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Abstract: Projected changes in the frequency and severity of droughts as a result of 
increase in greenhouse gases have a significant impact on the role of vegetation in 
regulating the global carbon cycle. Drought effect on vegetation Gross Primary Production 
(GPP) is usually modeled as a function of Vapor Pressure Deficit (VPD) and/or soil 
moisture. Climate projections suggest a strong likelihood of increasing trend in VPD, while 
regional changes in precipitation are less certain. This difference in projections between 
VPD and precipitation can cause considerable discrepancies in the predictions of 
vegetation behavior depending on how ecosystem models represent the drought effect. In 
this study, we scrutinized the model responses to drought using the 30-year record of 
Global Inventory Modeling and Mapping Studies (GIMMS) 3g Normalized Difference 
Vegetation Index (NDVI) dataset. A diagnostic ecosystem model, Terrestrial Observation 
and Prediction System (TOPS), was used to estimate global GPP from 1982 to 2009 under 
nine different experimental simulations. The control run of global GPP increased until 
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2000, but stayed constant after 2000. Among the simulations with single climate constraint 
(temperature, VPD, rainfall and solar radiation), only the VPD-driven simulation showed a 
decrease in 2000s, while the other scenarios simulated an increase in GPP. The diverging 
responses in 2000s can be attributed to the difference in the representation of the impact of 
water stress on vegetation in models, i.e., using VPD and/or precipitation. Spatial map of 
trend in simulated GPP using GIMMS 3g data is consistent with the GPP driven by soil 
moisture than the GPP driven by VPD, confirming the need for a soil moisture constraint in 
modeling global GPP.  
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1. Introduction 

Estimation of global vegetation Gross Primary Production (GPP) and Net Primary Production 
(NPP) and their interannual variations are critical for understanding the feedbacks between the 
biosphere and the atmosphere. Ecosystem carbon models, inversion models, and inventories have been 
used for assessing global land primary production, generating total annual global estimates of GPP and 
NPP converging around 120 [1] and 60 [2] Pg·C·yr−1, respectively. Meanwhile, Net Biome 
Productivity (NBP), the net carbon accumulation by ecosystems [3], was estimated just 2% of GPP for 
the 1990s [4]. Therefore, estimation of interannual variations of GPP and NPP are also important as 
well as their total magnitudes for understanding NBP response to CO2 emissions and changes in 
climate. To elucidate the mechanisms that cause the interannual variation in GPP, we need to rely on 
bottom up modeling approaches [5]. However, in contrast to total magnitude of GPP, there is no 
consensus on interannual variation in global GPP or NPP even for the last few decades with satellite 
observations (for example, [6,7]).  

One reason for the models failing to reach agreement on the interannual variations of GPP is the 
oversimplification of the simulated responses of vegetation to climate variability. By tuning the model 
parameters to match their output to the data from validation sites, even simple models can provide a 
reasonable estimate of total GPP [8,9]. Indeed, as more validation data are becoming available, the 
annual magnitudes of global GPP and NPP estimations from different models have been 
converging [1,2]. However, it is another issue whether those simple models tuned to acceptable annual 
GPP range can produce realistic interannual variations in estimated carbon fluxes. In addition, not 
enough long-term data are available to validate the model results globally on inter-annual time scales. 

The recent availability of a 30-year satellite record of Global Inventory Modeling and Mapping 
Studies (GIMMS) 3g data, focus of this special issue, from NOAA/AVHRR provides an unprecedented 
opportunity to examine the interpretation of long-term GPP simulations by simple models. In this study, 
we focus on the effect of drought stress on the interannual variation in GPP, and assess the structural 
uncertainty in model-simulated trends of global GPP. Reductions in GPP caused by drought stress can be 
modeled through increases in Vapor Pressure Deficit (VPD) and/or reductions in precipitation via soil 
moisture. Because time series of VPD and precipitation are generally highly correlated, some models use 
only VPD sub-models or only soil moisture sub-models to simulate the impact of drought stress on 
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GPP [10]. Short-term comparisons have shown that VPD-only models can produce variations in GPP 
that are similar to the ones obtained from models with both VPD and soil moisture sub-models [11]. 
These similarities are not surprising when precipitation and VPD trends are coherent, but this is not 
necessarily always the case. For example, it has been reported that while global warming-induced 
increases in VPD were observed [6], global total precipitation did not show a significant trend for the last 
three decades [12,13]. In this case, we would expect the VPD-only models to produce incorrect time series 
of GPP estimates. Furthermore, according to the Coupled Model Intercomparison Project Phase 5 
(CMIP5), reduction in relative humidity with global warming was expected to continue over the 21st 
century [14], while globally averaged precipitation was projected to increase with high uncertainty around 
regional estimates [15]. Therefore, it is crucial to clarify how model structure of drought stress affects the 
interannual variations in GPP. To address this question, we used the Terrestrial Observation and Prediction 
System model (TOPS) [16] to produce global GPP estimates from 1982 to 2009 using GIMMS 3g data, 
and analyze how VPD and soil moisture influence the interannual variation in global GPP. 

