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Abstract: Real-time estimation of crop progress stages is critical to the US agricultural 
economy and decision making. In this paper, a Hidden Markov Model (HMM) based 
method combining multisource features has been presented. The multisource features 
include mean Normalized Difference Vegetation Index (NDVI), fractal dimension, and 
Accumulated Growing Degree Days (AGDDs). In our case, these features are global 
variable, and measured in the state-level. Moreover, global feature in each Day of Year 
(DOY) would be impacted by multiple progress stages. Therefore, a mixture model is 
employed to model the observation probability distribution with all possible stage 
components. Then, a filtering based algorithm is utilized to estimate the proportion of each 
progress stage in the real-time. Experiments are conducted in the states of Iowa, Illinois 
and Nebraska in the USA, and our results are assessed and validated by the Crop Progress 
Reports (CPRs) of the National Agricultural Statistics Service (NASS). Finally, a 
quantitative comparison and analysis between our method and spectral pixel-wise based 
methods is presented. The results demonstrate the feasibility of the proposed method for 
the estimation of corn progress stages. The proposed method could be used as a 
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supplementary tool in aid of field survey. Moreover, it also can be used to establish the 
progress stage estimation model for different types of crops. 

Keywords: fractal dimension; hidden Markov model (HMM); phenology; time series 
 

1. Introduction 

Crop phenological phases, which reflect the timing of recurring biological events, play an important 
role in US agricultural production, management, planning and decision-making. Real-time accurate 
estimation of crop progress stages is desired during growing season. The National Agricultural 
Statistics Service (NASS) of the United States Department of Agriculture (USDA) issues Crop 
Progress Reports (CPRs) [1] weekly during the growing season, listing primary progresses of selected 
crops in major producing states and Agricultural Statistics Districts (ASDs) through field survey. 
Despite its accuracy, only site-specific information in limited geographical extent can be provided. 
Especially, field survey is labor intensive and time-consuming. Therefore, it is very necessary to find a 
supplementary way for efficient, quantitative, and accurate estimating of crop progress stages. 

Many algorithms and techniques have been developed to detect specific crop phenological stages, 
e.g., greenup, maturity, senescence and dormancy [2]. A comparison of several existing methods for 
analyzing remotely sensed time series is provided in Hird and McDermid [3], and Atkinson et al. [4]. 
Most of methods focus on the timing, duration and intensity of the growing season [5]. Growing 
degree days (thermal time or heat units) are generally applied for measuring different developmental 
events of crop [6,7]. Most of the process oriented crop growth models, e.g., WOrld FOod STudies 
(WOFOST) [8], Cropping Systems Simulator (CropSyst) [9], Decision Support System for 
Agrotechnology Transfer (DSSAT) series [10], Soil-Plant-Air-Water (SPAW) [11], and  
Soil-Water-Atmosphere-Plant (SWAP) [12], mainly use thermal index to define different phonological 
stages as well as to quantify the developmental rates. For example, the developmental rate of the 
WOFOST model is defined as a crop/cultivar specific function of ambient temperature, possibly 
modified by photoperiod [8]. However, in the latter portion of the temperate growing season,  
day-length and water stress becomes important factors impacting crop growth and the onset of 
senescence, which make the models mathematically complex [13]. 

Remote sensing techniques, which provide consistent measurements at broad-scale and frequent 
time intervals, have been increasingly adopted to detect crop progress stages. High temporal 
frequencies products are collected from coarse-to-moderate spatial resolution platforms, e.g., 
Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging 
Spectroradiometer (MODIS), Satellite Pour l’Observation de la Terre (SPOT) VEGETATION (VGT), 
and Sea-Viewing Wide Field-of-View Sensor (SeaWiFS). A rigorous review of the sensors 
characteristics led to the hypothesis that MODIS is most likely to achieve the best results followed by 
SPOT-VGT and lastly by AVHRR in agricultural monitoring [14]. Although crop progress metrics 
derived from satellite data may not necessarily correspond directly to conventional terrestrial 
phenological events [15], they implicitly link to the specific crop growth status. Vegetation Indices 
(VIs), especially the Normalized Difference Vegetation Index (NDVI), which reflects terrestrial crop 
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cover and growth condition [16], are frequently utilized in crop progress studies. The methods of crop 
progress stage detection using VIs time series can be broadly grouped into four categories [13]: 
thresholds, derivatives, smoothing functions, and fitted models [17]. However, most of these methods 
have been designed only on spectral pixel-wise analyses, ignoring that remote sensing image provides 
information of crop on both spectral responses and spatial pattern. 

Generally, image texture changes during the crop life cycle, due to regional differences on crop 
sowing and growth, density of green leaves, soil background effects, etc. It provides a new perspective 
to analyze the growth of crops from satellite data. Culbert et al. [18] stated how image texture 
measures are affected by surface phenology. Shen et al. [19] explored the links between fractal 
dimension and corn progress stages from MODIS-NDVI time series, and shown that fractal dimension 
can be used as an index of heterogeneity for measuring corn progress stage changes. 

Therefore, we will inherit the advantages of multisource features from thermal index, as well as 
spectral responses and spatial pattern of remote sensing, and incorporate Accumulated Growth Degree 
Days (AGDDs), mean NDVI, fractal dimension to estimate corn progress stages. According to the 
NASS’s CPRs, crop progress stages in the state-level represent as progress percentages [20]. To 
directly estimate corn progress percentages at the state-level, a Hidden Markov Model (HMM) based 
method is proposed, which utilizes the corresponding state-level global features. The HMM method 
can be regarded as a dynamic version of the Bayesian approach to model uncertainty [21]. It has been 
successfully applied in speech recognition [22] and computational molecular biology [23]. In the field 
of agriculture, numerous researches concern the use of HMMs and multi-temporal remote sensing 
images for automatic land cover classification incorporating knowledge of phenology into the 
classification process [24,25]. A rare example of phenology detection is presented in [26], where 
HMMs are brought into vegetation dynamics analysis from time series of satellite remote sensing. The 
main difference between the model proposed in this paper and the one presented in [26] is that our 
model is directly constructed in the state-level, which can be trained and verified by existing field 
survey data, e.g., NASS’s CPRs. More specifically, the Gaussian mixture model has been employed to 
define the probability distribution of all probable stage components. Our method is designed for  
real-time data processing, and uncertainties of data have been considered and processed to ensure the 
raw feature inputs can be handled directly. Moreover, this method takes growth-related features 
covering spectral responses, spatial pattern and environmental factor into account, which provides a 
supplemental way for the information collection of US corn progress. 

