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Abstract: Radiative transfer models predicting the bidirectional reflectance factor (BRF)
of leaf canopies are powerful tools that relate biophysical parameters such as leaf area
index (LAI), fractional vegetation cover fV and the fraction of photosynthetically active
radiation absorbed by the green parts of the vegetation canopy (fAPAR) to remotely sensed
reflectance data. One of the most successful approaches to biophysical parameter estimation
is the inversion of detailed radiative transfer models through the construction of Look-Up
Tables (LUTs). The solution of the inverse problem requires additional information on
canopy structure, soil background and leaf properties, and the relationships between these
parameters and the measured reflectance data are often nonlinear. The commonly used
approach for optimization of a solution is based on minimization of the least squares estimate
between model and observations (referred to as cost function or distance; here we will also
use the terms “statistical distance” or “divergence” or “metric”, which are common in the
statistical literature). This paper investigates how least-squares minimization and alternative
distances affect the solution to the inverse problem. The paper provides a comprehensive list
of different cost functions from the statistical literature, which can be divided into three
major classes: information measures, M-estimates and minimum contrast methods. We
found that, for the conditions investigated, Least Square Estimation (LSE) is not an optimal
statistical distance for the estimation of biophysical parameters. Our results indicate that
other statistical distances, such as the two power measures, Hellinger, Pearson chi-squared
measure, Arimoto and Koenker–Basset distances result in better estimates of biophysical
parameters than LSE; in some cases the parameter estimation was improved by 15%.
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1. Introduction

Biophysical parameters estimated from satellite data are important inputs to ecological models and
land-surface models [1,2]. Various algorithms have been developed to estimate biophysical parameters
from remotely-sensed reflectance data [3,4]. The forward problem, i.e., to predict the reflected radiation
and canopy light interactions given the structure and optical properties of the canopy and surface, is well
understood and several models exist that produce realistic results [4]. The inverse problem is difficult to
solve, however, because the problem is underdetermined. A commonly adopted way to overcome this is
to add additional constraints or make a priori assumptions regarding the properties of the land surface,
see [5–7].

Biophysical parameters are estimated from satellite data by inverting a sample of the of bidirectional
reflectance factor, BRF(λ) = f(Angular Geometry, Structural Parameters), where structural
parameters (canopy properties, soil background reflectance, etc.) are input parameters and BRF(λ) is the
model output (wavelength-dependent reflectance). Numerical solution of this inverse problem adjusts the
model parameters such that model-predicted values closely match the measured values [7,8]. The match
between model output and data is usually based on minimizing the sum of least squares [9].

Four approaches can be distinguished to estimate biophysical parameters from satellite data; the
advantages and limitations of various approaches of biophysical parameter estimation are discussed
in [10,11]. A first approach is to estimate biophysical parameters from an empirical relationship with a
spectral index, see for example [1]. A second approach is to invert an analytical model; this approach
puts a high demand on computing resources if the analytical model is complex. A third approach is
to use machine learning, for a example by training a neural network using the inputs and outputs of a
BRF model [12,13]. A fourth approach is to use LUTs. This is an attractive way to estimate biophysical
parameters for various reasons. Solutions of the model can be constrained to a range of realistic input
parameters, optimization is fast and the complexity of the analytical model is retained [14]. In the present
study we adopt a LUT-based inversion using the FLIGHT radiative transfer model [9,15].

The estimation of biophysical parameters from satellite data is hampered by uncertainties and
errors that arise from a number of sources. These include uncertainties in instrument calibration,
variations in atmospheric composition or simplifying assumptions in the representation of canopy and
soil background [16,17]. Errors in the representation of the canopy and soil background are of particular
concern in the present study since they have non-zero mean and are not normally distributed. Outliers and
nonlinearities distort the residuals and in these cases a key assumption for using LSE is violated, which
is that errors have a white noise, zero mean distribution of residuals. For this reason, we investigate
three broad classes of statistical distances (in the remote sensing literature referred to as cost functions,
elsewhere also known as metrics, or divergence measures) that are based on different error distributions.
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These classes are: information measures of divergence [18], M-estimates [19], and minimum contrast
methods [20,21].

The first class of distance or divergence measures is referred to as information measures; optimization
using these measures is based on minimization of distances between two probability distributions
(Section 3). Thus, we need to rewrite the BRF as a probability distribution function to apply these
measures. The information measures can be further divided into three sub-classes. The first subclass
is referred to as f -divergences, a term introduced by Kullback and Leibler [22]. This class of
measures is based on the distance between probability distributions (Section 3.1). The f -divergences
are not bounded, i.e., they range between 0 and ∞. A second subclass of divergence measures,
referred to as blended measures, allows bounds to be calculated explicitly ([23] and Section 3.3).
A third subclass—consisting of generalized (h, f)-divergences or superposition of two functions, see
Section 3.2—is a generalization of the f -divergences [24].

The second class, of M-estimates, is a broad class of functions to which, among others, least squares
optimization belongs. For this class of measures, the BRF is not considered a probability distribution.
Within the class of M-estimates are a large number of functions with robust or resistant properties
(Section 4).

The third class, of minimum contrast estimates, considers the spectral domain. We express the BRF
as a spectral density function (Section 5) to apply these measures.

The present paper has two aims. The first is to provide a review of available statistical distances and
divergences to date (Sections 3–5 and Appendix). Only a few of these measures have been applied to
parameter estimation from remote sensing data. The second aim is to apply the distance and divergence
measures to the estimation of biophysical parameters from satellite data. The availability of a large
number of statistical distances gives a high degree of flexibility, since it allows model optimization for
a wide range of error distributions. We illustrate this in the numerical experiments where retrieval of
biophysical parameters is tested for simulated needleleaf and broadleaf forests for ground-measured
BRF. The present paper tests the use of alternative distance measures on simulated observations. This
allows assessment of distance measures in a well-controlled environment with known errors in estimated
biophysical parameters for a wide range of simulated land-surface conditions. The method will be tested
on real observations in a follow-on study [25].

The paper is organized as follows. In Section 2 the estimation of biophysical parameters from
Earth Observation (EO) data is expressed in a form comparable with statistical distance theories.
Sections 3–5 describe the statistical distance and divergence measures that performed best in our study.
Section 6 provides a description of the BRF simulations with FLIGHT; this includes a description of the
land-surface scenes and the generation of LUTs. In Section 7 the statistical distance and divergence
measures are applied to the estimation of LAI , fV and fAPAR by numerical inversion of the LUTs. The
Appendix contains an extensive list of distance measures with references to examples of applications in
the peer-reviewed literature.

We acknowledge that the range of conditions (vegetation type, simulated error distribution,
land-surface properties, BRF sampling) is limited; the results of this study can therefore only be used as
a guideline.
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2. Statement of the Problem

The present section formulates the BRF in a way that is appropriate for the application of
statistical distances and divergence measures. First we represent the following elements in the LUT:
Ri(λ1, ..., λn, θ̄) is a realization of the BRF dependent on wavelength, solar zenith angle, relative azimuth
and view zenith angle, LAI , fV , leaf area distribution, ground reflectance, etc. In this notation λ is the
wavelength and λ1, ..., λn ∈ Λ, i = 1, ..., N, where, N is the number of entries (rows) in the LUT and
θ̄ =(η̄,ζ̄) is a vector with unknown biophysical parameters η̄ = (η1, ..., ηk) of interest to our study (e.g.,
LAI , fV , fAPAR) and ζ̄ = (ζ1, ..., ζr) is a vector with parameters that we do not need to estimate, either
because they are already known (e.g., solar zenith angle, relative azimuth and view zenith angle) or
because their value is obtained by other means and is not estimated in the inversion (e.g., crown shape,
soil reflectance). Denoting satellite observations byR∗(λ1, ..., λn), we estimate the unknown parameters,
the elements of the vector η̄∗, by minimizing a measure that provides the best “closeness” between R in
the LUT and R∗.

