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Abstract:  Increasing water use and droughts, along with climate variability and land use 

change, have seriously altered vegetation growth patterns and ecosystem response in 

several regions alongside the Andes Mountains. Thirty years of the new generation 

biweekly normalized difference vegetation index (NDVI3g) time series data show 

significant land cover specific trends and variability  in annual productivity and land surface 

phenological response. Productivity is represented by the growing season mean NDVI 

values (July to June). Arid and semi-arid and sub humid vegetation types (Atacama desert, 

Chaco and Patagonia) across Argentina, northern Chile, northwest Uruguay and southeast 

Bolivia show negative trends in productivity, while some temperate forest and agricultural 

areas in Chile and sub humid and humid areas in Brazil, Bolivia and Peru show positive 

trends in productivity. The start (SOS) and length (LOS) of the growing season results 

show large variability and regional hot spots where later SOS often coincides with reduced 

productivity. A longer growing season is generally found for some locations in the south of 

Chile (sub-antarctic forest) and Argentina (Patagonia steppe), while central Argentina 

(Pampa-mixed grasslands and agriculture) has a shorter LOS. Some of the areas have 

significant shifts in SOS and LOS of one to several months. The seasonal Multivariate 

ENSO Indicator (MEI) and the Antarctic Oscillation (AAO) index have a significant 
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impact on vegetation productivity and phenology in southeastern and northeastern 

Argentina (Patagonia and Pampa), central and southern Chile (mixed shrubland, temperate 

and sub-antarctic forest), and Paraguay (Chaco). 

Keywords: NDVI ; phenology; climate; MEI; AAO; time series; variability; trends; South 

America; Atacama; Chaco; Patagonia; Pampa 

 

1. Introduction  

The Millennium Ecosystem Assessment [1] illustrates how South American ecosystem services are 

governed by high biodiversity, productive land cover, a variety of land use changes, and by 

desertification that is taking place in some areas. One attribute used to monitor and assess ecosystem 

services is annual above ground primary production. Vegetation productivity has been estimated by 

using NDVI time series data [2ï4]. Additionally, long term NDVI times series have been used to 

analyze trends [5ï9] and responses of vegetation to environmental variables such as climate [6,10ï13] 

and land use [14ï18].  

The Intergovernmental Panel on Climate Change (IPCC) indicated that phenology, the timing of 

recurring biological events in response to the environment, is a relatively simple measure or proxy for 

climate change and variability [19]. Land surface phenology, is defined as ñthe seasonal pattern of 

variation in vegetated land surfaces observed from remote sensingò [20], is key to many earth surface 

processes and impacts carbon and hydrological processes as well as societies and economies [21]. 

Therefore, information about land surface phenological responses is needed to enhance earth systems 

science and model representation and understanding. Spatially distributed land surface phenology has 

been derived using NDVI time series data from the Advanced Very High Resolution Radiometer 

(AVHRR) and Moderate resolution Imaging Spectroradiometer (MODIS) to examine trends and the 

timing of landscape changes [22ï26] and monitor and assess ecosystem responses [27ï31], and 

possibly adapt to asynchronous ecosystem response to environmental variability and change [32].  

South Americaôs land cover is extremely variable across the continent [33] and is strongly impacted 

by interannual variability in climate. The topography of the Andes Mountains in combination with 

climatic cycles such as ENSO results in complex seasonal variability and spatial distribution of 

precipitation and temperature fields across the continent [34]. Interannual climate variability is causing 

increased temperatures and droughts in some and increased rainfall and decreased solar irradiance in 

other areas [34]. Some of this climate variability is captured by atmospheric indices such as the 

Multivariate ENSO Index (MEI) and Antarctic Oscillation index (AAO). One of the objectives of this 

research is to explore how MEI and AAO are affecting vegetation response. A better understanding of 

vegetation-climate interaction in South America will address efforts associated with adaptation to 

climate variability and warmer temperatures, which has consequences for ecosystem functioning, and 

land and water use across the continent in a variety of ways. For example, agricultural, mining and 

energy related demands for water are putting pressure on optimizing and managing these often limited 

resources. Furthermore, changes in the timing of biological events, such as the timing of green-up, 
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flowering and bird migrations can impact water demand, rates of carbon sequestration, and overall 

ecosystem functioning. 