The rest of this paper is organized as follows. In Section 2, we give a brief description on the study 
area and date sets. In Section 3, multisource features and the related processing of extraction are 
introduced. Mechanisms and schedules of proposed methods are clarified and discussed in Section 4. 
In Section 5, the performance of the proposed method is evaluated in terms of qualitative and 
quantitative measures. A conclusion is drawn in Section 6. 

2. Study Area and Data Sets 

The study area locates in the US Corn Belt, the most intensively cultivated region of the Midwest 
United States. It comprises of three major corn-producing states, including Iowa (ranges from 40°36'N 
to 43°30'N, and 89°5'W to 96°31'W), Illinois (ranges from 36°58'N to 42°30'N, and87°30'W to 
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91°30'W), and Nebraska (ranges from 40°N to 43°N, and 95°25'W to 104°W) (Figure 1). Corn, an 
annual crop, is the predominant crop in these regions. According to the definition of corn progress 
stages by USDA/NASS, two important corn progress categories are usually surveyed in the whole 
growing cycle: the progress of farming activities (i.e., planted and harvested) and phenological stages 
(i.e., emerged, silking, dough, dent, and mature) [20]. 

Figure 1. Illustration of study area and selected meteorological stations. The study  
area covers three states of the United States: Iowa, Illinois and Nebraska. Stations are 
marked as circle dots, and colors are labeled for different states. The number of 
meteorological stations of Iowa (blue dots), Illinois (green dots), and Nebraska (red dots) is 
23, 33, and 37, respectively. 

 

Four kinds of data sets, as listed follows, spanning a decade (2002 throughout 2011) of corn 
growing seasons (the 13th week throughout the 47th week) are chosen for this study. 

(1) Daily NDVI time series, which is derived from the atmospherically corrected MODIS 
MOD09GQ (MODIS Surface Reflectance Daily L2G Global 250 m) dataset with 250 m spatial 
resolution. This data set is publicly available through the “Vegetation Condition Explorer” 
(http://dss.csiss.gmu.edu/NDVIDownload/), maintained by the Center for Spatial Information 
Science and Systems (CSISS), George Mason University. 

(2) NASS’s Cropland Data Layer (CDL), which is a raster, geo-referenced crop-specific land use 
data layer. The spatial resolution of years 2006–2009 is 56 m, and the rest is 30 m. The data set 
is publicly available via “CropScape” (http://nassgeodata.gmu.edu/), produced operationally by 
USDA/NASS.  

(3) NASS’s CPRs, which record the percent complete (area ratio) of crop fields that has either 
reached or completed a specific progress stage over a specific administrative unit. It is publicly 
available via NASS’s “Quick Stats 2.0” service (http://www.nass.usda.gov/Quick_Stats/). More 
details of the first three data sets can refer to [19]. 

(4) Daily minimum and maximum temperatures, which are derived from the United States 
Historical Climatology Network (USHCN) [27]. USHCN is a high-quality network of US 
Cooperative Observer Network stations, specially selected for analyzing long-term variability 
and change in the whole contiguous United States [27]. In this study, 23, 33, and 37 
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meteorological stations are chosen for the states of Iowa, Illinois, and Nebraska, respectively 
(Figure 1 and Appendix: Table A1). The meteorological stations were selected with a number 
of criteria including length of period of record, and spatial coverage. 

3. Feature Extraction  

Multisource features are used as the input of the HMM model. Global features, which are measured 
in the state-level, include mean NDVI, fractal dimension, and AGDDs. Along the corn life cycle, these 
features are in different forms of distribution (Figure 2). The mean NDVI and fractal dimension curves 
are unimodal and bimodal, respectively. The AGDDs is in a monotonic curve. Mean NDVI and fractal 
dimension are extracted from remote sensing image. AGDDs data are extracted from the site-specific 
observations of meteorological stations. The implementation of the feature extraction is introduced in 
the following subsections. 

Figure 2. Distributions of normalized mean Normalized Difference Vegetation Index 
(NDVI), fractal dimension (fd), and AGDDs along the corn life cycle (Iowa, 2007). 

 

3.1. Mean NDVI 

NDVI measures the greenness of crop on spectral response of remote sensing image. To extract the 
mean NDVI in the state-level, data pre-processing has been conducted over the original daily  
MODIS-NDVI time series. The data pre-processing mainly includes: image compositing, which 
composites daily NDVI images into weekly composite products by Maximum Value Composite  
(MVC) [28], and image masking, which eliminates non-corn pixels from weekly NDVI image with the 
mask of NASS’s CDL. Relevant agreements of the data pre-processing procedures can be found in [19]. 
Mean NDVI is extracted directly by statistics on masked weekly NDVI image. It is worth mentioning 
that no additional pre-process has been conducted on the time series, e.g., smoothing, and filtering. 

3.2. Fractal Dimension 

Fractal dimension measures the roughness of corn NDVI image, which can be used as an index of 
heterogeneity to reflect corn growth status. As stated in [19], roughness varies in the growth season 
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due to corn fields are at different stages, i.e., fractal dimension time series reflects spatiotemporal 
changes of corn in the life cycle. The fractal dimension is estimated by Dimensionality-Reduction 
based Differential Box-Counting (DR-DBC) algorithm [19]. The estimation process is also conducted 
on the masked weekly NDVI image. 

3.3. AGDDs 

Photoperiod and temperature are two common environmental factors that significantly affect crop 
growth and development [29]. Modern corn hybrids are less vulnerable to photoperiod, but are greatly 
affected by temperature [29]. In the studies of crop growth, temperature is often presented as growing 
degree days. AGDDs, defined as an explanatory temperature variable from some consistent start date 
until a specific subsequent, are usually related to crop growth in the corn life cycle [6,7]. 