Let Γ be a class of measures (distances) Γ(R∗(λj), Ri(λj, η̄, ζ̄)) between two BRF functions; the LUT
and the observations. The classical statistical method of inversion (or estimation and finding required
η̄∗) of the radiative transfer model can be formulated as a semi-parametric problem

η̄∗ = arg min
η̄
sup
ζ̄

Γ[R∗(λj, η̄, ζ̄), Ri(λj, η̄, ζ̄)] (1)

The purpose is to find the best estimate for η̄∗ by solving the minimization problem (1) using different
statistical distances and divergences between simulated satellite signals (“observations”) and LUTs. We
consider the parameters η∗s and ηs,i, 1 ≤ i ≤ N closed if |η∗s − ηs,i| = min{|η∗s − ηs,i|, 1 ≤ s ≤ k},
1 ≤ i ≤ N . The classical approach of this minimization problem is known as LSE, which is based on
the minimization of the quadratic function∑

λj∈Λ

(R∗(λj)−Ri(λj, η̄, ζ̄))2 → min
η̄

(2)

We consider alternative statistical distances, which can be divided into three classes. The majority of
statistical distances belong to the so-called class of information measures. This class considers distances
or measures of divergence between two probability distributions. To apply these functions to biophysical
parameter estimation, the BRF must be normalized such that the sum of probabilities is 1. The expression
for the LUTs becomes

Q = (q∗1, ..., q
∗
n) =

R∗(λ1)∑
λj∈ΛR

∗(λj)
, ...,

R∗(λN)∑
λj∈Λ R

∗(λj)
(3)

and for the simulated satellite observations it is

Pi = (pi1, ..., p
i
n) =

Ri(λ1)∑
λj∈ΛRi(λj)

, ...,
Ri(λN)∑
λj∈ΛRi(λj)

(4)

with
∑n

l=1 ql = 1, and
∑n

l=1 p
i
l = 1 for 1 ≤ i ≤ N. Thus the BRF functions can be rewritten as discrete

probability mass functions by a simple normalization.
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Finally, to compare the results obtained with different distance measures, the mean absolute error in
parameter retrieval is defined, for example to assess the residual error in estimated LAI the following
merit function is used

ErrorLAI =
1

M

M∑
i=1

|LAItrue − LAILUT|

In the next three sections we discuss the different statistical distances evaluated in the present study.
The distances are applied to two reflectance distributions, P refers to the LUT reflectances and Q refers
to the observed “true” reflectances. To simplify the notation we drop the index i.

3. Information Measures

Information theory was born in 1948 when Shannon [26] published his revolutionary paper motivated
by the problem of efficiently transmitting information over a noisy channel. Since Mahalanobis [27]
introduced the concept of distances between two probability distributions, several other distance
measures have been suggested in the statistical literature and these have been referred to as measures
of distance between two distributions, measures of separation, measures of discriminatory information
and measures of variation-distance. While these measures were not always introduced for the same
reason, they all increase when two distributions become “further away” from each other.

Divergence is an important concept in information theory and it is useful in many applications such as
multimedia classification, neuroscience, optimization of the performance of density estimation methods,
and cluster analysis. Distance measures also allow a wide range of tests to see if samples are from the
same distribution.

Entropies are defined over the space of distributions that form the bases of
independence/dependence concepts. For these reasons, Shannon’s mutual information function
has been increasingly utilized in the literature [28]. Shannon’s relative entropy and almost all other
entropies fail to be “metric”, as they violate either symmetry, or the triangular rule, or both. For these
reasons, it is more appropriate to refer to these entropies as measures of divergence rather than measures
of distance.

Informally, entropy can be understood as “the quantity of surprise one should feel upon reading the
result of a measurement”. More formally, we can write: if event A occurs with probability P (A), define
the “information” I(A) gained by knowing that A has occurred to be

I(A) = − log2 P (A)

The intuitive idea is that the rarer an event A, the more information we gain if we know it has occurred.

3.1. f -Divergence Information Measures

Kullback and Leibler (KL) [22] first introduced the concept of information divergences, which
are non-symmetric measures between two distributions P and Q. Typically P represents the “true”
distribution of the data and Q represents a model or an approximation of P . In information theory, KL
divergence can be interpreted as cross Shannon entropy. This class has been extended in many directions
since its initial application in decoding schemes and in signal processing. In particular, Rényi proposed



Remote Sens. 2013, 5 1360

a generalization of Shannon entropy [29], one of a family of functionals for quantifying the diversity,
uncertainty or randomness of a system. The Rényi entropies are important in ecology and statistics
as indices of diversity. Later, KL and Rényi related divergences were included in a broader class of
divergences called f -divergences, introduced by Csiszár [30]. This class can be formulated as follows.

A general class of divergence measures is given by

ΓF [P,Q] =
n∑
l=1

F (pl, ql) (5)

where

• 0 ≤ p1, ...pn ≤ 1, 0 ≤ q1, ...qn ≤ 1,
∑n

l=1 ql = 1 and
∑n

l=1 pl = 1 ;
• F (p, q) is a strictly convex function of p so that ΓF (P,Q) is a strictly convex function of

0 ≤ p1, ..., pn ≤ 1;
• For fixed Q, Γf (P,Q) attains its unconstrained global minimum when pl = ql for all l, i.e., if
P = Q;
• for a given strictly convex twice differentiable function f(.) we define

Γf [P,Q] =
n∑
l=1

qlf

(
pl
ql

)
(6)

Note that the global minimum value is equal to f(1). Thus for a given f

Df [P,Q] = Γf [P,Q]− f(1) ≥ 0 and = 0 ⇐⇒ P = Q

Many measures were added to this class from different areas of science and new divergences are still
being discovered. Here we present some of these f-divergence measure, see [31] and additional list can
be found in Section A.1 of the Appendix.

1. Let f(x) = x ln(x) and f(1) = 0. The corresponding measure is

Df [P,Q] =
n∑
l=1

pl ln

(
pl
ql

)
(7)

This measure is called the KL divergence; it also corresponds to the maximum likelihood distance.
It has wide application in code theory, signal processing, data compression, data storage and data
communication as well as others areas of science.

2. Let f(x) = 1
x

and f(1) = 1 then

Df [P,Q] =
n∑
l=1

q2
l

pl
=

n∑
l=1

(ql − pl)2

pl
(8)

This measure is called the Pearson chi-square. This measure is used in the chi-squared test first
proposed by K. Pearson.

3. χα—Vajda divergence corresponds to the function f(x) = |x − 1|α and f(1) = 0, where
α > 1, then

Df [P,Q] =
n∑
l=1

|pl − ql|αq1−α (9)
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4. Let f(x) = (
√
x− 1)2 and f(1) = 0, then

Df [P,Q] =
n∑
l=1

ql

(√
pl
ql
− 1

)2

=
n∑
l=1

(
√
pl −
√
ql)

2 (10)

is called the squared Hellinger measure. It is bounded full distance and has been applied to
parameter estimation in censored models (where the variable of interest is only observable under
certain conditions) as well as many other areas of science.

5. It can be generalized in the following form to give more flexibility on parameter estimation.
Assume f(x) = (xα − 1)1/α and f(1) = 0, then

Df [P,Q] =
n∑
l=1

(p
1/2j
l − q1/2j

l )2j, j = 1, 2, 3... (11)

6. Let f(x) = (1− x)2j , f(1) = 0, then power divergence has the form

Df [P,Q] =
n∑
l=1

ql

(
1− pl

ql

)2j

, j = 1, 2, 3... (12)

7. Power divergence measures [32] with minimum at zero. This class was introduced to unite
efficiency with robust properties; the class is also Fisher consistent

Df [P,Q] =
n∑
l=1

pl
{[pl/ql]α − 1}
α(α + 1)

(13)

which gives for α = −2,−1,−1/2, 0, 1 the following already known measures: the Neyman
chi-squared measure divided by 2, the Kullback–Leibler divergence, the twice-squared Hellinger
distance, the likelihood disparity, and the Pearson’s chi-squared divided by 2.

3.2. Other Divergence Measures between Two Probability Distributions.

There are another two important sub-classes based on the divergence between probability distributions
that do not belong to the class of f -divergences. These sub-classes are referred to as (h, f)-measures
and f -entropy measures.

The first of these sub-classes, (h, f)-measures, was introduced by [33]. It can be written in the
following form Dh

f [P,Q] = h(Df [P,Q]), where h is a differentiable increasing function mapping

from
[
0, f(0) + limt→∞

f(t)
t

]
→ [0,∞]. Under different assumptions, it is shown that the asymptotic

distributions of the (h, f)-divergence statistics are either normal or chi-square. These divergences
were developed for hypothesis testing on multinomial populations and to test goodness of fit and
independence. This class is based on the superposition of two functions and it gives a large degree
of flexibility to deal with outliers.

Here is one of the examples of these measures. Additional list can be found in Section A.2 of
the Appendix.