The main objective of this research is to characterize and examine the interannual variability, trends 

and changes of land surface productivity and phenology in response to climate variability and change 

using the longest and newest generation of continuous normalized difference vegetation index 

(NDVI3g) time series data set currently available [35,36], in combination with climate data. We focus 

this research on the southern cone of South America alongside the Andes Mountains, including 

Argentina, Bolivia, Chile, Paraguay, Uruguay, and parts of Peru and Brazil. In the context of the 

objective we are asking the following research questions:  

(1) What are the productivity and phenological characteristics of the diverse land cover types in 

South America?  

(2) Are there any interannual trends in the phenology?  

(3) How does land surface phenology respond to the environment (e.g., climate, land use)?  

(4) What and where are the impacts of climate on local and regional scale land surface responses? 

With respect to questions (3) and (4), we will mostly focus on examining the functional 

relationships between interannual climate indices (ENSO and AAO), and vegetation productivity and 

phonological variables.  

2. Data and Methods 

The 30-year record of AVHRR GIMMS NDVI data were investigated for part of South-America 

alongside the Andes, between the latitudes of ī9°S and ī60°S and the longitudes of ī80°W and 

ī50°W, to analyze changes in inter- and intra-annual trends as a function of several climate indices to 

infer possible causes for observed inter-annual changes in greenness. The following set of methods 

were used to answer the questions raised in the introduction: (1) trend analysis of annual mean NDVI; 

(2) trend analysis of phenological variablesðstart and length of season climatic variables; 

(3) correlation analysis between annual mean NDVI and seasonal climate variables (MEI and AAO); 

and (4) correlation analysis between phenological variables (SOS and LOS) and seasonal climate 

variables (MEI and AAO). 

2.1. Study AreaðSouth America 

The study area is defined by the outlined extent in Figure 1. The focus is mostly on arid and  

semi-humid areas of the southern cone of South America, a region that has not been a focus of  

climate-vegetation response research using vegetation time series data spanning 30 years. Figure 1 

provides an overview of the aggregated land cover types based on work published by Eva et al. [33]. 

Eva et al. [33] represents multiple agricultural and forest types, such as the endemic temperate 

deciduous forests in Chile, better than most other comparable land cover products. The Andes 

Mountains provide for complex topography and climate patterns along a large latitudinal gradient. 

From a biogeographic viewpoint, the study area contains four bioclimatic zones (Table 1). They are 

formed by the presence of the Andean mountain in the west, a precipitation gradient with an arid 

diagonal zone in the middle of the continent (from the Atacama desert, to La Pampa), and by a  



Remote Sens. 2013, 5 1180 

 

north-south temperature gradient associated with latitude [37ï39]. The four bioclimatic zones 

contained within the study area have been transformed by human activities related with forest 

extraction for energy, land habilitation for agriculture and forest plantation, and urban expansion 

during the last two centuries. A summary of the areal extent of land cover types is provided in 

Supplementary Table S1.  

Figure 1. Land cover types based on data from Eva et al. [33]. The black circles are the 

sample areas representative of the major land cover types that are used to show the 

phenology and some examples of the seasonal and interannual NDVI time series data 

within the indicated study area extent.  

 



Remote Sens. 2013, 5 1181 

 

Table 1. Bioclimatic zones for the study area [37ï39].  

Zone Location (Lat.) Countries Biogeographic Unit  

Tropical ī10° to ī15°  
Perú, Bolivia  

and Brazil 

Tropical rain forest, mountainous  

forest and Andean steppe 

Sub-Tropical ī15° to ī30°  
Chile, Bolivia, 

Paraguay and Brazil  

Desert (Atacama), Andean steppe (Altiplano), 

closed deciduous forest and scrublands (El Chaco), 

and northern savanna mixed with agriculture 

Temperate ī30° to ī43.5°  
Chile, Argentina  

and Uruguay 

Mediterranean scrubland and temperate forest in 

Chile, Patagonia steppe, monte scrub-steppe, 

southern spinal savanna and Pampa steppe 

Sub-Antarctic ī43.5° to ī55°  Chile and Argentina Sub-Antarctic forest and Patagonia steppe 

The climate of this particular area of the continent is impacted mostly by the ENSO and AAO 

patterns. This region presents a wide variety of climates as a consequence of atmospheric circulation 

patterns (represented mainly by the Intertropical Convergence Zone and easterly winds in the tropics 

and the predominance of Westerlies, prevailing winds at southern mid-latitudes), the influence of 

oceanic currents that transport heat (for instance the Peru, Cape Horn, and Brazil currents) and the 

presence of major geographic features, like the Andes, that contribute to create a mosaic of south 

Americaôs climate types.  