Ambient minimum and maximum temperatures are observed by meteorological station, i.e., the raw 
data are in the site-specific form. To extract the global AGDDs, two steps should be taken: 
(1) calculate the mean minimum/maximum temperature of state-level from site-specific observations; 
and (2) calculate AGDDs from adjusted mean minimum and maximum temperatures. We define daily 
minimum and maximum temperatures of the ݅th meteorological station at the Day of Year (DOY) ݐ as ௠ܶ௜௡௜ ሺݐሻ and ௠ܶ௔௫௜ ሺݐሻ, respectively. The state-level mean minimum and maximum temperatures at the 
DOY ݐ  are defined as തܶ௠௜௡ሺݐሻ  and തܶ௠௔௫ሺݐሻ , respectively. In addition, to calculate the AGDDs, 
adjustment should be performed on തܶ௠௜௡ሺݐሻ and തܶ௠௔௫ሺݐሻ by the rules of corn response to temperature 
stress. The adjusted തܶ௠௜௡ሺݐሻ and തܶ௠௔௫ሺݐሻ are defined as ௠ܶ௜௡ሺݐሻ and ௠ܶ௔௫ሺݐሻ, respectively.  തܶ௠௜௡ሺݐሻ  and തܶ௠௔௫ሺݐሻ  are generated by weighted average of all available meteorological  
stations within the corresponding administrative border. The Thiessen polygon approach [30], a 
geospatial technique, is applied to graphically weight meteorological station data. In this approach, 
each station is weighted in direct proportion based on its area of influence in the total area of specified 
administrative unit. It assumes that any point of temperature condition is equal to that of the nearest 
station. We take the calculation of തܶ௠௜௡ሺݐሻ as example, and തܶ௠௔௫ሺݐሻ is the same. The തܶ௠௜௡ሺݐሻ over a 
state is calculated by തܶ௠௜௡ሺݐሻ ൌ ෍ ௜ݓ · ௠ܶ௜௡௜ ሺݐሻ௡௜ୀଵ  (1)

where ݊ is the number of available meteorological stations over the given state, e.g., state of Iowa, ݊ ൌ  ௜ is the weight of station ݅, which can be determined by its corresponding influence area ofݓ ;23
station ݅ , i.e., ݓ௜ ൌ ௧௢௧௔௟ܣ/௜ܣ , where ܣ௧௢௧௔௟  is the administrative area of the given state, and ܣ௜ 
represents the influence area of station ݅ that is divided by Thiessen polygon. The methods we used for 
calculating തܶ௠௜௡ሺݐሻ in this paper are especially applicable and useful to avoid the ambient temperature 
data, which may be missing from the time series of records in actual practice. 

Growth and development in crops is temperature dependent. Development does not occur unless 
temperatures exceed a lower base temperature ௕ܶ௔௦௘ , and ceases as temperatures exceed an upper 
threshold [31]. In the United States, the usual low temperature stress of corn or base temperature ௕ܶ௔௦௘ is 
10° [32]. In addition, previous studies have shown that corn growth slows at temperatures above 30° [32]. 
Therefore, we use 10° and 30° to adjust തܶ௠௜௡ሺݐሻ  and തܶ௠௔௫ሺݐሻ  accordingly. That is, if the lowest 
temperature for a day is below the 10°, then 10° is used as the ௠ܶ௜௡ሺݐሻ , and if the highest temperature 
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is over the 30°, then 30° is used as ௠ܶ௔௫ሺݐሻ. Start date is set as 1 April. Given the തܶ௠௜௡ሺݐሻ and തܶ௠௔௫ሺݐሻ, and according to the rule of adjustment, the AGDDs at the DOY ݐ can be calculated by  ݏܦܦܩܣሺݐሻ ൌ ෍ ൬ ௠ܶ௔௫ሺݐሻ െ ௠ܶ௜௡ሺݐሻ2 െ ௕ܶ௔௦௘൰௧  (2)

4. Corn Progress Percentages Estimation 

As a doubly embedded stochastic process, HMM involves at least two levels of uncertainty: a 
hidden stochastic process that is not directly observable, but can be observed only through another set 
of stochastic processes that generate the sequence of observations [21]. In our model, the observable 
variables (multisource features) include mean NDVI, fractal dimension, and AGDDs, while the 
unobservable (hidden) variables are corn progress stages. In the following sections, we will introduce 
the HMM briefly, then focus on the estimation of corn progress percentages for any specified time, as 
soon as the remote sensing and meteorological data are available. 

4.1. Specifying an HMM 

Corn progress can be assumed as a Markov process with ܰ hidden stages ܵ ൌ ሼ ଵܵ, … , ܵேሽ, and ܶ 
observation sequence ܱ ൌ ሼ ଵܱ, ڮ , ்ܱሽ. In this study, the hidden stages consist of pre-season ( ଵܵ), 
planted (ܵଶ), emerged (ܵଷ), silking (ܵସ), dough (ܵହ), dent (ܵ଺), mature (ܵ଻), and harvested (଼ܵ). The 
pre-season stage, which represents the period when corn hasn’t been planted, is added as the first time 
interval to facilitate the design of the model. Let ݍ௧, ሺݐ ൌ 1, … , ܶሻ be a variable of the hidden stage at 
time ݐ. For example, progress stage ௜ܵ, ሺ ݅ ൌ 1, … , ܰሻ at time ݐ is denoted by ݍ௧ ൌ ௜ܵ. Therefore, we 
can specify an HMM of a corn progress by its parameters ߣ ൌ ሺܣ, ,ܤ  is the stage transition ܣ ሻ, whereߎ
probability matrix whose entry, ܽ௜,௝ሺݐሻ ൌ ܲሺݍ௧ ൌ ௝ܵ|ݍ௧ିଵ ൌ ௜ܵሻ , ሺ ݅, ݆ ൌ 1, … , ܰሻ , determines the 
transition probability from stage ௜ܵ to stage ௝ܵ at time ܤ ;ݐ is the observation probability matrix whose 
entry, ௝ܾሺܱ௧ሻ ൌ ܲሺܱ௧|ݍ௧ ൌ ௝ܵሻ, indicates the probability that the observation ܱ௧ are generated by the 
stage ௝ܵ at time ߎ ;ݐ is the initial probability distribution whose entry, ߨ௜ ൌ  ܲሺݍଵ ൌ ௜ܵሻ, determines 
the probability of the model being initially in stage ௜ܵ  at the first time node (i.e., ݐ ൌ ௜ߨ .(1  also 
represents the prior probability of stage ௜ܵ at time ݐ ൌ 1. It can be extended by ߨ௜ሺݐሻ ൌ  ܲሺݍ௧ ൌ ௜ܵሻ 
that represents the prior probability of ௜ܵ at time ݐ. The joint probability distribution over all of the 
variables is given by  ܲ൫ݍଵ ൌ ܵ௥, … , ௧ݍ ൌ ௝ܵ, ଵܱ, … , ܱ௧|ߣ൯ൌ ܲ൫ ଵܱ, … , ܱ௧|ݍଵ ൌ ܵ௥, … , ௧ݍ ൌ ௝ܵ|ߣ൯ · ܲ൫ݍଵ ൌ ܵ௥, … , ௧ݍ ൌ ௝ܵ|ߣ൯ (3)

where, ݎ, ݆ ൌ 1, … , ܰ. 
In this study, the sequence ݍଵ, … , ௧ݍ  is assumed to be a typical Markov chain with a first-order 