Rényi divergence with

h(x) =
1

α(α− 1)
log(α(α− 1)x+ 1); f(x) =

xα − α(x− 1)− 1

α(α− 1)
; α 6= 0, 1
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Dh
f [P,Q] =

1

α(α− 1)
log

((
n∑
l=1

ql(pl/ql)
α − α(pl − ql)− ql

)
+ 1

)
(14)

The second subclass is referred to as entropy measures and can be introduced as follows. Let X be a
random variable with probability distribution P . Shannon’s entropy [26] has the form

H(X) = H(P ) = −
n∑
l=1

pl log pl (15)

while the cross-entropy is

H(P/Q) = −
n∑
l=1

pl log ql (16)

It is easy to verify that the KL divergence Equation (7) is related to Shannon’s entropy, i.e.,
Df [P,Q] = H(P )−H(P/Q).

In order to present a systematic way of studying the different entropy measures, Burbea and Rao
introduced the so-called f -entropies, by

Hf (X) = Hf (P ) =
n∑
l=1

f(pl) (17)

where f : (0,∞)→ R is a continuous concave function and f(0) = lim
t↓0
f(t) ∈ (−∞,∞). It turned out

that some important entropy measures cannot be written as f -entropy. For this reason [24], defined the
(h, f)-entropy as follows,

Hh
f (X) = Hh

f (P ) = h(H(P )) (18)

where either f : (0,∞) → R is concave and h : R → R is differentiable and increasing, or
f : (0,∞)→ R is convex and h : R→ R is differentiable and decreasing.

Based on the concavity property of the (h, f)-entropy, new generalization was introduced in [34]:

Dh
f [P,Q] = Hh

f

(
P +Q

2

)
−
Hh
f (P ) +Hh

f (Q)

2
(19)

These measures of divergence have been introduced to present systematic ways to study different
entropy measures. They are used in applications that are associated with random variables with finite
support in genetic diversity between populations, the study of taxonomy in biology and to test if
populations are homogeneous in genetics and for the analysis of discriminant techniques.

An example of these measures can be seen below and additional list can be found in Section A.2 of
the Appendix.

Arimoto (1971)

f(x) = x1/α, h(x) =
1

α− 1
(xα − 1), α > 0, α 6= 1

Dh
f (P,Q) =

(
1

α− 1

)[( n∑
l=1

(
pl + ql

2

)1/α
)α

− 1

2

[(∑
(pl

1/α)
)α

+
(∑

(ql
1/α)

)α]]
(20)
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3.3. Blended f-Disparities

A third group of divergences is referred to as blended divergences. Lindsay [32] found that inference
based on statistics of type f -divergence (obtained by replacing either one or both probability distributions
by suitable estimators) requires either bounded differentiability of f or boundedness of f itself. He
introduced a new class of divergences by the modification of weights inside the integral expression
of Pearson’s chi-squared divergence called “blended weight chi-squared disparity”—BWCS(β) and
“blended weight Hellinger disparity”—BWHD(β), β ∈ [0, 1]. In general all these new classes of
disparities have the following common property. If the blending parameter is equal to the limiting values
β = 0 or β = 1, then the two original divergences on which the blend was based are achieved in the
class of blended divergences. Definitions and theorems can be found in [23].

All blended f -disparities have been used in goodness-of-fit tests in medical statistics and are shown
to be an excellent compromise between the Pearson’s chi-square and the log likelihood ratio tests.

To illustrate the theory of blended divergences, we give several examples below.
Blended weighting scheme that generalizes Hellinger distance:

Dα(P,Q) =
1

2

n∑
l=1

(pl − ql)2

(α
√
pl + (1− α)

√
ql)2

, α ∈ (0, 1) (21)

4. Nonlinear Regression and M-Estimates

Robust regression is a form of regression analysis designed to circumvent some limitations of
traditional parametric and non-parametric methods. Regression analysis seeks to find the relationship
between one or more independent variables and a dependent variable. Certain widely used methods of
regression, such as LSE, have favorable properties if their underlying assumptions are true, but can give
misleading results if those assumptions are violated. In cases where errors are not normally distributed,
outliers occur, or ordinary LSE assumptions are violated in some other way, the validity of the regression
results is compromised if a non-robust regression technique is used. M-estimators (see for example [35])
form a broad class of estimators that exhibit certain robust properties. Estimates with robust regression
methods can be more stable with respect to anomalous errors.

We use M-estimates to the estimation of biophysical parameters from reflectances as follows. Let
us consider the BRF R(λj, θ̄) as a nonlinear regression function g(λj, θ̄) of its parameter set, which
is observed at wavelength λj ∈ Λ with some noise εj of complicated nature. The observations set
R∗(λj) = xj can be represented as follows

xj = g(λj, θ̄) + εj, j = 1, ..., n (22)

where Eεj = 0, i.e., the expectation is that εj is random noise with zero mean, not Gaussian in general.
In our case we are interested in the unknown parameter vector of interest η̄ =(LAI, fV , fAPAR).

We use the M-estimates generated by a function of loss ρ(x), x ∈ R, see [19,35], for some motivation
details and properties of these estimates.
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The M-estimate of the unknown parameter vector η̄ obtained from the observations xj j = 1, ..., n is
given by the solution of the minimization problem:

Qn(η̄) =
n∑
j=1

ρ(xj − g(λj, η̄))→ min
η̄

(23)

The function ψ(x) = ρ′(x) is called the score function and the minimization problem (Equation (23))
can be written in the following equivalent way:

n∑
j=1

ψ(xj − g(λj, η̄))∇gη̄(λj η̄) = 0. (24)

The classical LSE corresponds to the case ρ(x) = x2, ψ(x) = 2x. In this case random noise εj are
i.i.d.r.v. that have a Gaussian distribution. In general for nonlinear regression, εj may be independent
but not necessarily Gaussian or even non-Gaussian dependent random variables. It is well known that
LSE regression methods are consistent, asymptotically normal and asymptotically efficient. However,
when the density function of errors is non-Gaussian or even has a non-symmetric skewed distribution,
LSE estimates are no longer efficient and their application can result in large losses of efficiency. Robust
methods replace the sum of squares by more suitable loss functions.

The following examples belong to the class of M-estimates and can be found in [35–37] and others.
The full list of M-estimates can be found in Section A.2 of the Appendix.

(1) If errors are normally distributed f(x) = (1/
√

2π)exp(−x2/2), then

ρ(x) = x2, ψ(x) = x (25)

is LSE and it is non-robust. It is used widely in many application of remote sensing, biology, economy
and other areas of science since it has nice properties described above.

(2) The function

ρc(x) =

{
cx, x ≥ 0

(c− 1)x, x < 0
(26)

defines the class of Koenker–Basset estimators [38], (0 < c < 1). In contrast to classical methods
based on least-squares residuals, this measure is robust and has an explicit probabilistic meaning.
It was introduced for the estimation of an unknown parameter η̄ in the nonlinear regression model
(Equation (23)) when the samples are independent, but errors εj = xj − g(λj, η̄) have some skewness
(non-symmetric) property. The empirical quantile function may be defined in terms of solutions to a
simple optimization problem. Explicitly,

Q̂ε(c) = inf

{
y|

n∑
j=1

ρc(εi − y) = min

}
(27)

where ρc-function (Equation (26)). One can also interpret this as (Eεj = 0){
P{εi ≥ 0} = c

P{εi < 0} = 1− c
(28)

This distance measure has been applied in econometrics to study wage distributions and to study linear
regression quantiles on censored data.
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5. Minimum Contrast Estimation

To apply minimum contrast measures to our problem, we interpret the BRF as a spectrum or spectral
density of some stochastic process. The basic idea behind a minimum contrast estimator is to minimize
the distance (contrast) between a parametric model and a non-parametric spectral density. The estimates
obtained are first-order efficient and are also attractive because they have robust properties. This class of
estimates is close to the class of quasi-likelihood estimators, where instead of independence (which does
not hold for many cases) we use asymptotical independence, as discussed below.

We adopt the following terminology from time series analysis to interpret our observations as
measurements in the spectral domain [39]. Let {Zt} be a stationary processes with spectral density
f(λ) = fθ(λ), λ ∈ Λ ⊆ R, with expectation m, and θ ∈ Θ ⊂ Rp. Our aim is to estimate the unknown
parameter θ, that is, to identify the true value of spectrum fθ∗(λ).

To implement this idea we consider the so-called quasi-likelihood method [40]. The BRF observations
in the spectral domain are written in a form, In(λj), λj ∈ Λ = {λ1, ..., λn}, where

In(λ) =
1

2πn

∣∣∣∣∣
n∑
j=1

(Zj −m)eijλ

∣∣∣∣∣
2

, λ ∈ Λ (29)

This is the so-called periodogram non-parametric estimation of spectral density f(λ).
Under some general conditions [39], at the Fourier frequencies λj ∈ Λ, the random variables In(λj)

are asymptotically independent and have an exponential distribution, that is

lim
n→∞

P{In(λj) ≤ u} = 1− e−
u

f(λj,θ) , u ≥ 0 (30)

The pdf that corresponds to the distribution function in the right hand side of Equation (31) takes the
form: 1

f(λj ,θ)
e
− u
f(λj,θ) .