2. Data and Methods 

2.1. The Terrestrial Observation and Prediction System Model (TOPS) 

TOPS is a diagnostic ecosystem process model that simulates the fluxes of energy, carbon, and 
water through vegetation in response to climate and weather variability [16]. TOPS employs a Light 
Use Efficiency (LUE) model to calculate GPP [17], as follows: 

GPP = PAR · fPAR · ε (1)

where PAR is the Photosynthetically Active Radiation (W·m−2) and fPAR is the fraction of Absorbed 
PAR. ε is the light use efficiency (g·C·J−1), calculated as: 

ε = ε max · min{Ψtmin(Tmin), ΨVPD(VPD), ΨSM(SM)} (2)

where εmax is the maximum light use efficiency of a given biome, and Ψtmin(Tmin), ΨVPD(VPD), 
ΨSM(SM) are down-regulation functions of minimum temperature, VPD, and soil moisture, 
respectively. The down-regulation functions are parameterized depending on the land cover type.  

Soil moisture is simulated using a one-layer bucket model with predefined wilting point and field 
capacity. Precipitation and evapotranspiration dynamics largely control soil moisture. Evapotranspiration 
is simulated with a two-layer model that consists of soil evaporation and canopy evapotranspiration. 
The canopy evapotranspiration was simulated using the Penman-Monteith equation with a Jarvis-type 
stomatal conductance submodel [18]. Water cycle components in TOPS, very similar to those in 
BIOME-BGC [19], have been validated over the past 25 years, for example stream flow [16], snow 
cover [20], and water stress [21]. 

Often less than average rainfall (hydrological drought) results in higher VPD inducing both 
physiological as well as meteorological drought conditions. Increased VPD triggers the closure of 
stomata resulting in a decrease in GPP. The stomatal responses to drought and their impact on canopy 
process are well observed in flux tower observations [22,23]. 

Because TOPS was developed from Biome-BGC, the GPP calculation in TOPS is similar to that of 
the MODIS 17 algorithm [24]. The main difference between the TOPS and MODIS 17 algorithms is 
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that TOPS has a soil moisture routine and a soil moisture control on GPP, while the MODIS 17 
algorithm is a VPD-only model. One of the reasons why MODIS 17 algorithm does not have soil 
moisture control is that MODIS 17 algorithm is developed for near real-time monitoring on a global 
scale. There are no satellite observations of soil moisture, and adding soil moisture sub-model is 
computationally expensive for an operational algorithm.  

2.2. LAI and FPAR 

TOPS requires estimates of Leaf Area Index (LAI) and fPAR to define the amount of vegetation 
and its photosynthetic capacity. For this study, LAI and fPAR were derived from the GIMMS 3g 
dataset using a neural network algorithm [25] and MODIS land cover [26].  

2.3. Climate Data 

TOPS ingests daily climate data for temperature, precipitation, VPD, and shortwave radiation and 
these inputs are obtained from the CRU-NCEP dataset version 4 [27]. The CRU-NCEP dataset 
provides climate variables for the period 1901–2010 and was made from the CRU TS3.1 dataset [28] 
and the NCEP-NCAR Reanalysis data [29] (hereafter referred to as CRU and Reanalysis, 
respectively). The CRU is 0.5-degree monthly climate data based on ground data, while the Reanalysis 
is ca. 2.5-degree 6-hourly modeled datasets. To compensate the downside of each dataset, the 
Reanalysis was interpolated to 0.5 degree and 6-hourly variations of the interpolated Reanalysis for 
each month were added to CRU monthly data to make the CRU-NCEP dataset. In this study, we used 
CRU-NCEP data for maximum temperature, minimum temperature, precipitation, specific humidity, 
and shortwave radiation for the period 1982 to 2009. Because the monthly time-series of the  
CRU-NCEP dataset is provided by the CRU dataset, the uncertainty of the CRU-NCEP dataset was 
inherited from the CRU dataset. The uncertainty of the CRU datasets tends to be larger in the earlier 
portion of the datasets and over developing countries. Because VPD data are not available from the 
CRU-NCEP data, VPD data were calculated from maximum temperature, minimum temperature, and 
specific humidity [30] within TOPS.  