The influence of the Andes becomes particularly important for the explanation of a semi-arid 

diagonal strip of land that covers the central north part of Chile and the Patagonian region of Argentina 

(Figure 1). A rain shadow effect is created by this mountain chain. While between 15°S and 27°S 

latitudes precipitation is dominated by convective activity in the Amazonia, the Westerlies bring 

moisture and frontal systems to the southern latitudes. The presence of the Andes precludes rainfall to 

occur on the western side of the Andes at low latitudes and on the eastern side at high latitudes [40].  

The relevance of agriculture and forestry in this continent is quite significant. In this region, a small 

subsistence agriculture coexists with a more sophisticated export oriented industry, representing a very 

dynamic sector for the economy (on average, this is a sector that represents approximately 4% of the 

gross domestic product [41]) and a relevant source of employment. 

2.2. GIMMS-NOAA-AVHRR NDVI Time Series Data 

Time-series of biweekly (15 days) composited 8-km resolution Normalized Difference Vegetation 

Index (NDVI) values from July of 1981 to December of 2011 provided by the Global Inventory 

Modeling and Mapping Studies (GIMMS) project were acquired by the Advanced Very High 

Resolution Radiometer (AVHRR) sensors 7, 9, 11, 14, 16 and 17 on board the National Oceanic and 

Atmospheric Administration (NOAA) satellite platforms [35,36]. The NDVI is the ratio of the 

difference of the near-infrared (NIR) and red reflectance (ɟ) values (ɟNIR ī ɟred) divided by the sum of 

the red and NIR reflectance values (ɟNIR + ɟred). The NDVI time series data were calibrated and 

corrected for view geometry, volcanic aerosols, and other miscellaneous issues, unrelated to vegetation 

response, were minimized [35,36]. These NDVI time series data are extensively used for trend and 

land surface response analysis [2,6,31,42,43] and currently spans 30.5 years, 24 images per year, 
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resulting in 732 gridded images with observations of vegetation dynamics. The continuity of  

multi-sensor NDVI data sets remains a challenge due to differences among sensors with respect to 

spectral response functions, calibration, sensor drift, and atmospheric correction causing small changes 

in NDVI dynamic range among sensors [35,44ï49]. The most recent comparison between AVHRR 

and MODIS based NDVI values showed good correlation for phenologically distinct areas and larger 

differences for tropical forest areas [42]. We will explore the continuity of the 30-year NDVI time 

series using the Atacama Desert as an invariable target. 

NDVI data are also very helpful to examine the capacity of carbon assimilation and water use of 

different vegetation types during their growing season [50,51]. NDVI values integrated during the 

growing season are frequently used as a proxy measurement for seasonal vegetation productivity [52]. 

In this research the annual mean NDVI is used as an NDVI-based productivity metric. The annual 

mean NDVI value for each year (t) is computed by averaging all 24 observations for each pixel for 

each year, referred to as NDVImean,t. Since vegetation growth tends to occur in spring and summer in 

the Southern hemisphere it was necessary to redefine the period of integration as the one between July 

and June, spanning two calendar years. This method has been applied to other similar research done in 

this region  [18]. This metric is expected to represent different and unique spatio-temporal vegetation 

responses to global and regional drivers like climate and land use.  

2.3. Land Surface PhenologyðNDVI Time Series Data 

The NDVI time series data provide seasonal and interannual information about ecosystem 

responses to the climate. These phenological trajectories represent ecosystem changes and variability 

in response to environmental dynamics including changes in land use. Furthermore, the seasonal  

and interannual trends provide a qualitative indication of the continuity of the NDVI data across 

AVHRR sensors. 