Thus, one can construct a quasi-likelihood function or its logarithm

logL(In(λ1), ....In(λn)) = log
n∏
j=1

1

f(λj, θ)
e
−
In(λj)

f(λj,θ)

= −
∑
j

[
logf(λj, θ)) +

In(λj)

f(λj, θ)

]
(31)

which has to be maximized in order to estimate θ. It means that we need to minimize the so-called
Whittle functional

Qn(θ) =
∑
j

[
logf(λj, θ)) +

In(λj)

f(λj, θ)

]
(32)

and the quasi-likelihood estimate is
θ̂n = Argmin

θ∈Θ
Qn(θ)

The Whittle estimator was also extended to cover correlated signal-plus-noise models, providing
a formal asymptotic distribution theory specifically tailored for parameter estimation. This approach
was first applied in time series for exponential volatility models; it then caught attention in financial
econometrics and in related fields. These models are able to represent some of the stylized features of



Remote Sens. 2013, 5 1366

financial returns, such as uncorrelation in levels but strong dependence in squares and log-squares and
leverage effect.

The Whittle estimator belongs to a class of more general estimates known as minimum contrast
estimates, see [20,21]. To demonstrate the idea, let us assume that the true value of unknown
parameter θ∗ ∈ intΘ, the interior of Θ. A contrast function for θ∗ is a deterministic function F (θ∗, θ),
Fθ∗ : Θ→ R+, which has a unique minimum, θ = θ∗.

A contrast process for Fθ∗ is a sequence of random variables Un(θ), n = 1, 2... such that the ergodic
like condition holds for some U(θ) in probability:

lim
n→∞

[U(θ)− Un(θ∗)] = F (θ, θ∗)

The minimum contrast estimator is a value of θ for which the function Un(θ) takes its minimum, or

θ̂N = Argmin
θ∈Θ

Un(θ)

Under some sets of conditions the minimum contrast estimators are consistent, see [41]. Often the
contrast function can be chosen as a distance L(fθ, g) between two spectral densities fθ(λ) and g(λ),
which can be written in the form:

L(fθ, g) =

∫
Λ

K{fθ(λ)/g(λ)dλ (33)

where K(x) is a three times continuously differentiable function on (0,∞) and has a unique minimum
at x = 1. The contrast process in practice can be approximated as follows:

Un(θ) =

∫
Λ

K{fθ(λ)/In(λ)dλ ≈
∑
λj∈Λ

K

(
fθ(λj)

In(λj)

)
(34)

The following examples of distances L(fθ, g) are widely used in parametric estimation in time-series
analysis in frequency domain, in particular for autoregressive and moving average models.

One of the example can be seen below and the full list of such distances can be found in Section A.3
of the Appendix.

Let K(x) = logx + 1
x
. This criterion is equivalent to the quasi-Gaussian maximum likelihood (73)

and has the following form

L(fθ, g) =
∑
λj∈Λ

{log(fθ(λj)/g(λj)) + g(λj)/fθ(λj)} (35)

Note that function K(x) have a unique minimum at x = 1. To find a minimum at zero we need to
subtract K(1) under the sum from each of the functions. In practical applications we use the notation
from Section 2, i.e., in the above methodology the abstract parameter θ is replaced by the vector
parameter of our interest η̄ = (η1, ..., ηk).

Additional cost functions from the literature [42–48] are summarized in the Appendix.
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6. Methodology

6.1. Radiative Transfer Modeling

The performance of the distance measures in terms of retrieving biophysical parameters (LAI,
fAPAR, fV ) from reflectance values was tested on simulations. This approach has the advantage that
the estimated biophysical parameters can be compared directly with model input parameters and that
therefore errors associated with the use of different distance measures can be established with accuracy.
Moreover, we can test distance measures on a large number of simulations and this provides a good
indication of their robustness.

Simulations were carried out similar to the approach taken by Prieto-Blanco et al. [9]. We used
two models in conjunction to simulate a set of the ground BRF observations and to generate the LUTs.
Simulations were carried out for 3 needleleaf and 2 broadleaf scenes. We used PROSPECT [49] to
simulate light scattering and absorption by leaves, and FLIGHT [15] to simulate light scattering and
absorption by vegetation canopies. The models used are state of the art and provide realistic simulations
of the interaction of solar radiation with the vegetation canopy and the soil.

PROSPECT [49] calculates leaf transmittance and reflectance from 400 to 2,500 nm. In PROSPECT4
each leaf is considered as a stack of N absorbing plates with rough surfaces giving rise to scattering of
light. Absorption is calculated as the linear summation of the concentrations of chlorophyll, water,
and dry matter, each with their specific absorption coefficients [49]. The PROSPECT input parameters
are described in Table 1. The inputs include: N , the leaf structure parameter; Cab, the chlorophyll
a+ b concentration (µg/cm2); Cw, the equivalent water thickness (g/cm2); Cm, the dry matter content
(g/cm2). Chlorophyll content (Cab) in leaves is linked to the maximum photosynthetic capacity of
vegetation and varies with leaf development stage, productivity, stress and nitrogen levels. For the LUTs
of conifers, a maximum and minimum value for Cab was entered to reflect a range of conditions.

Table 1. PROSPECT input parameters. N is the leaf structure parameter; Cab are the
chlorophyll a + b concentrations (µg/cm2); Cw is the equivalent water thickness ( g/cm2);
and Cm is the dry matter content (g/cm2).

CONIFER BROADLEAF

OBS OJP YJP Beech Oak
N 2.47 2.55 2.55 1.43 1.5 1.6 1.61 1.97 2.64
Cab 29 19.39 27.56 27.07 13.10 24.27 21.89 19 29.03 44.7 65.1
Cw 0.04 0.01 0.03 0.02 0.008
Cm 0.028 0.012 0.012 0.003 0.006

FLIGHT [15] is a 3D radiative transfer model for light interaction with vegetation canopies using
Monte Carlo simulation of photon transport. The original model traced the photons’ trajectories forwards
from the source until they were absorbed in the canopy or left the canopy boundary. Subsequent
improvements include calculation of paths back from any view direction to the intercepted surface
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facets [50,51], simulation of fine angular resolution, simulation of photosynthesis and simulation of
LiDAR signals [52]. A hybrid representation is used to model the discontinuous nature of the forest
canopy. Large-scale structure is represented by geometric primitives defining shapes and positions of
the tree crowns and trunks, here estimated from a statistical distribution. Within each crown, foliage is
approximated by structural parameters of area density, angular distribution and size and optical properties
of reflectance and transmittance. These parameters are approximated as homogeneous within each
boundary, but may vary between crowns. Simulation of 3D photon trajectories allows accurate evaluation
of multiple scattering within crowns, and between distinct crowns, trunks and ground surface. FLIGHT
simulations have previously been compared with other 3D canopy radiative transfer models as part of the
Radiation Model Intercomparison (RAMI) project [4]. The recent analysis within RAMI of six selected
3D models, including FLIGHT, showed dispersion within 1% over a large range of canopy descriptions,
see [53].

Radiation was simulated in 15 spectral bands (500, 560, 630, 690, 700, 740, 790, 830, 870, 1,035,
1,200, 1,250, 1,650, 2,100, 2,250 nm). A previous study [54] suggested such a selection of bands could
provide approximately 90% of the information about the land surface that is provided by a full spectrum,
although this study was based on field spectroscopy. The set is chosen here to demonstrate the retrieval
method and selection of error metrics, but the method is applicable to any set of bands or potential view
directions, where the study should be repeated to determine optimal error metrics.

6.2. Sites

The simulations were carried out on two main types of forest: conifer and broadleaf forests. Three
conifer representatives were chosen from the former BOREAS sites [55], each characterized by a
different dominant species: the Old Black Spruce (Picea Mariana) site (OBS), the Old Jack Pine (Pinus
Banksiana) site (OJP) and the Young Jack Pine (Pinus Banksiana) site. Vegetation of these sites has a
complex structure, needles show a high degree of clumping and there is mutual shadowing by crowns.
These sites are therefore known to pose a challenge to biophysical parameter estimation. Detailed crown,
leaf and soil background measurements are available for these sites as these have been extensively
studied in [56,57]. Chlorophyll content in coniferous canopies has been estimated in [58]. Changes in
leaf chlorophyll produce large differences in leaf reflectance and transmittance spectra, therefore three
values of Cab were used to obtain a wide range of possible values [59], (Table 1). Broadleaf simulations
were carried out for an oak and beech forest since these are among the most important species for the
European forestry [60,61].