Markov assumption, i.e., stage at ݍ௧ can only be decided by stage of previous latent variable ݍ௧ିଵ and 
independent of all other stages. We abbreviate ܲ൫ݍ௧ ൌ ௝ܵหݍ௧ିଵ ൌ ௜ܵ൯  as ܽ௜,௝ሺݐሻ . In addition, the 
observation ܱ௧  at time ݐ  can only be determined by its corresponding stage ௝ܵ . ܲ൫ܱ௧หݍ௧ ൌ ௝ܵ൯  is 
abbreviated as ௝ܾሺܱ௧ሻ. Thus, the probability that mentioned in Equation (3) is also equal to 
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ܲ൫ݍଵ ൌ ܵ௥, … , ௧ݍ ൌ ௝ܵ, ଵܱ, … , ܱ௧|ߣ൯ ൌ ௤భߨ · ෑ ܽ௤೟షభ,௤೟ሺ݇ሻ௧
௞ୀଶ · ෑ ܾ௤೟ሺܱ௞ሻ௧

௞ୀଵ  (4)

4.2. Mixture Model in HMMs 

HMM could be understood as combining a Markov chain model with a mixture model [33]. Two 
embedded stochastic processes in the HMM related to two chains: the external chain of observations 
and the internal chain of hidden stages (Figure 3). It is capable to represent uncertainties on stage 
determination and on observation [26]. In addition, “HMMs viewed as mixture” [34] represents that 
observation at each time node might be impacted by multiple hidden stages, assuming observation that 
forms ܰ clusters can be modeled as a mixture of ܰ components. A single time node corresponds to a 
mixture distribution with component densities ܾ௜ሺܱ௧ሻ, i.e., each stage of discrete variable ݍ௧ represents 
a different component. The probability of observation is given by  

ܲሺܱ௧ሻ ൌ ෍ ሻݐ௜ሺߨ · ܾ௜ሺܱ௧ሻே
௜ୀଵ  (5)

where, ߨ௜ሺݐሻ can be regarded as the weight of the ݅th component, and ∑ ሻݐ௜ሺߨ ൌ 1ே௜ୀଵ . 

Figure 3. Basic principle of proposed Hidden Markov Model (HMM). 

 

Mixture model provides flexibility and precision in modeling the underlying statistics of corn 
progress stages. HMM uses discrete hidden stage representations. It is applicable to combine the 
hidden stage of continuous probability space models and the discrete stage of HMMs to model time 
series with continuous but nonlinear dynamics. In our case, the continuous observation HMM, the 
entry of ܾ௜ሺܱ௧ሻ is given by continuous probability density functions, i.e., Gaussian distribution. 
  



Remote Sens. 2013, 5 1742 
 

 

4.3. NASS’s CPRs Normalization 

The NASS’s CPRs record the progress percentages of each growth stage by the percent complete 
(area ratio) in the ASD-level or state-level, e.g., percent complete of stage ௜ܵ at time ݐ noted as ݌௜௧,  ሺ݅ ൌ 1, … , ܰ). Ratios represent stages complete, rather than the proportion of each stage occupancy 
over an administrative unit in current time (Figure 4(a)). Corn phenological stages are unimodal in the 
life cycle. For a single corn plant, the arrival of ௝ܵ, ሺ1 ൑ ݅ ൏ ݆ ൑ ܰሻ means ௜ܵ has already completed. 
That is, ௜ܵ is nested within ௝ܵ, e.g., 19% of dough (ܵହ) has completed means at least 19% of silking 
(ܵସ) had completed already. 

Figure 4. NASS’s CPRs Normalization, Iowa (2011). PS = pre-season. PL = planted,  
EM = emerged, SI = silking, DO = dough, DE = dent, MA = mature, and HA = harvested. 
(a) original corn progress percentages; (b) normalized corn progress percentages. 

 

In our model, the normalized CPRs or stage prior ߨ௜ሺݐሻ can be straightforward to signify the area 
ratio of stage ௜ܵ  occupancy at time ݐ  for a specific administrative unit. Theoretically, ߨ௜ሺݐሻ can be 
calculated from the original recording of NASS’s CPRs. It should be noted that some stages have no 
records of NASS’s CPRs data, because stage has not arrived or even passed by. Thus, before the ߨ௜ሺݐሻ 
calculation, we need a data filling process for CPRs data. If the data recorded has not reached a certain 
stage, the value is set to 0, and if the developmental stage has passed, then the value is set to 1. 

We assume that each stage can only transform up to itself or its next stage within a week, For 
example, in Figure 4, emerged (ܵଷ) takes at least 9.5 days (bigger than a week) delays after the planted 
(ܵଶ). Then, ߨ௜ሺݐሻ is calculated by ߨ௜ሺݐሻ ൌ ቊ ,௜௧݌ ݂݅ ݅ ൌ ௜௧݌ܰ െ ௜ାଵ௧݌ , ݂݅ ݅ ് ܰ (6)

For example, in the 31th week (Iowa, 2011) shown in Figure 4(a), stages of dent (ܵ଺), dough (ܵହ) 
and silking (ܵସ) have completed 1%, 19% and 96%, respectively. Based on Equation (6), we know that 
this region has 1%, 18%, 77% and 4% of corn plants at dent, dough silking and emerged (ܵଷ) stages, 
respectively (Figure 4(b)). 
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4.4. HMM Parameters Determination 

As mentioned above, an HMM consists of three probabilities: initial probability distribution, stage 
transition probabilities, and observation probabilities. They can be estimated from archive data with 
the following processes. 

