. 

 

(b) 

Evidently, regardless of overall reliability or accuracy values, the proposed method is better than 

every individual algorithm using the same data source and experimental conditions. The proposed 

method is applied to another actual data set 2 (Figure 7) to further test it, and similar result are 

obtained, which are shown in Figure 6(b) and Table 2. 

Figure 7. Another two temporal images of the same area. (a) t1, image acquired in 

2009. (b) t2, image acquired in 2010. (c) The actual change map referenced in the 

accuracy assessment. 

 

(a) 
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Figure 7. Cont. 

 

(b) 

 

(c) 

Table 2. Comparison result of data set 2. 

Methods Integrality Correctness Consistency Error Detection Rate Overall Accuracy Kappa 

CVA-algorithm 0.506653 0.393433 0.819539 0.113262 0.815203 0.820524 

PCA-algorithm 0.713248 0.294357 0.793646 0.24792 0.710498 0.709368 

Fusion-method 0.637662 0.656498 / 0.048379 0.899083 0.898786 

SVM-algorithm 0.570045 0.466003 / 0.050965 0.871606 0.869150 

Next, the overall accuracy and kappa coefficient mentioned in Section 2.3 were used to assess the 

accuracy of change-detection results by applying each individual method and fusion method into 

different data. The results are shown in Tables 1 and 2. Finally, to further illustrate the validity of the 

proposed reliability-based fusion approach, we compare it with the post-classification change-detection 
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approach, whose classifier is the support vector machine (SVM) [34], by applying them to data set 2 

(Figure 7) under the same conditions. The accuracy of the SVM-based approach is shown on the last row 

of Table 2. From the results of our experiments, we can conclude that the proposed approach is validity.  

4. Conclusions 

A timely and accurate land cover or land use change-detection system is extremely important in 

understanding relationships and interactions between humans and natural phenomena and providing 

useful information for environmental protection, land planning and decision-making at local, regional, 

national and global levels [32]. However, land cover change-detection is a difficult and complex task 

without comprehensive considerations. Thus, the proposed fusion approach attempts to take advantage 

of the fuzzy comprehensive evaluation technique and the reliability of change-detection methods to 

overcome the aforementioned limitations in existing change-detection approaches. The results of three 

experiments using two set of data and comparing with each single candidate change-detection 

algorithms and the SVM-based post-classification change-detection algorithm showed that, regardless, 

single candidate algorithms and the SVM algorithm could produce higher reliable and accuracy results 

than the proposed fusion approach. The main contributions of the proposed approach includes that this 

study proposes and defines preliminary evaluation indicators for reliability evaluation of  

change-detection algorithms in detecting changes in specific two-date images; the consideration of 

reliability of a change-detection algorithm in a multi-algorithm fusion method may make the fusion 

method well adapted to different image sources, study areas and research purposes; comparing with 

most change-detection methods, this study solves the selection of a threshold in a change decision by 

using a fuzzy comprehensive evaluation technique. 

In addition, considering three reliability indexes listed above and applied to SPOT 5 spectral images 

acquired at the one area, the overall accuracy and kappa coefficient of the change-detection results 

were 0.78856 and 0.787185, respectively. For data of another area, the overall accuracy and kappa 

coefficient were more than 0.89, and it is nearly 0.2 higher than the estimates of SVM-based  

post-classification approach. 

However, some limitations exist in the proposed fusion technique. First, the proposed method 

cannot solve the fusion of post-classification change-detection algorithms, because different feature 

classes are given various new labels, thus losing the original information. In addition, the reliability 

indices proposed in the paper are very simple, and their scientificity should be further evaluated. 

Therefore, improving the definition of reliability should be the focus of future studies. 
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