Table 1 shows the leaf optical properties for the conifer and broadleaf forests that were used in
PROSPECT; values are based on [62]. Tables 2 and 3 show the vegetation structure parameters and the
angular configurations for the FLIGHT model. Five characteristic soil spectra from the Purdue spectral
library were selected (Table 2) [63,64].
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Table 2. FLIGHT input parameters. The column “range” represents the minimum and
maximum values of the input parameters; column “step” is the increment for the LUT;
column “Observed” represents the range over which a random number “r.n.” is selected to
generate satellite observed BRF,R∗(λ1, ..., λn). Thus the simulations and LUT are generated
from different input parameters; in particular, different values are used for viewing geometry,
soil reflectance, fractional cover, and leaf area index (Section 6.4).

Parameter Range Step “Observed”

Solar zenith angle 30◦–70◦ 10◦ r.n.∈30◦–70◦

View zenith angle 0◦–60◦ 10◦ r.n ∈0◦–60◦

Relative azimuth angle 0◦–180◦ 30◦ r.n.∈0◦–180◦

Fraction of green leaves 0.8 - same
Fraction of shoot material 0.05 - same
Fraction of bark in foliage 0.15 - same
Leaf angle distribution Spruce leaf, Spherical - same
Soil roughness index 0 - 0

Soil Reflectance sandy loam drummer2, jal, lonrina, onaway, talbott
Frac. cover by trees 0.1–0.9 0.1 r.n.∈0.0–0.9
LAI 0–7, LAI ≤ 8FC 1 r.n.∈0.0–7.0

Table 3. FLIGHT input parameters: Crown shapes, where “c” represents cone shape and
“e” represents ellipsoid shape.

Parameter Conifer forest Broadleaf forest

Crown shape cone ellipsoid
type of forest OBS OJP YJP Beech Oak
crown shape “c” “c” “c” “e” “e”

Crown radius (m) 0.45 1.3 0.85 1.2 2.6

Crown center to top dist (m) 9 7.2 4 4.2 3.2

Minimum height to first branch (m) 0.49 6.9 0.49 6.4 7.1

Maximum height to first branch (m) 0.51 7.1 0.51 10.2 9.2

6.3. Generation of Look-Up Tables

The LUT contains a total of N = 90, 404 entries of BRF reflectances. These are reflectance values
calculated for parameters obtained at regular intervals of solar zenith angle, view zenith angle, relative
azimuth angle, LAI , fV and Cab, see Table 1. Crown shape parameters can be found in Table 3 and
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fAPAR is obtained by summing individual fAPAR values at each band times weighted by the fraction of
downwelling light within the band:

fAPAR =
n∑
i=1

Fa,iWi

where Fa,i is the mean fraction of radiant energy absorbed by canopy at band i, calculated from FLIGHT
output, and Wi are the weights, see also [9].

6.4. Simulation of Observations

We simulated BRF values using the coefficients in Tables 1–3. For each realization the observation
tables contain a total of M = 5,000 entries for the three conifer sites (OBS, OJP, YJP) and M = 5,000
for the broadleaf sites (beech and oak). The tables were simulated similar to the calculation of the LUT
but using a random selection from the range of parameters in Table 2, last column (LAI , fV , angular
geometry, atmospheric aerosol depth). Note that the parameters from Tables 1 and 3 stay the same.
The observations are simulated from a wider range of conditions that are not present in the conifer and
broadleaf LUTs (soils, leaf area distribution). Further errors due to sensor noise and calibration are not
considered here, but have been examined in previous studies [9,65] and should be considered prior to
application to particular instruments. The tables of “observed” ground reflectances were constructed to
contain complex errors for needleleaf and broadleaf forests. These errors, originating from the mismatch
between LUT and “observations”, represent conditions encountered in real applications where we have
to match a model representing only a selection of conditions with richly varied real world conditions.

Canopy reflectance models demonstrate increasing sensitivity to soil reflectance at lower vegetation
cover. Soil reflectance is one of the most sensitive parameters in canopy reflectance models [17]. Errors
are biased and unsymmetrical and for this reason we expect some robust distances to perform better than
LSE. This effect is more pronounced at lower values of LAI (<3).

Our simulations are necessarily restricted and represent only a subset of all parameters that can
be varied within Prospect and FLIGHT. We believe that these simulations of errors are more realistic
than the commonly adopted method of adding Gaussian noise to the spectrum. Errors due to incorrect
assumptions on soil or leaf spectral properties will be spectrally correlated.

7. Results

The statistical distances listed in Sections 3–5 were evaluated as follows. Reflectances in the LUTs
were matched to “observed” reflectances. For each case, we matched one entry in the “observations”
table consisting of M = 5,000 spectral bands with one entry in the LUT for each type of forest. The
inversion finds parameters for the nearest angular geometry in the LUT, i.e., the angular geometry is
known. Other parameters are assumed to be unknown. The performance of the statistical distances was
then assessed on the biophysical parameter estimated (LAI , fV ,fAPAR). Some statistical distances allow
parameters that govern the shape of the error distribution to be varied, thus the choice of these parameters
leads to another optimization problem in itself. For these cases we tested a range of parameters and chose
the parameter that minimizes the error in estimated biophysical parameters. All distances were tested by
comparing the estimated biophysical parameters with the a priori known parameters.
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For the purpose of clarity we present a selection of results that consists of the best performing
measures from each of the three classes of statistical distance measures. The results show significant
variability in retrieval accuracy depending on the chosen divergence measure. Overall, the optimal
measures in each case show an improvement over using LSE, see Tables 4 and 5.

Table 4. Summary statistics for the performance of different distance measures in estimating
biophysical parameters from ground reflectance data (BRF); reflectances were simulated for
broadleaf trees.

Distance Type Parameters Error LAI Error fV Error fAPAR

Equation (7) Kullback–Leibler inf. meas. – 0.63 0.25 0.10
Equation (10) Hellinger inf. meas. 0.61 0.26 0.09
Equation (12) power inf. meas. j = 4 0.69 0.24 0.12
Equation (11) Gen Hellinger inf. meas. j = 2 0.66 0.26 0.10
Equation (14) Rényi inf. meas. α = 0.5 0.63 0.26 0.10
Equation (21) Blended Gen Helling inf. meas. β = 0.9 0.63 0.26 0.10
Equation (20) Arimoto inf. meas. α = 0.8 0.62 0.26 0.10
Equation (25) LSE M-estim – 1.79 0.34 0.21
Equation (26) Koenker -B. M-estim α = 0.99 0.92 0.29 0.12
Equation (35) min. cont. meth. – 1.01 0.26 0.16

Table 5. Summary statistics for the estimation of biophysical parameters from ground
reflectance values (BRF) for needleleaf canopies.

Distance Type Parameters Error LAI Error fV Error fAPAR

Equation (9) Vajda inf. meas. α = 3 0.74 0.21 0.08
Equation (8) Pearson χ2 inf. meas. – 0.69 0.22 0.07
Equation (13) power inf. meas. α = −5 0.68 0.22 0.07
Equation (12) power inf. meas. j = 4 0.77 0.19 0.08
Equation (14) Rényi inf. meas. α = 0.5 0.70 0.22 0.078
Equation (21) Blend Helling inf. meas. β = 0.9 0.69 0.22 0.076
Equation (25) LSE M-estim – 1.35 0.30 0.16
Equation (26) Koenker -B. M-estim α = 0.2 1.29 0.29 0.16
Equation (35) min. cont. meth. – 0.95 0.28 0.12

Table 4 shows the best distance measures (bold italic) for estimating biophysical parameters on
broadleaf forests from BRF as well as results obtained with LSE (bold text). Table 5 shows the same but
for estimating biophysical parameters on conifer forest.

The improvement obtained in estimating biophysical parameters for broadleaf forest is further
illustrated in Figure 1. In Figure 1 residual errors in broadleaf biophysical parameters obtained from BRF
reflectances by using LSE are compared with errors obtained by Hellinger (Equation (10)) and power
divergence (Equation (12)). The range of errors (maximum and minimum errors) for these two methods
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is the same, however the alternative divergence shows a marked improvement in the error distribution
for all biophysical parameters.