4.4.1. Initial Probability Distribution 

The initial probability distribution or stage prior probabilities, which specifies the onset time, 
characterizes the stage of model if observations are not taken into account [26]. To estimate the 
probability of each stage at the onset of growth season, we need a prior knowledge about preferential 
months for corn sowing [25]. Generally, the 13th week of our study area, is assumed at the pre-season 
stage for most corn plants. For practical applications, the initial probability can be calculated from the 
statistics on historical records at the same time slice, e.g., the initial stage probabilities of the 13th 
week are estimated by averaging of normalized records of NASS’s CPRs on all available years at the 
same week. 

4.4.2. Stage Transition Probability Matrix 

In conventional HMM, the stage transition probability matrix ܣ with ܰ ൈ ܰ is a global parameter, 
i.e., all weeks along the life cycle share the same transition probability matrix. However, this is not 
adapted to model corn growth. Transition probabilities should be allowed to vary, similarly to time 
inhomogeneous Markov chain [35]. The time-dependent transition probabilities also can be found in 
tumor expression profiles [36] and financial time-series data analysis [35]. In our case, the matrix ܣ 
varies along corn growth. For example, at the start of the life cycle, corn is likely to be at the initial 
progress stage, i.e., the transition from current stage to itself is strong, and to its next stage is weak. 
However, with the time passes by, transition to initial progress stage becomes weak gradually, and 
then vanished. Generally, the transition variation depends on the biophysical mechanisms and external 
factors driving corn plant growth. The former depends greatly on characteristics of a particular crop, 
e.g., breeding [37]. The latter conditioned mostly by soil characteristics, elevation, irradiation, 
temperature, precipitation, and human disturbances as well [26].  

Figure 5. Illustration of corn progress stage transition along a life cycle. 
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We consider stage transition probability matrix as a local HMM parameter (time-dependent). The 
probability ܽ௜,௝ሺݐሻ varies when time ݐ changes. We assume a life cycle is unimodal, i.e., stage ௜ܵ only 
can transform to itself or its next stage ௜ܵାଵ  (Figure 5). ܽ௜,௝ሺݐሻ  can be calculated directly from 
normalized NASS’s CPRs data. Thus, ܽ௜,௝ሺݐሻ is calculated by 

ܽ௜,௝ሺݐሻ ൌ
ەۖۖ
۔ۖۖ
ۓۖۖ

1, ݂݅ ݅ ൌ ݆ ൌ ܰ, ݐேሺߨ െ 1ሻ ് 0;1 െ ෍ ൫ߨ௞ሺݐሻ െ ݐ௞ሺߨ െ 1ሻ൯/ߨ௜ሺݐ െ 1ሻே
௞ୀ௜ାଵ , ݂݅ ݅ ൌ ݆ ് ܰ, ݐேሺߨ െ 1ሻ ് 0;෍ ൫ߨ௞ሺݐሻ െ ݐ௞ሺߨ െ 1ሻ൯/ߨ௜ሺݐ െ 1ሻே

௞ୀ௜ାଵ ,݂݅ ݅ ൌ ݆ െ 1, ݐேሺߨ െ 1ሻ ് 0;0, ݁ݏ݈݁
 (7)

where, ∑ ܽ௜,௝ሺݐሻே௝ୀଵ ൌ 1. ݅ and ݆ determine the position of stages with respect to the time variable ݐ. 
There are four restrictions in Equation (7). The first three relate to self-transition probability at the end, 
self-transition probability in the chain, and forward stage change, respectively. For example, if ݍ௧ିଵ ൌ ܵ଺ , then all transitions except ܽ଺,଺ሺݐሻ  and ܽ଺,଻ሺݐሻ  are zero element. ܽ଺,଺ሺݐሻ  and ܽ଺,଻ሺݐሻ 
respectively correspond to the second and third restrictions, which sum up to 1. 

In practical applications, the stage probability transform matrix is determined through a two-step 
strategy as follows: (1) mean progress percentages are calculated by averaging of normalized 
recordings on all available years at each time slice; and (2) stage transform probability matrix of each 
time slice is calculated by Equation (7). The first averaging step will result in a certain degree of errors 
especially progress stages that are produced by unexpected factors, including climate change, farming 
practices, and natural disasters. However, the hidden stages in our HMM, which controlled by stage 
transition probabilities, are regarded as stochastic process and it is able to incorporate uncertainties. 

4.4.3. Observation Probability Matrix 

The probability of observation being generated in a certain stage is called the observation 
probability. In this paper, the feature vector is comprised of mean NDVI, fractal dimension, and 
AGDDs. Observation values continuously change with the effect of phenological alternation. 
Moreover, there would be multiple progress stages occupied in the same time period of an 
administrative unit. Thus, we model observation to be a mixture of stages (Figure 3). The mixing 
weights are determined by the area ratio of each stage occupation, which coincide with the prior 
probabilities of each stage ߨ௜ሺݐሻ. Probability density function associated with observations for each 
administrative unit can be modeled by a multivariate Gaussian distribution. Thus, in Equation (5), ܲሺܱ௧ሻ is a linear superposition of Gaussian distribution, and ܾ௜ሺܱ௧ሻ is parameterized on mean vector ߤ௜ 
and covariance matrix ߑ௜. ܾ௜ሺܱ௧ሻ is given by ܾ௜ሺܱ௧ሻ ൌ ௜ܰሺܱ௧|ߤ௜, ௜ሻߑ ൌ 1ඥሺ2ߨሻௗ|ߑ௜| · ݌ݔ݁ ቆെ ሺܱ௧ െ ′௜ሻߤ · ௜ିߑ ଵ · ሺܱ௧ െ ௜ሻ2ߤ ቇ (8)
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where, ݀  refers to the dimensionality of the observation space, and ݀ ൌ 3  causing three kinds of 
features were selected in this study.  