TIMESAT time-series analysis software was used to extract metrics of vegetation dynamics 

(phenological metrics) for each year (1981ī2011). An adaptive Savitzky-Golay smoothing filter [53] 

was used because it maintains distinctive vegetation time-series trajectories and minimizes various 

atmospheric effects [29,54]. For the purpose of this study, two timing metrics were used: (1) the start 

of growing season, the time when the NDVI value has increased by 20% [54] of the distance between 

the pre-season minimum and the seasonal maximum; (2) the length of growing season, the difference 

between the start and end dates of the growing season. The end dates of each growing season were 

determined based on the same 20% threshold. The timing based pheno-metrics are used to characterize 

seasonal photosynthetic activity and patterns among different vegetation types as they respond to 

different environmental conditions along latitudinal and topographical gradients.  

2.4. Climate IndicesðMonthly Multivariate ENSO Index (MEI) and Antarctic Oscillation (AAO) Data 

ENSO has a very strong impact on the interannual variability of precipitation and temperature 

patterns in many regions of South America [34]. The Andes Mountains also play a pivotal role in these 

climate patterns. Global scale ENSO-related rainfall anomalies show that the El Niño periods are 

usually correlated with anomalously wet conditions in central Chile and the southeastern portion of the 

continent and with below normal rainfall and warmer than normal conditions in the northern part of 
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South America. La Niña events are typically associated with opposite rainfall anomalies in both 

regions [34]. The Multivariate ENSO Index (MEI) represents multiple variables (e.g., sea level 

pressure, sea surface temperature, Niño regions), related to El Niño and La Niña phenomena [55]. A 

positive MEI is associated with El Niño and a negative MEI with La Niña periods. Decadal and 

interdecadal variability has been associated with the Pacific Decadal Oscillation (PDO) anomalies of 

precipitation and temperature over South America, which have a similar spatial structure to the ENSO 

anomalies, but less strong [34]. Finally, positive phases of the Antarctic Oscillation (AAO) typically 

cause warmer surface air temperature to the south of 40°S. Precipitation anomalies related to the  

AAO are largest at 40°S, and substantial in southern Chile and along the subtropical east coast of  

South America [34]. 

In this research we examine the relationship between MEI and annual mean productivity  

and phenological metrics. We also examine the impact of the AAO on the same variables. Since the 

impact of the PDO is relatively weak, we will not investigate this further within the scope of this 

research. Monthly MEI [55,56] and AAO [57,58] data were used to calculate mean tri-monthly MEIs 

and AAOs values to represent the growing seasons (s): Winter (JAS), Spring (OND), Summer (JFM), 

and Fall (AMJ). 

2.5. Ecosystem Characterization: Variability and Trends in Productivity and Phenology During 30 years 

The thirty year mean/median and interannual variability of ecosystem productivity and phenology 

are represented by the mean and coefficient of variation (COV) of NDVImean,t and LOSt data, and the 

median and standard deviation (STD) of SOSt data. The thirty year average annual NDVI was 

computed based on the average of the thirty yearly mean values of NDVImean,t. The COV(y) is 

computed for the thirty years of NDVImean,t and LOSt data using the following equation:  

COV(y) = STD(y)/Mean(y) (1) 

where STD is the standard deviation of the thirty observations per pixel.  

Interannual trends in the thirty year data record were examined for the NDVImean,t, SOSt and LOSt 

using a first order linear regression analysis. Each of the three dependent variables are analyzed as a 

function of time represented by thirty consecutive years (t = 1 to 30). The following equation is an 

example of the functional relationship establishing the trend in the interannual NDVI thirty year time 

series data:  

NDVI mean,t = a × t + b + et (2) 

where a is the slope, b is the intercept, and et the error term of the least squares solution. Only 

significant trends for p Ò 0.05 are reported. 