Figure 1. Comparison of residual errors resulting from the application of two different
distance measures used to estimate biophysical parameters for broad leaf canopies with a
look-up table (LUT). Biophysical parameters, including leaf area index, LAI , fraction of
photosynthetically active radiation absorbed by the canopy, fAPAR, and vegetation cover
fraction, fV , are estimated from simulated ground reflectance values. The rows from top
to bottom show the comparison of residual errors in estimating LAI with the least squares
estimate (LSE) and Hellinger Equation (10) (top row), of residual errors in fV with LSE and
the power divergence Equation (12) with power 1 and j = 4 (centre row) and of residual
errors in fAPAR with LSE and the Hellinger equation (bottom row). The columns from
left to right show frequency distributions of residual errors using LSE as a cost function
(left column) and the residual errors using either a Hellinger Equation (10) for LAI and
fAPAR or a power divergence Equation (12) with power 1 and j = 4 for fV (centre column).
The right column shows the quantile–quantile plots comparing the frequency distributions
of the left and centre columns expressed as absolute errors. The errors in biophysical
parameters associated with the alternative cost functions are smaller and better behaved
(more symmetrical and smaller bias).
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Figure 2 provides a further illustration of the reduction in the error in biophysical parameter estimation
for needleleaf forests from BRF reflectance data obtained by power divergences in Equations (12)
and (13) (see also Table 5).

Figure 2. Comparison of residual errors resulting from the application of two different
distance measures used to estimate biophysical parameters for needleleaf canopies with a
look-up table (LUT). Biophysical parameters, including leaf area index, LAI , fraction of
photosynthetically active radiation absorbed by the canopy, fAPAR, and vegetation cover
fraction, fV , are estimated from simulated ground reflectance values. The rows from
top to bottom show the comparison of residual errors in estimating LAI with the least
squares estimate (LSE) and power Equation (13) with power 2 and α = −5 (top row),
of residual errors in fV with LSE and the power divergence Equation (12) with power
1 and j = 4 (centre row), and of residual errors in fAPAR with LSE and the power
Equation (13) with power 2 and α = −5 (bottom row). The columns from left to right show
frequency distributions of residual errors using LSE as a cost function (left column) and the
residual errors using either a power equation for LAI and fAPAR or a power divergence
Equation( (12)) with power 1 and j = 4 for fV (centre column). The right column shows
the quantile–quantile plots comparing the frequency distributions of the left and centre
columns expressed as absolute errors. The errors in biophysical parameters associated
with the alternative cost functions are smaller and better behaved (more symmetrical and
smaller bias).
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The results summarized in Tables 4 and 5 and Figures 1 and 2 illustrate that the use of alternative
distances measures can significantly improve parameter estimation. We found that the following distance
measures perform well for the cases described above:

(1) For the broadleaf forest the best distances were:

• for the estimation of LAI: Hellinger (Equation (10)) and Arimoto (Equation (20));
• for the estimation of fV : power divergence (Equation (12));
• for the estimation of fAPAR: generalized Hellinger measure (Equation (10)).

We found that compared with LSE, the Koenker–Basset distances (Equations (26) and (35)) gave
better results in all cases. The improvement compared with LSE was 15% for LAI , 10% for fV and
11% for fAPAR.

(2) For conifer forest the best distances were:

• for the estimation of LAI and fAPAR: power divergence (Equation (13)) and Pearson chi-square
divergence (Equation (8));
• for the estimation of fV : power divergence (Equation (12));

Similar to the broadleaf case, we found that the Koenker–Basset metric (Equations (26) and (35))
improved estimation in all cases. All biophysical parameters, LAI , fV and fAPAR, improved by around
10% in this case.

8. Discussion

8.1. Recommendations for Distance Choice

When optimizing parameterized models for which the error distribution (shape and bias) is known,
the user can choose an appropriate cost functions based on specific physical properties of the model and
metrics. When we deal with non-parametric models or non-linear model with many parameters (such as
the present case where we simulate BRF using PROSPECT, FLIGHT) it may be useful to check a range
of available distances to get the optimal cost function. For problems similar to the present study we can
provide the following guidance.

8.2. Considering the Shape of the Distribution

For non-symmetric error distributions the recommended cost function is Koenker–Basset
(Equation (26)). Such non-symmetric error distribution may arise, for example, from undetected
sub-pixel cloud in pre-processing. Based on the shape of this function, it is expected that for the
parameter c for this function becomes close to one with increasing skewness of the error distribution.
We expect skewed error distributions to be common for biophysical parameter estimation from satellite
data, especially when there is a mismatch between the soil reflectance specified in the LUT and the “true”
soil reflectance.

For symmetric error distributions we can recommend Hellinger (Equation (10)), Arimoto
(Equation (20)) and power divergence (Equation (12)) and standard LSE (Equation (25)).
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For heavy-tailed distribution (right) and semi-heavy-tailed distribution (left) (i.e., the tail behave as
negative exponent divided by power function) we can recommend non-symmetric power divergence
(Equation (13)), Vajda (Equation (9)) and Pearson chi-square divergence (Equation (8)) cost functions.
As can be seen from Figures 1 and 2, application of specific metrics to the biophysical parameters makes
the errors more localized, removes heavy tails and makes the distributions more symmetric. This is due
to the non-symmetric nature of the metrics themselves. To the best of our knowledge, these effects are
usually not addressed in remote sensing inversion problems.

Special interest should be paid to the class of spectral metrics, since it represents informational
distances in the spectral domain. Since informational transformation to the spectral domain usually
makes our observation asymptotically independent, it is plausible that the spectral metric (Equation (35))
that corresponds to quasi-maximum likelihood provides good results. This is also consistent with the
statistical theory that the maximum likelihood estimator is asymptotically optimal. For this reason we
recommend to use this or a similar cost function.

8.3. Considering Properties of the Estimated Parameters

For all types of forest we found that for fV the optimal metric is power divergence (Equation (12)).
This symmetric cost function represents a Rényi type entropy that maximizes the entropy distribution
using a power law behavior. This gives us a better understanding of the nature of errors in this case.

In the case when parameters of the model are linearly correlated, we observe consistency in the
optimal cost function for these parameters (for example LAI and fV and fAPAR in our case). Thus, we
can recommend using the same cost function for linearly correlated parameters. However, this does not
hold if the correlation has a more complicated nature.

9. Conclusions

Over 60 statistical distances from three major classes, information measures, M-estimates and
minimum contrast methods, were obtained from the mathematical literature. A comprehensive list of
these statistical distances was provided. The statistical distances were tested to see, if compared with
LSE, they improved the estimation of biophysical parameters for needleleaf and broadleaf forests. We
found that the commonly used LSE distance is not the optimal cost function for the cases studied and
that better results can be obtained using alternative cost functions.

For the numerical experiments we use PROSPECT and FLIGHT to simulate “observed” reflectance
values in 15 different spectral bands. We generate LUTs for a limited set of land-surface and atmospheric
conditions. However for the observations we generate reflectance values for a wider range of conditions
and thus introduce a mixture of errors caused by variations in angular geometry, LAI , fV , soil reflectance
and leaf angle distribution. For the biophysical parameter estimation we match the observed reflectances
to the reflectances of the LUT with different cost functions. The largest sources of (biased) error, i.e., the
mismatch between observations and LUT, are potentially related to soils, since only a limited amount of
variability associated with these variables was incorporated in the LUTs. We conclude that our analysis
resembles a common problem for the estimation of biophysical parameters from satellite data, i.e., one
estimates biophysical parameters assuming a limited set of ground conditions. A cost function that is
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based on an asymmetric, biased or heavy-tailed error distribution can therefore result in better estimates
of biophysical parameters than LSE, which is based on a normal error distribution.

We found that the information measures from Section 3 provide better results when the BRF is
normalized; see Equations (3) and (4). This result may not be valid for a smaller number of wavebands.

A caveat of the present study is that we analyzed only a limited subset of a wide range of possibilities,
and for different applications it is likely that different cost functions may be more suitable. We
are preparing a study where cost functions are used on real observations as opposed to simulated
observations [25].

Alternative divergence measures and distances have been known in the statistical literature for some
time and could find an application in many areas besides remote sensing, such as in biology, geography
and geophysics.

The approach outlined in the present study can be extended to other applications that use LUT
optimization, interpolation, linearization of parameter space, etc. It can be used in addition to or as
an alternative to data training and machine learning schemes. We believe that the use of alternative
statistical measures has great potential for remote sensing applications.
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Appendix

A.1. List of f -Divergence Information Measures

Additional information about the measures below can be found in [31]. List of measures with
minimum at f(1).