2.4. TOPS Simulations 

TOPS was run from 1982 to 2009 at 0.5-degree resolution globally. We analyzed the vegetation 
response to each of the individual climate components and their combined effect using the approach 
adopted by Ichii et al. [31]. For each simulation, we use the CRU-NCEP time series of only one climate 
variable at a time, while holding the other climate components to their 1982 to 2009 climatologies. In 
addition, to analyze the effects of the down regulation functions Ψvpd and Ψsm in Equation (2), we 
perform TOPS simulations by keeping one of them equal to 1 (i.e., no control), while allowing the other 
one to vary. These simulations are summarized in Table 1. Hereafter, we refer to each simulation with 
the naming convention reported in Table 1. To initialize soil moisture, we spin-up TOPS with a 10-year 
spin-up run using the first 10 years (1982–1991) of climate data, and average of soil moisture difference 
for all the pixels was 0.72 mm between spin-up 1991 run and S_control 1991 run. 
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Table 1. Terrestrial Observation and Prediction System (TOPS) simulations naming 
convention. For each simulation, X indicates the variables allowed to vary while the 
climatology was used for the remaining variables. For the simulations with either ΨVPD = 1 
or ΨSM = 1, the down regulation function of either Vapor Pressure Deficit (VPD) or soil 
moisture was set to 1 so to have no control on Gross Primary Production (GPP). S_control 
was the GPP simulation with changing all the input variables. S_veg was the simulation 
driven by only Leaf Area Index (LAI)/FPAR, and the trend of S_veg was made from 
GIMMS 3g trend. S_clim was the simulation driven by climate variables, and represented 
the GPP trend explained by climate variability. S_temp, S_vpd, S_precip, and S_srad were 
driven by temperature, VPD, precipitation, and shortwave radiation, respectively. 
S_wo_vpd and S_wo_sm were simulation without VPD and soil moisture regulation, and 
thus represented models whose drought down-regulation were functions of soil moisture 
and VPD, respectively. 

 LAI/FPAR Temperature VPD Precipitation Radiation Model 
S_control x x x x x  
S_veg x      
S_clim  x x x x  
S_temp  x     
S_vpd   x    
S_precip    x   
S_srad     x  
S_wo_vpd  x x x x ΨVPD = 1 
S_wo_sm  x x x x ΨSM = 1 

3. Results 

3.1. How Did Each Climate Component Control Simulated Trends in Global GPP? 

The effect of each climate component on the interannual variations of global GPP is shown in 
Figure 1. Under S_control, GPP kept increasing until around 2000 and then declined modestly until 
2007. This trend is consistent with the results of shorter-term studies using the MODIS 17 
algorithm [6,32]. For each climate variable analysis, only S_vpd showed a consistent decreasing trend, 
while the other simulations all produced increasing trends in global GPP (Figure 1). These results 
suggest that land models solely relying on VPD may overestimate the reduction in GPP caused by 
water stress in 2000s.  

The cross-correlation coefficient matrix among the GPP time series produced by the different 
simulations is shown in Table 2. The GPP derived from the four climate variable simulations (S_temp, 
S_vpd, S_precip, and S_srad) did not correlate well with each other. The highest correlation was found 
between S_temp and S_precip, but the Pearson coefficient is still low (r = 0.43). Thus, the high 
correlation between S_clim and S_precip can be simply explained with precipitation having the 
strongest influence on climate-driven GPP. 
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In spite of the low correlation coefficients among the four climate variable simulations, Figure 1 shows 
a clear correspondence in the short term, i.e., shorter than a decade. S_temp and S_vpd are anti-correlated, 
with increases in the GPP driven by temperature and decreases in the GPP driven by VPD. The symmetric 
patterns are caused by VPD variation being largely driven by temperature. Elevated temperatures promote 
higher GPP at high latitudes, while high VPD lowers GPP by inducing drought stress. 