2.6. Ecosystem Response to MEI and AAO 

One of the main causes of the variability in ecosystem response is climate variability. We examine 

how the thirty years of NDVImean,t, SOSt and LOSt data are related to the MEIs and AAOs indices by 

using a first order linear regression analysis. Antecedent MEIs and AAOs conditions, preceding the 

annual growing season, were included in the analysis for the summer and fall seasons. Coincident 
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MEIs and AAOs conditions were included for the winter, spring, summer and fall seasons. Each of the 

three dependent variables is analyzed as a function of these seasonal and interannual varying climate 

indices. The following equation is an example of the functional relationship between the annual NDVI 

and the MEI climate indicator:  

NDVI mean,t = a × MEIs,t + b + et (3) 

where a is the slope and b is the intercept and et the error term of the least squares solution. Significant 

trends for NDVI mean,t are reported for p Ò 0.05. The levels of significance for SOSt and LOSt results are 

set to p Ò 0.1. 

3. Results and Discussion 

3.1. Land Surface Response and Phenological Characteristics and Interannual Variability 

The characteristic seasonal responses and interannual variability  (standard deviation based on 30 

years per composite period) for a range of vegetation land cover samples are shown in Figure 2. The 

samples are a subset of the samples identified in Figure 1. The NDVI time series data show how each 

of South Americaôs land cover types have diverse seasonal patterns. Vegetation cover types, such as 

tropical forest, grasslands, agriculture, savannah, shrublands and deserts, all have land cover type 

specific seasonal NDVI curves with differences in seasonal dynamic amplitudes and ranges as well as 

differences in the onset, peak and end of the growing seasons. The timing of the maximum NDVI 

values varies considerably throughout the year: tropical forest peaks mid-winter, while sub-humid, 

temperate and arid vegetation types mostly peak during the October thru February time frame. The 

timing of the minimum NDVI values varies considerably throughout the year as well: tropical forest 

have much lower NDVI values during the rainy season, while sub-humid, temperate and arid 

vegetation types mostly have minima values during the fall and winter (April -September). It should be 

noted that the NDVI time series for the desert areas are very flat for these multi-sensor time series 

NDVI data. 

The magnitude and variability of the standard deviation during these seasonal NDVI patterns are 

harder to interpret as they represent the interannual variability among all the 30 years of NDVI 

observations within each of the composite periods. This interannual variability is often caused by year 

to year changes in the timing and magnitude of the seasonal growth patterns, thus providing us with 

information about ecosystem response to the environment. This is especially relevant to, for example, a 

water-limited and possibly temperature-limited shrubland, which will not start greening up until there 

is soil moisture available and temperatures allow vegetation growth. Hence the variability in the timing 

of precipitation is often coincident with variability in the timing of NDVI increase. On the other hand, 

the timing of the onset of green-up and senescence in a temperature-limited Montane forest (>1,000 m) 

shows the highest variability during periods of water and temperature limitations, while showing very 

low variability during the winter. However, the interpretation of the interannual variability based on 

the standard deviation is often more complicated in tropical or temperate vegetation types (e.g., Closed 

evergreen tropical forest, closed deciduous forest, and temperate mixed evergreen broadleaf forest) 

where cloud cover and/or smoke aerosols also will cause some of this variability. Since cloud cover 

and aerosols will reduce the NDVI independent of the vegetation cover beneath it, some of the larger 
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standard deviations that we observe are most likely due to cloud/aerosol impacts on the NDVI data. 

For the closed evergreen tropical forest seasonal NDVI profile, the large difference between summer 

and winter NDVI and standard deviation values is arguably mostly due to clouds. The seasonal and 

interannual variability in the NDVI for a few sample points are further illustrated in Figure 3. 

Figure 2. Seasonal NDVI response and variability for representative vegetation cover 

typesðsample areas, 9 pixel averages, based on the mean NDVI value composite period 

over a 30-year period. The standard deviations (vertical bars) are indicative of the 30-year 

interannual variability.  
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Figure 3. Interannual variability in phenological trajectories for some of the sample points. 

The closed deciduous forest point represents a decrease in NDVI of more than 5% while 

the barren point represents a decrease of less than 2%, significant at p Ò 0.05. 