In our model, ߤ௜  and ߑ௜  are global HMM parameters, i.e., they are independent to time. The ݅th 
component weight (or mixing coefficient) ߨ௜ሺݐሻ knowns from ground surveying, i.e., only ߤ௜ and ߑ௜ 
are unknown. Given an observation sequence ଵܱ, ڮ , ்ܱ, we can determine ߤ௜ and ߑ௜ using maximum 
likelihood. The log-likelihood function with parameter space ߆ ൌ ሼߤ,  ሽ is given byߑ

௧ሻܱ|߆ሺܮ݈݊ ൌ ෍ ݈݊ ෍ ሻݐ௝ሺߨ · ௝ܰ൫ܱ௧หߤ௝, ௝൯ேߑ
௝ୀଵ

்
௧ୀଵ  (9)

and it can be estimated by Expectation Maximization (EM) [38] iterative algorithm with E-step 
(expectation) and M-step (maximization). EM starts with initial values for the parameters ߤ௜ and ߑ௜, 
and iteratively performs these two steps until convergence to a local maximum of the likelihood 
function. In the ሺݍ ൅ 1ሻth iteration, the ߤ௝௤ାଵ and ߑ௝௤ାଵ are calculated by 

௝௤ାଵߤ ൌ ∑ ܱ௧ · ∑ሻ௧்ୀଵݐ௝௤ሺߚ ሻ௧்ୀଵݐ௝௤ሺߚ  (10)

Σ௝௤ାଵ ൌ ∑ ሻݐ௝௤ሺߚ · ሺܱ௧ െ ௝௤ାଵሻߤ · ሺܱ௧ െ ௝௤ାଵሻ′௧்ୀଵߤ ∑ ሻ௧்ୀଵݐ௝௤ሺߚ  (11)

where ߚ௝௤ሺݐሻ ൌ ሻݐ௝ሺߨ · ܰሺܱ௧|ߤ௝௤,Σ௝௤ሻ∑ ሻݐ௜ሺߨ · ܰሺܱ௧|ߤ௜௤,Σ௜௤ሻே௜ୀଵ  (12)

In our case, the observation probabilities are composed by eight Gaussian distribution components. 
We approximately assume ߚ௝଴ ൌ /ሻݐ௝ሺߨ ∑ ሻே௜ୀଵݐ௝ሺߨ  to initialize the ߤ௝ଵ  with Equation (10) and ߑ௝ଵ  
with Equation (11), then iteratively perform EM algorithm until convergence to a local maximum. 
Meanwhile, we record the corresponding mean vector ߤ௜  and covariance matrix ߑ௜  during the  
last iteration. 

4.5. Progress Percents Estimation 

The goal of this paper is to determine the area proportion of each progress stage. This problem can 
be regarded as computing the posterior over the hidden stages at each time ݐ, given HMM parameter ߣ, 
and all available observations up to the current time, e.g., ܲሺݍ௧ ൌ ௝ܵ| ଵܱ, … , ܱ௧ሻ. This is an online 
process (real-time), and can be solved by filtering based algorithms. We should emphasize that 
filtering, smoothing (offline), and prediction problems all compute the probability of hidden stages for 
given observations, e.g., ܲሺݍ௧ ൌ ௝ܵ| ଵܱ, … , ܱ௛ሻ . More specifically, the difference is the smoothing 
problem compute by ݐ ൏ ݄, the filtering ݐ ൌ ݄, and prediction ݐ ൐ ݄. We note ܲ൫ݍ௧ ൌ ௝ܵ, ଵܱ, … , ܱ௧൯  
as ߢ௝ሺݐሻ, which represents the probability of all the observation up to time ݐ and the stage at time ݐ is ௝ܵ, then ܲ൫ݍ௧ ൌ ௝ܵห ଵܱ, … , ܱ௧൯ ൌ ∑ሻݐ௝ሺߢ ሻே௜ୀଵݐ௜ሺߢ  (13)
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Generally, the forward algorithm is directly adapted to calculate ߢ௝ሺݐሻ for the observation sequence 
of increasing interval ݐ. Then, ߢ௝ሺݐሻ can be obtained recursively according to ߢ௝ሺݐሻ ൌ ൭෍ ݐ௜ሺߢ െ 1ሻே௜ୀଵ · ܽ௜,௝ሺݐሻ൱ · ௝ܾሺܱ௧ሻ (14)

with the initial forward probabilities as the joint probability of state ௝ܵ and initial observation ଵܱ ߢ௝ሺ1ሻ ൌ ௝ߨ · ௝ܾሺ ଵܱሻ (15)

After estimating ܲሺݍ௧ ൌ ௝ܵ| ଵܱ, … , ܱ௧ሻ which also represents area ratio of stage ௝ܵ occupancy at time ݐ for a specific administrative unit, an inverse normalize transfer process should be deployed. We note ߜ௜ሺݐሻ as the progress percent of stage ௜ܵ at time ݐ. Then it can be calculated by 

ሻݐ௜ሺߜ ൌ ෍ ܲሺݍ௧ ൌ ܵ௞| ଵܱ, … , ܱ௧ሻே
௞ୀ௜  (16)

where, ݅ ൌ 2, … , ܰ. 

5. Results and Discussions  

By constructing a general HMM framework for corn progress stages estimation with multisource 
features, seven key corn progress stages and its percentages can be estimated in the real-time. 
Experiments have been conducted on the states of Iowa, Illinois, and Nebraska of the United States. A 
decadal data (2002 throughout 2011) during the corn growing seasons is selected for this study. The 
13th week is set as the start date. 

5.1. RMSE Results 

The accuracy of the experiments is evaluated by Root Mean Squared Error (RMSE) [39], which 
measures the difference between estimated and observed values. The values in the following are 
expressed as a percentage, because the estimation results in corn progress percentages. Lower values 
indicate less residual variance. The evaluation covers the whole corn life cycle. The pre-season stage is 
not included in the error evaluation, because it is only defined to facilitate our model. Figure 6 shows 
the RMSE of all seven NASS/USDA defined corn progress stages in states of Iowa, Illinois, and 
Nebraska, respectively. All the results are the average of 100 runs. In each run, 7 year data are 
randomly selected for training, and remaining 3 year are used for testing. Results reported in error bar 
are significantly better, with confidence level 95%. 

By analyzing errors in the processing of stage percentages determination (Figure 6), we find that the 
RMSE increases gradually, and reaches the first greater maximum around the 20th week. The 
corresponding RMSE is 18.29% (Iowa), 23.71% (Illinois), and 16.82% (Nebraska). This is likely 
caused by the uncontrollable planting practices, e.g., different planting speed in different year. Then, 
the RMSE decreases gradually until the 25th week. By referring to Figure 4, we find that in this period 
the proportion of emerged stage increases gradually, and only emerged left around the 25th week. In 
the week, results are less affected by overlaps of stages. After the emerged stage, the RMSE reaches 
another maximum around the 28th week, and then fluctuates around 18.0% (Iowa), 18.5% (Illinois), 
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and 16.5% (Nebraska) until the 43th week. This is likely caused by progress stage overlaps, e.g., 
harvest stage is overlapped with dented and mature stages. During this period, results will be more 
affected by model errors, which are generated in the parameters estimation of state transition 
probabilities and observation probabilities. In addition, the errors inherited from original data have also 
impacted the accuracy of estimation. 