The comparison between S_vpd and S_precip in Figure 1 showed a different correlation pattern 
between short and long-term. Over the short-term, as in the case of ENSO, both S_vpd and S_precip 
decreased. Meanwhile, over long-term, the S_vpd showed the opposite trend of S_precip. The trend of 
increasing temperatures caused S_vpd to have an overall decreasing trend, while S_precip increased 
over the same period. The controlling effects of temperature on VPD also resulted in S_vpd having no 
correlation with MEI (r = 0.04), while S_precip was well correlated with MEI (r = −0.79) (Table 2).  

The same analysis presented in Table 2 was performed using the residual carbon flux, which was 
calculated from fossil fuel and cement emissions, land-use change emissions, atmospheric growth, and 
ocean carbon flux [36]. Assuming that the residual carbon is equivalent to the land sink, the analysis 
can directly assess the climate influence on carbon sequestration by land vegetation. The correlation 
coefficient of S_precip was improved from 0.01 to 0.31, but the correlation was still insignificant. The 
coefficients of the other simulations (S_clim, S_temp, S_vpd, and S_srad) were not improved.  

3.2. Can Simulated Global GPP Explain Interannual Variations in Atmospheric CO2 Growth Rate? 

Among the four climate component simulations, S_vpd had the highest correlation with the growth 
rate of CO2 (r = −0.69) (Table 2). As a first thought this high correlation could lead to validating the 
hypothesis that VPD controls global GPP and the CO2 growth rate. However, this hypothesis must be 
rejected on the grounds that the CO2 growth rate should strongly correlate with the Net Ecosystem 
Production (NEP). On the other hand, it has to be noted that S_vpd is strongly correlated with the GISS 
tropical (24°N–24°S) land temperature (r = −0.85), and the GISS tropical land temperature is also 
highly correlated with the CO2 growth rate (r = 0.74). It is therefore reasonable to assume that S_vpd 
shows a spurious and not a causal relationship with the CO2 growth rate through temperature, which 
controls both S_vpd and respiration. 

In Figure 2 we compared the time-series of S_clim, S_wo_sm, and S_wo_vpd with the CO2 growth rate. 
S_wo_sm and S_wo_vpd showed opposite long-term trends, more pronounced from the year 2000 onwards 
(Figure 2(a)), similarly to what was observed for S_vpd and S_precip in Figure 1. Overall, in the short term 
the interannual variations in GPP of the three simulations are anti-correlated with the CO2 growth rate. 
Similar to the relationship between S_precip and S_vpd, S_wo_sm showed higher correlation with the CO2 
growth rate (Figure 2(b)). The long-term correlation coefficients of S_wo_sm and S_wo_vpd with the CO2 
growth rate were −0.67 and 0.12, respectively. However, in the Pinatubo eruption era (1991–1994), all the 
three simulations deviated from the CO2 growth rate. This confirms that one cannot explain the CO2 
growth rate variability through GPP variability and that changes in respiration are required to simulate the 
observed CO2 growth rate. Therefore, though we still cannot exclude the possibility that TOPS failed to 
model VPD drought-effect on GPP, high correlation between GPP and CO2 growth rate was most likely 
spurious. Increase in diffusive radiation ratio in Pinatubo eruption era can mitigate the reduction in global 
GPP, but the effect was not strong enough to make global GPP increase [37].  
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4. Discussion 

According to van der Molen et al. [38], there are two direct dependencies of GPP on drought: 
structural changes in the vegetation, and physiological responses of the vegetation. In this study we 
only consider the latter ones. Depending on the physiological responses of stomata to soil moisture, 
plant species can be roughly divided into two types, i.e., isohydric and anisohydric species [39]. The 
isohydric species close their stomata when soil moisture decreases or VPD increases, while the 
anisohydric species are insensitive to soil moisture but close their stomata only responding to high 
VPD. Therefore, modeling drought response using VPD or soil moisture is similar to assuming that 
vegetation is composed by either isohydric or anisohydric species. The TOPS model structure assumes 
an isohydric behavior of vegetation, whereas models in which drought is simulated through VPD 
controls, such as the MODIS 17 algorithm, assume an anisohydric behavior of vegetation. Although 
plants cannot be clearly divided into isohydric or anisohydric by species [40], forest trees are 
predominantly of isohydric nature [41–43]. Thus, ecosystem models should have both VPD and soil 
moisture sub-models to properly represent the drought effect on GPP.  