1. Let f(x) = x2 and f(1) = 1 then

Df [P,Q] =
n∑
l=1

p2
l

ql
=

n∑
l=1

(pl − ql)2

ql
(A1)

This measure is called the Neyman chi-square divergence. It was introduced to test for goodness
of fit in the case of multinomial probabilities. It has wide application in medical statistics.

2. Let f(x) = (x− 1) ln(x) and f(1) = 0, then

Df [P,Q] =
n∑
l=1

(pl − ql) (ln(pl)− ln(ql)) (A2)

This measure is called Jeffreys–Kullback–Leibler. It was introduced to obtain a symmetrical
KL divergence.

3. K-divergence of Lin is used to analyze of contingency tables. It corresponds to the function
f(x) = x ln(x)− x ln

(
1+x

2

)
and f(1) = 0 and takes the form

Df [P,Q] =
n∑
l=1

pl ln

(
2pl

pl + ql

)
(A3)

4. L-divergence of Lin is a symmetric version of K-divergence. It corresponds to the function
f(x) = x ln(x)− (1 + x) ln 1+x

2
and f(1) = 0, thus

Df [P,Q] =
n∑
l=1

pl ln(pl) + ql ln(ql)− (pl + ql) ln

(
pl + ql

2

)
(A4)
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5. Let f(x) = xα and f(1) = 1 and x > 0 then

Γf [P,Q] =
n∑
l=1

ql

(
pl
ql

)α
=

n∑
l=1

pαl q
1−α
l (A5)

Thus,

Df [P,Q] =
n∑
l=1

pαl q
1−α
l − 1 ≥ 0

is a measure of discrepancy when α > 1. Havrada and Charvat suggested the first non-additive
measure of entropy for 0 < α < 1

Df [P,Q] =

∑n
l=1 p

α
l q

1−α
l

eα−1 − 1
(A6)

For α → 1 it turns to be Kullback–Leibler’s distance. When 0 < α < 1,
∑n

l=1 p
α
l q

1−α
l is positive

concave function and so its logarithm is also a concave function.
6. We can use a higher order cross-entropy, or the so-called cross-entropy of order α

Df [P,Q] =
1

α− 1
ln

(
n∑
l=1

pαl q
1−α
l

)
, α > 0, α 6= 1 (A7)

This measure was suggested by Rényi [29] and it plays an important role in ecology and statistics
as indices of diversity. It is related to the Shannon entropy of integer order.

7. Liese and Vajda [42] proposed bounded asymptotic Rényi measure, which has application in signal
detection problem. For all α 6= 0, 1 we define

Df [P,Q] =
1

α(α− 1)
ln

(
n∑
l=1

pαl q
1−α
l

)
(A8)

8. The harmonic Toussaint measure corresponds to the function f(x) = xx−1
x+1

and f(1) = 0. It has
application in measuring the dissimilarity between musical rhythms, music information retrieval
and copyright infringement resolution to computational music theory and evolutionary studies of
music. The measure has the following form

Df [P,Q] =
n∑
l=1

(
pl −

2plql
pl + ql

)
(A9)

Distances with the minimum at zero:

1. The negative exponential disparity measure is used as an estimator that is asymptotically fully
efficient and is robust against outliers and inliers, see [32]:

Df [P,Q] =
n∑
l=1

ql(exp(−
pl − ql
ql

)− 1) (A10)

2. The Bregman divergences [43] are not full distance measures, because they does not satisfy
the triangle inequality and they are not symmetric. Bregman divergences are important for two
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reasons: Firstly, they generalize squared Euclidean distances to a class of distances that all share
similar properties. Secondly, they bear a strong connection to exponential families of distributions.

Df [P,Q] =
n∑
l=1

(qal +
1

a− 1
pal −

1

a− 1
plq

a−1
l ), a 6= 1 (A11)

The symmetrized version of the Bregman divergences can be presented in a form

Df [P,Q] =
n∑
l=1

(pl − ql)[pa−1
l − qa−1

l ]

3. The powered Pearson divergence is reasonably efficient and robust [44], and has wide applicability
in genetics.

Df [P,Q] =
1

2α2

n∑
l=1

ql

(
{plα − qαl }

qαl

)2

, α ∈ (0, 1] (A12)

It includes the Pearson’s chi-squared measure (α = 1) and the Hellinger’s measure (α = 1/2).
4. The Cressie and Read power divergence [45] results in stable disparity measures and solutions

when outliers are added to the data. Under certain general conditions this estimator has asymptotic
breakdown points of 50%.

Df [P,Q] =
1

α(α + 1)

[
n∑
l=1

pl[pl/ql]
α − 1

]
, −∞ < α <∞ (A13)

5. The Sharma and Mittal divergences [46] are two generalizations of the Kullback–Leibler measure.
One is called α-order and β-degree divergence measure and the other is called 1-order and
β-degree divergence measure

Df [P,Q] =
1

(β − 1)

( n∑
l=1

pαl q
1−α
l

) β−1
α−1

− 1

 , α, β 6= 1 (A14)

Df [P,Q] =
1

(β − 1)

[
exp

(
(β − 1)

n∑
l=1

pllog

(
pl
ql

))
− 1

]
, β 6= 1 (A15)

6. Finally, the β-divergence [47], is given by

Df [P,Q] =


∑n

l=1

(
1

β(β−1)

)(
pβl + (β − 1)qβl − βplq

β−1
l

)
pl/ql − log[pl/ql]− 1, β ∈ R/(0, 1)∑n

l=1 pl(log[pl]− log[ql]) + (ql − pl), β = 1∑n
l=1 pl/ql − log[pl/ql]− 1, β = 0

(A16)

This divergence was introduced by Itakura–Saito for the estimation of short-time speech spectra using
an autoregressive model. It became popular in speech and acoustics research and it was applied to
denoising and up-mix (mono to stereo conversion) of music.



Remote Sens. 2013, 5 1383

A.2. List of the Measures between Two Probability Distributions

List of (h, f)-measures [18]:

1. Sharma–Mittal divergence [46] with

h(x) =
1

(β − 1)

(
(1 + α(α− 1)x)

β−1
α−1 − 1

)
; f(x) =

xα − α(x− 1)− 1

α(α− 1)
; α 6= 0, 1; (A17)

Dh
f [P,Q] =

1

(β − 1)

[1 +
n∑
l=1

ql(pl/ql)
α − α(pl − ql)− ql

] β−1
α−1

− 1


2. Bhattacharyya divergence has interesting application in signal selection and it has the

following form
h(x) = −log(−x+ 1); f(x) = −x1/2 + (1/2)(x+ 1) (A18)

Dh
f [P,Q] = −log

(
1 +

n∑
l=1

√
plql −

1

2
(pl + ql)

)
List of the entropy measures:

1. Shannon (1948) [26]
f(x) = −xlogx, h(x) = x

Dh
f (P,Q) = −

n∑
l=1

(
pl + ql

2

)
log

(
pl + ql

2

)
+

1

2

(
n∑
l=1

pllog(pl) +
n∑
l=1

qllog(ql)

)
(A19)

2. Rényi (1961) [48]

f(x) = xα, h(x) =

[
1

α(1− α)
logx

]
, α 6= 0, 1

Dh
f (P,Q) =

(
1

α(1− α)

)[
log

(
n∑
l=1

(
pl + ql

2

)α)
− 1

2

(
log
∑

(pl)
α + log

n∑
l=1

(ql)
α

)]
(A20)

3. Varma (1966) [18]

f(x) = xα−β+1, h(x) =

[
1

β − α
logx

]
, β − 1 < α < β, β > 1

Dh
f (P,Q)=

(
1

β − α

)[
log

(
n∑
l=1

(
pl + ql

2

)α−β+1
)
− 1

2

(
log
∑

(pl)
α−β+1+log

n∑
l=1

(ql)
α−β+1

)]
(A21)
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4. Varma (1966) [18]

f(x) = xα/β, h(x) =

[
1

β(β − α)
logx

]
, 0 < α < β, β > 1

Dh
f (P,Q)=

(
1

β(β − α)

)[
log

(
n∑
l=1

(
pl + ql

2

)α/β)
− 1

2

(
log
∑

(pl)
α/β+log

n∑
l=1

(ql)
α/β

)]
(A22)

5. Havrda and Charvat (1967) [18]

f(x) =
1

1− α
(xα − x), h(x) = x, α > 0, α 6= 1

Dh
f (P,Q) =

(
1

1− α

)[( n∑
l=1

(
pl + ql

2

)α
−
(
pl + ql

2

))
− 1

2

(∑
(pl

α − pl) +
∑

(ql
α − ql)