 

The 30 years of biweekly NDVI data show temporal consistency for the desert areas (Figure 3), 

despite the fact that the data comes from multiple sensors. The barren soil 30-year trajectory seems to 

make a slight drop in 2004. This drop coincides with the time when AVHRR-NOAA-16 transitioned to 

AVHRR-NOAA 17. When we do a simple linear regression on the annual mean of the barren area, 

there is a small decline in the NDVI of about 0.01 actual NDVI units over 30 years (p Ò 0.05). The 

desert area seems to have a slightly higher NDVI response in the last few years, reportedly due to some 

sporadic rainfall events. El Niño was strong in 1997/1998, followed by La Niña years in 1999 and 

2000. The precipitation limited shrubland and grassland samples show an above normal NDVI 

response coinciding with increased MEI values and a lower NDVI due to low MEI values. The 30 

years of NDVI observations for the closed deciduous forest sample show an overall decrease over 

time, but also illustrate the volatile responses within short time periods. These are most likely due to 

cloud cover. Hence, it is best to use the upper envelope, or higher NDVI values, of these NDVI 

trajectories to minimize these adverse effects. 

The 30-year annual mean NDVI for the selected vegetation types shows a large range of values 

(Figure 4). The lowest land NDVI values are for barren soil and desert land cover types, while the 

highest NDVI values are for temperate mixed forest. One can assume that the NDVI values for closed 

evergreen tropical forest are suppressed by frequent cloud cover. One sample site classified as a water 
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body showed higher NDVI values, likely caused by a mixture of water and vegetation mixed within 

the pixel. For each of the sample sites a summary with the interannual means, COV and trends are 

included in Supplementary Table S2.  

Figure 4. Thirty-year mean annual NDVI and ±STD for representative vegetation cover 

types samples (see Figure 1). 

 

The spatial distribution of the 30-year annual mean NDVI and the associated COV are shown in 

Figure 5. The low mean NDVI values or low productivity areas are diagonally situated across the 

Andes Mountains. Strong increasing productivity gradients are observed from the desert coast across 

the Andes mountains into tropical forests in the northern latitudes (North of ī32°S latitude), while we 

observe the opposite pattern in productivity in the more temperate southern latitudes (~ī32°S latitude), 

temperate forest on the coast and shrubland across the Andes mountains to the east. Tropical and 

temperate forested areas show the regions with the highest productivity, followed by agriculturally 

intensive areas. Many of the patterns seen in the mean NDVI in Figure 5 follow along well established 

precipitation and temperature gradients classified by the recently updated Köppen-Geiger system  

map [59]. Most of the higher interannual variability represented by higher COV of the annual NDVI 

values are associated with areas on and along the Andes Mountains, complemented by some of the 

shrubland regions in the central-northern parts of Chile and southwestern parts of Argentina. These 

shrubland regions are often drought deciduous/tolerant and will have strong leaf-out and growth of 

herbaceous plants in response to rainfall. 
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Figure 5. Spatial distributions of the annual mean NDVI and its coefficient of variation 

(COV) representing the interannual variability. 

 

The median of 30 years of SOS values and the STD of the 30-year mean SOS are shown in  

Figure 6. The SOS values respond variably to temperature, moisture, and radiation limitations [2,27] or 

a combination thereof. Most of the SOS values seem what we would expect. There is a strong 

latitudinal and elevational gradient in the SOS along Chile and the Andes Mountains. It should be 

noted that the SOS values for the tropical regions are likely less reliable due to the strong interference 

by aerosols and cloud cover that impacts the NDVI data [60]. The high STD values seem to confirm 

this. We also have some cross calendar year or cloud/snow issues in the south of Chile if the high STD 

values are a good indication. The main reason that the median of the SOS is displayed in Figure 6 

instead of the mean SOS is that the mean of the SOS is not a useful value due to the fact that, for 

certain pixels, the start of the growing season is for some years in November or December (Day of 

year ~300ï365) and for other years in January or February (Day of year ~1ï60). Hence the mean SOS 

of some vegetation types will not result in the correct mean of growing seasons that cross or skip years. 

The patterns and the highly variable amplitude of the STD for the 30 years of SOS values demonstrate 

both areas where the mean SOS value is based on end and start of calendar years as well as where the 

SOS is variable. Further work needs to be done to accurately visualize the interannual variation in SOS 

data. The spatial distribution of the timing of the SOS for the study area (Figure 6) is consistent with 

our expert knowledge of the region. The SOS, in concert with the STD, will give an indication where 






