Although both VPD and precipitation are required for modeling physiological processes an 
exception can be made for short-term analyses when VPD and precipitation tend to be closely related. 
Our simulation in Figure 1 showed similar trend with MODIS17 analysis in 2000s [6]. Caution should 
be exerted, however, in extending the interpretation of short-term effects of drought effects on GPP to 
long-term trends. Our 30-year simulation clearly showed different trends between soil moisture-driven 
and VPD-driven simulations. Dynamic global vegetation models (DGVMs) also showed  
model-dependent sensitivities to increased VPD in correspondence to increased temperature in the 
Amazon during the 21st century [44]. 

Though this study focused on the global scale variability and trends in GPP, we need more studies 
dealing with the differential controls on a regional scale. For example, Mu et al. [11] reported the 
decoupling between precipitation and VPD caused a failure in GPP simulation by MODIS 17 
algorithm in monsoon-controlled China. It is also known that variations in VPD sometimes fail to 
capture severe droughts at a watershed scale [45]. Therefore, assessing long-term trend in GPP in 
regional scale is more difficult by VPD-only model. 

In addition to climate variability, other factors, not accounted here, such as CO2 fertilization, 
nitrogen deposition [46], and diffuse radiation [37], affect the interannual variation in GPP. These 
effects are difficult to quantify and complicate the bottom-line GPP trend through combined 
effects [47]. In this study, by focusing on the difference of after-2000 and before-2000, we ignored 
these effects on the interannual variation in GPP. CO2 concentration and nitrogen deposition have a 
smaller interannual variability compared to the climate variables [5,48], and the effect of diffuse 
radiation is marginal over the three decades studied here [37]. 

The differences in GPP after 2,000 simulated by different models were also found in time series of 
estimated evapotranspiration [49]. Jung et al. [49] showed that most of the ecosystem models 
displayed an increasing trend in modeled evapotranspiration from 1982 to 1998, but after that trends 
diverged among models. Jung et al. [49] concluded that the decreasing trend in evapotranspiration 
found in some models after 1998 was due to the limited soil moisture supply. However, similarly to 
the divergent GPP trends simulated for the 2000s, the diversion after 1998 can be explained by the 
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relative sensitivity of the model structure to VPD compared to other climate components. The 
observed global warming trend over the past few decades causes the VPD to increase. It is therefore 
crucial to assess how different land models handle drought stress so as not to equate an increasing 
trend in VPD with a decline in GPP or ET.  

This study focused on long-term trend around three decades, so that this study does not provide any 
conclusive judgment on the topic of short-term drought-induced NPP decline after 2000 [6,50,51]. 
Furthermore, discussing NPP trend is harder than GPP because of the need to include autotrophic 
respiration which is complex in itself [7]. Our results suggest that proper assessment of water 
limitation is one of the key issues to be clarified before assessing trends in global GPP or NPP.  

5. Conclusions  

In this study we performed a series of experiments using the TOPS model and Global Inventory 
Modeling and Mapping Studies (GIMMS) 3g data to evaluate the impacts of drought on the 
interannual variation of Gross Primary Production (GPP) simulated either in terms of VPD or soil 
moisture effects. Although Vapor Pressure Deficit (VPD) alone can simulate the effects of drought 
stress on GPP for short periods, we find that both VPD and soil moisture are required to simulate the 
long-term trend in global GPP. Terrestrial Observation and Prediction System (TOPS) simulations 
with a VPD control only underestimate GPP during the period 2000–2009 because of over-sensitivity 
to VPD drought effects. We also find that the strong correlation of the interannual variations of VPD 
with the CO2 growth rate observed in recent studies can be spurious because it is induced by a 
warming temperature trend. We recommend that assessments similar to the ones carried out for this 
study be performed for all ecosystem models aiming at analyzing the long-term trend in GPP or 
evapotranspiration. These sensitivity analyses are needed to correctly project the effects of climate 
change on the global carbon cycle. 
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