)]
(A23)

6. Sharma and Mittal [46]

f(x) = xlogx, h(x) =
exp((α− 1)x)− 1

(1− α)
, α > 0, α 6= 1

Df(P,Q) =

(
1

1− α

)
exp

(
(α− 1)

n∑
l=1

((
pl + ql

2

)
log

(
pl + ql

2

)))
(A24)

−
(

1

1− α

)[
1

2

(
exp

(
(α− 1)

n∑
l=1

(pllogpl)

)
+ exp

(
(α− 1)

n∑
l=1

(qllogql)

))]

7. Sharma and Mittal [46]

f(x) = xβ, h(x) =
1

(1− α)

(
x
α−1
β−1 − 1

)
α > 0, β > 0 α, β 6= 1

Dh
f (P,Q) =

(
1

1− α

)( n∑
l=1

(
pl + ql

2

)β)α−1
β−1

− 1

2

[ n∑
l=1

(pl
β)

]α−1
β−1

+

[
n∑
l=1

(ql
β)

]α−1
β−1


(A25)

8. Ferreri (1980) [18]

f(x) = (1 + αx)log(1 + αx), h(x) =

(
1 +

1

α

)
log(1 + α)− x

α
, α > 0

Dh
f (P,Q) = − 1

α

(
n∑
l=1

(
1 + α

[
pl + ql

2

])
log

(
1 + α

[
pl + ql

2

]))
(A26)

+
1

α

[
1

2

(
n∑
l=1

(1 + αpl) log (1 + αpl) +
n∑
l=1

(1 + αql) log (1 + αql)

)]
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9. Kapur (1972) [18]

f(x) =
xα + (1− x)α − 1

(1− α)
, h(x) = x, α 6= 1

Dh
f (P,Q) =

(
1

1− α

)( n∑
l=1

(
pl + ql

2

)α
+

(
1−

(
pl + ql

2

))α
− 1

)
(A27)

−
(

1

1− α

)[
1

2

([
n∑
l=1

pα + (1− pl)α − 1

]
+

[
n∑
l=1

qα + (1− ql)α − 1

])]
10. Burbea (1984) [18]

f(x) =
xα − (1− x)α + 1 + (α− 1)−1(2α − 2)x

(α− 2)
, h(x) = x, α > 0, α 6= 1

Dh
f (P,Q) =

(
1

α− 2

)[ n∑
l=1

(
pl + ql

2

)α
−
(

1−
(
pl + ql

2

))α
+ 1 + (α− 1)−1(2α − 2)

(
pl + ql

2

)]
(A28)

−1

2

(
1

α− 2

)[ n∑
l=1

pα − (1− pl)α + 1 + (α− 1)−1(2α − 2)pl

]

−1

2

(
1

α− 2

)[ n∑
l=1

qα − (1− ql)α + 1 + (α− 1)−1(2α − 2)ql

]

A.3. List of the Blended f-Disparities

More information of the measures below could be found in [23].

1. Pearson–Neyman blend with corresponding blended divergence

Dβ(P,Q) :=
1

2

n∑
l=1

(pl − ql)2

βpl + (1− β)ql
(A29)

This blend coincides with the generalized LeCam divergence. Also it is bounded and

0 ≤ Df (P,Q) ≤ 1

2

1

1− β
+

1

2β

2. Blended power divergence-variant A. For a ∈ R− {0, 1} we have

Da,β(P,Q) =
1

a(a− 1)

n∑
l=1

pal + qal
(βpl + (1− β)ql)a−1

− 2, a 6= 0, 1 (A30)

Note that D0,β(P,Q) are unbounded for all β ∈ [0, 1), which corresponds to the reversed Kullback
blend. And D1,β(P,Q) for all β ∈ (0, 1)- Kullback-reversed blend is bounded and

0 ≤ Df (P,Q) ≤ − ln(1− β)− ln β

D1,β(P,Q) =
n∑
l=1

pl ln

(
pl

βpl + (1− β)ql

)
+ ql ln

(
ql

βpl + (1− β)ql

)
(A31)
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3. Blended power divergence-variant B. For 0 < |a| < 1 and β ∈ (0, 1)

Da, β(P,Q) = −sign(a)
n∑
l=1

(βpl + (1− β)ql)p
a
l + qa+1

l

(βpl + (1− β)ql)a
, 0 < |a| < 1 (A32)

is bounded, but not symmetric.

A.4. List of M-Estimates

Information of the measures below is based on [35–37].

1. More general estimates with Laplace distribution

ρ(x) = |x|p , ψ(x) = psign(x) |x|p−1 , 1 ≤ p ≤ 2 (A33)

are known as Lp-estimates. It has been used in statistics of speech and image data processing,
especially when observed in a transform domain like the wavelet or discrete Fourier transform
domains. For example, the over complete wavelet transform coefficients of images are found to
have sparse distributions, a property that has been extensively exploited in coding and denoising.
It appears that p must be fairly moderate to provide a relatively robust estimator or, in other words,
to provide an estimator scarcely perturbed by outlying data.

2. For positive α, the function

ρ(x) =
1

2α
− exp(−αx2)

2α
, ψ(x) = x exp{−αx2} (A34)

leads to the so-called alpha estimator. It has been applied in a special class of change-point models,
where the change is defined as a shift of observations means.

3. For ν, s > 0, we can determine the trigonometric and the hyperbolic estimators

ρ(x) = ν

(
xarctan(sx)− log(s2x2 + 1)

2s

)
, ψ(x) = ν arctan(sx) (A35)

ρ(x) = ν
log(cosh(sx))

s
, ψ(x) = ν tanh(sx) (A36)

Errors in this case are distributed by a logistic distribution.
4. For the Cauchy distribution f(x) = 1/(π(1 + x2)) we have

ρ(x) =
c2

2
log((x2/c2) + 1), ψ(x) =

2x

1 + x2/c2
(A37)

Cauchy’s function, also known as the Lorentzian function, does not guarantee a unique solution
(unicity). With a descending first derivative, such a function has a tendency to yield erroneous
solutions. It has been applied in image analysis and in particular to the problem of parametric
image registration.

5. Latter influence functions trimmed at 0 < c <∞ are presented in the form

ψ(x) = x1(−c,c)(x), ψ(x) = 1(−c,c)(x)sign(x) (A38)

and they specify the trimmed least squares and the trimmed absolute error estimators.
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6. The Welsh distance has the form

ρ(x) =
c2

2
(1− exp(−x2/c2)) (A39)

As can be seen from the influence function, the influence of large errors only decreases linearly
with their size. However it has the same problem as the Cauchy distance.

7. The Geman and McClure function tries to reduce the effect of large errors further, but it also cannot
guarantee unicity.

ρ(x) = x2(1 + x2)−1 (A40)

It has been applied successfully in optical flow estimation, image restoration and vision-based
recognition in continuous dynamic hand gestures.

8. The Tukey function also encounters the problem of unicity; it can be written as

ρ(x) =

{
c2

6
(3x2 − 3x4 + x6), |x| ≤ c

c2/6 |x| > c
(A41)

It has applications in economics, computer vision and satellite retrievals.
9. The Huber function has the following form

ρc(x) =

{
1
2
x2, |x| < c

c |x| − 1
2
c2, |x| ≥ c

(A42)

and the score function is represented as

ψc(x) = max{min(x, c),−c}, c > 0

It has some optimal properties, see [35], and the function ψc(x) can be approximated by a twice
differentiable score function. Huber’s M-estimation has been applied in GPS positioning and
modeling of complex technical experiments where it reduces the effect of outliers. This estimator
is so satisfactory that it has been recommended for almost all situations, however, from time to
time, difficulties are encountered, which may be related to a lack of stability.

A.5. Minimum Contrast Estimation List

Detailed information of the following measures can be found in [20,21].

1. let K(x) = −logx+ x, then

L(fθ, g) =
∑
λj∈Λ

{−log(fθ(λj)/g(λj)) + fθ(λj)/g(λj)} (A43)

2. let K(x) = (logx)2, then

L(fθ, g) =
∑
λj∈Λ

{logfθ(λj)− log(g(λj))}2 (A44)

3. let K(x) = xlogx− x, then

L(fθ, g) =
∑
λj∈Λ

f θ(λj)g(λj)
−1{log(fθ(λj)g(λj)

−1)− 1} (A45)
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4. let K(x) = (xα − 1)2, where 0 < α <∞ then

L(fθ, g) =
∑
λj∈Λ

{(f θ(λj)/g(λj))
α − 1}2 (A46)

This is an α-entropy criterion for a Gaussian process.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
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