Figure 6. RMSE of corn progress percentage estimates. (a) Iowa; (b) Illinois; (c) Nebraska. 

 
(a) 

 
(b) 

 
(c) 
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5.2. Accuracy Comparison 

Although it is not the same case on the estimation of corn progress percentages, we try to find a 
comparable case to compare our method with spectral pixel-wise based method. Yu et al. [40] 
developed kernel-based methods to estimate the corn phenological stages that defined by NASS/USDA. 
The base kernel, which is determined from modeling annual NDVI profiles of previous years in the 
pixel-wise, is tolerant to noisy data and missing data. Comparison in different combinations on 
threshold (global or local), masking (percentage of pure pixels, e.g., 90% and 100%), and filter 
algorithms (e.g., quintic polynomial, double Sigmoid, Savitzky-Golay, and Spline) have been conducted. 
The test is conducted in the state of Iowa in year 2006. The study also gives the RMSE of modeled 
results against NASS’s CPRs for the whole year. The lowest RMSE is 24.6%, corresponding to the 
combination of local threshold, pure pixels and Spline-based smoothing method. 

To perform better comparison with the results that presented in [40], we convert our weekly RMSE 
into whole year RMSE. Our result shows that the RMSE is 13.27% (Iowa), 16.14% (Illinois), and 
12.91% (Nebraska). The comparison results indicate that our method is better than spectral pixel-wise 
based methods on the estimation of corn progress to some extent. 

5.3. Performance and Analysis 

One of the advantages of this method is that we can estimate the proportion of each corn progress 
stage in a real-time through the established model and the currently acquired data. The estimated 
results can correspond to NASS’s CPRs directly. The following factors can significantly impact  
the results.  

(1) The accuracy of NASS’s CPRs. The NASS’s CPRs are surveyed data, and mainly depended on 
the subjective assessment of investigators. Thus, a bias error is inevitably introduced in the 
NASS’s CPRs data [41]; 

(2) The quality of MODIS NDVI. Noise has inevitably disturbed the daily MODIS-NDVI images, 
e.g., cloud cover, missing data, mixed pixels, or some of the systematic errors that reduce the 
index value of daily MODIS-NDVI images; 

(3) The reliability of meteorological data, regarding to the observation data of weather stations, 
data missing, instrumentation, or observation station location change may affect the data 
homogeneity and spatial coverage; 

(4) Irregularities in raining and temperature pattern in different years, e.g., extensive drought 
occurs in a particular year, can significantly affect the stability of results. It would specially 
impacted on HMM parameters training, e.g., the stage transition probability matrix. 

(5) The insufficiency of temporal resolution. The temporal resolution of data is an important factor 
that affects the accuracy of corn progress stages estimation. As shown in Figure 4, the emerged 
stage just 9.5 days delays to planted stage, and dent stage approximate 15.4 days delays to 
dough stage. Accurate distinction between these growth stages requires a higher temporal 
resolution. It is really intractable that we have to trade off temporal resolution and data quality.  

There are many suggested ways, which would improve the accuracy of the results. One believes 
that although an image compositing process has been conducted and contributed to eliminate noises in 
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this paper, more reliable quality control for original remote sensing data will suppress noises and 
improve the accuracy of the corn progress percentage estimation. Another potential solution is to use 
high-order HMMs. High-order stage transition dependency would result in good modeling of stage 
duration [42]. Mari et al. [43] carried out a comparative study between first- and second-order HMMs 
on automatic word recognition. Seifert et al. [44,45] utilized high-order HMM to improve modeling of 
spatial dependencies between chromosomal regions. Derrode et al. [46] introduced a high-order hidden 
Markov chain for unsupervised SAR image segmentation, which allows one to take into account more 
complex and correlated noise. Study on the applicability of high-order HMM for estimating corn 
progress stages is needed to further determine. 

6. Conclusion  

Remote sensing and meteorological data have been separately employed for detecting crop progress 
stages in most recent studies. In this paper, we have performed the integration of multisource data for 
retrieving corn progress metrics. Three features in the state-level have been chosen, including mean 
NDVI, fractal dimension, and AGDDs. The mean NDVI and fractal dimension are extracted from 
MODIS-NDVI, while the AGDDs derived from meteorological data. It is worth mentioning that the 
fractal dimension, which indicates the spatial pattern of remote sensing image, is used to measure the 
changes of corn crop along the life cycle. In order to estimate corn progress stages in the real-time, and 
directly relate to ground survey data, e.g., NASS’s CPRs, an HMM-based method has been proposed. 
The multisource features are considered as the input to the model, and no additional pre-process is 
conducted, e.g., smoothing, and filtering. It is also worth mentioning that the developed model is 
different from conventional HMM models in several aspects: (1) The stage transition probability 
matrix has been considered as a local HMM parameter, which is reasonable for modeling the growth of 
corn; (2) Because several stages may jointly affect the observation in the state-level at each time node, 
the observation probability matrix has been constructed with a mixture model, i.e., observation at each 
time node is viewed as the mixture of stages with Gaussian distribution. The modified HMM is 
suitable for estimating the corn progress percentages in the real-time. Experimental studies have been 
conducted in the states of Iowa, Illinois, and Nebraska of the United States. Comparisons between our 
method and a series of VIs time series based methods also have been implemented. The results 
demonstrate that the proposed method performed well on the real-time estimation of corn progress 
stages. The corn progress percentages can be estimated with accuracies of ±12.91%–16.14%, which is 
better than the results of spectral pixel-wise based methods (±24.6%). Although the described examples 
were performed on corn crop and the state-level data sets, the proposed method is also applicable for the 
real-time estimation of progress stages on other types of crop in multiple county-level. 
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Appendix 

Table A1. Basic information of selected meteorological stations. Meteorological data 
include ID, name, and the geographic coordinate (i.e., latitude, longitude, and elevation) of 
each station. SA means US state abbreviations. 

No ID SA Name Lat 
(°N) 

Lon 
(°W) 

Elev 
(m) No ID SA Name Lat 

(°N) 
Lon 
(°W) 

Elev 
(m) 

1 130112 IA ALBIA 3 NNE 41.07 92.79 268.2 48 116579 IL PANA 3E 39.37 89.02 213.4 
2 130133 IA ALGONA 3 W 43.07 94.31 377.6 49 116610 IL PARIS WTR WKS 39.64 87.69 207.3 
3 130600 IA BELLE PLAINE 41.88 92.28 246.9 50 116910 IL PONTIAC 40.89 88.64 198.1 
4 131402 IA CHARLES CITY 43.08 92.67 309.1 51 117551 IL RUSHVILLE 40.12 90.56 201.2 
5 131533 IA CLARINDA 40.72 95.02 298.7 52 118147 IL SPARTA 1 W 38.12 89.72 163.1 
6 131635 IA CLINTON #1 41.79 90.26 178.3 53 118740 IL URBANA 40.08 88.24 219.8 
7 132724 IA ESTHERVILLE 2 N 43.43 94.82 396.8 54 118916 IL WALNUT 41.55 89.6 210.3 
8 132789 IA FAIRFIELD 41.02 91.96 225.6 55 119241 IL WHITE HALL 1 E 39.44 90.38 176.8 
9 132864 IA FAYETTE 42.85 91.82 344.4 56 119354 IL WINDSOR 39.44 88.6 210.3 
10 132977 IA FOREST CITY 2 NNE 43.28 93.63 396.2 57 250130 NE ALLIANCE 1WNW 42.11 102.9 1,217.4 
11 132999 IA FORT DODGE 5NNW 42.58 94.2 347.5 58 250375 NE ASHLAND NO 2 41.04 96.38 326.1 
12 134063 IA INDIANOLA 2W 41.37 93.65 287.1 59 250435 NE AUBURN 5 ESE 40.37 95.75 283.5 
13 134142 IA IOWA FALLS 42.52 93.25 344.4 60 250640 NE BEAVER CITY 40.13 99.83 658.4 
14 134735 IA LE MARS 42.78 96.15 364.2 61 251145 NE BRIDGEPORT 41.67 103.1 1,117.4 
15 134894 IA LOGAN 41.64 95.79 301.8 62 251200 NE BROKEN BOW 2 W 41.41 99.68 762 
16 135769 IA MT AYR 40.71 94.24 359.7 63 252020 NE CRETE 40.62 96.95 437.4 
17 135796 IA MT PLEASANT 1 SSW 40.95 91.56 222.5 64 252100 NE CURTIS 3NNE 40.67 100.49 829.4 
18 135952 IA NEW HAMPTON 43.05 92.31 349.9 65 252205 NE DAVID CITY 41.25 97.13 490.7 
19 137147 IA ROCK RAPIDS 43.43 96.17 411.5 66 252820 NE FAIRBURY 5S 40.07 97.17 411.5 
20 137161 IA ROCKWELL CITY 42.4 94.63 364.2 67 252840 NE FAIRMONT 40.64 97.59 499.9 
21 137979 IA STORM LAKE 2 E 42.63 95.17 434.3 68 253175 NE GENEVA 40.53 97.6 496.8 
22 138296 IA TOLEDO 3N 42.04 92.58 289.3 69 253185 NE GENOA 2 W 41.45 97.76 484.6 
23 138688 IA WASHINGTON 41.28 91.71 210.3 70 253365 NE GOTHENBURG 40.94 100.15 787.9 
24 110072 IL ALEDO 41.2 90.75 219.5 71 253615 NE HARRISON 42.69 103.88 1,478.3 
25 110187 IL ANNA 2 NNE 37.48 89.23 195.1 72 253630 NE HARTINGTON 42.62 97.26 417.6 
26 110338 IL AURORA 41.78 88.31 201.2 73 253660 NE HASTINGS 4N 40.65 98.38 591.3 
27 111280 IL CARLINVILLE 39.29 89.87 189.3 74 253735 NE HEBRON 40.18 97.59 451.1 
28 111436 IL CHARLESTON 39.48 88.17 198.1 75 253910 NE HOLDREGE 40.45 99.38 707.1 
29 112140 IL DANVILLE 40.14 87.65 170.1 76 254110 NE IMPERIAL 40.52 101.66 999.7 
30 112193 IL DECATUR WTP 39.83 88.95 189 77 254440 NE KIMBALL 2NE 41.25 103.63 1,435 
31 112483 IL DU QUOIN 4 SE 37.99 89.19 128 78 254900 NE LODGEPOLE 41.15 102.64 1,168 
32 113335 IL GALVA 41.17 90.04 246.9 79 254985 NE LOUP CITY 41.28 98.97 627.3 
33 113879 IL HARRISBURG 37.74 88.52 111.3 80 255080 NE MADISON 41.83 97.45 481.6 
34 114108 IL HILLSBORO 39.15 89.48 192 81 255310 NE MC COOK 40.22 100.62 796.1 
35 114198 IL HOOPESTON 1 NE 40.47 87.66 216.4 82 255470 NE MERRIMAN 42.92 101.71 986 
36 114442 IL JACKSONVILLE 2E 39.73 90.2 185.9 83 255565 NE MINDEN 40.52 98.95 658.4 
37 114823 IL LA HARPE 40.58 90.97 210.3 84 256135 NE OAKDALE 42.07 97.97 521.2 
38 115079 IL LINCOLN 40.15 89.34 177.7 85 256570 NE PAWNEE CITY 40.12 96.16 378 
39 115326 IL MARENGO 42.29 88.65 248.4 86 256970 NE PURDUM 42.07 100.25 819.9 
40 115712 IL MINONK 40.91 89.03 228.6 87 257070 NE RED CLOUD 40.1 98.52 524.3 
41 115768 IL MONMOUTH 40.92 90.64 227.1 88 257515 NE SAINT PAUL 4N 41.27 98.47 541 
42 115833 IL MORRISON 41.80 89.97 183.8 89 257715 NE SEWARD 40.9 97.09 438.9 
43 115901 IL MT CARROLL 42.1 89.98 195.1 90 258395 NE SYRACUSE 40.68 96.19 335.3 
44 115943 IL MT VERNON 3 NE 38.35 88.85 149.4 91 258465 NE TECUMSEH 1S 40.35 96.19 338.3 
45 116446 IL OLNEY 2S 38.7 88.08 146.3 92 258480 NE TEKAMAH 41.79 96.23 338.3 
46 116526 IL OTTAWA 5SW 41.33 88.91 160 93 258915 NE WAKEFIELD 42.27 96.86 423.7 
47 116558 IL PALESTINE 39 87.62 140.2        
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