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Abstract: This paper presents a novel image classification scheme for benthic coral reef 
images that can be applied to both single image and composite mosaic datasets. The 
proposed method can be configured to the characteristics (e.g., the size of the dataset, 
number of classes, resolution of the samples, color information availability, class types, 
etc.) of individual datasets. The proposed method uses completed local binary pattern 
(CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, and opponent 
angle and hue channel color histograms as feature descriptors. For classification, either k-
nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or 
probability density weighted mean distance (PDWMD) is used. The combination of 
features and classifiers that attains the best results is presented together with the guidelines 
for selection. The accuracy and efficiency of our proposed method are compared with other 
state-of-the-art techniques using three benthic and three texture datasets. The proposed 
method achieves the highest overall classification accuracy of any of the tested methods 
and has moderate execution time. Finally, the proposed classification scheme is applied to 
a large-scale image mosaic of the Red Sea to create a completely classified thematic map 
of the reef benthos.  
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1. Introduction 

For many, the term “remote sensing” is synonymous with satellite imagery or perhaps satellite and 
aerial imagery. Remote sensing, thus defined, implies a platform (overhead), a technology (usually 
passive optics) and a spatial scale (m to km pixels, regional to global extent). More broadly, however, 
remote sensing includes any method of detection or measurement made without directly contacting the 
object of study. Several technologies that are relevant for coral reef remote sensing, such as single- or 
multi-beam sonars, for example, fall under a more inclusive definition of remote sensing. 

Underwater imagery is another remote sensing technology that has been used in virtually every aspect 
of marine science. In particular, images of the seabed have become vital tools for exploration, archaeology, 
marine geology and marine biology, among other fields. Underwater images, like terrestrial, hand-held 
images, tend to be overlooked even with a broad definition of “remote sensing”, yet they complement 
satellite, airborne and ship-based sensors by providing information at finer spatial resolution (< mm to cm 
scale pixels), albeit over a smaller area per image or per unit time of data collection. 

The high spatial resolution afforded by underwater imagery of the seabed is fundamentally different 
from satellite, aerial and ship-borne sensors in the sense that images taken close to the seabed may be 
categorized as methods of direct remote sensing for the study of coral reef biodiversity (Turner et al. [1]). 
Direct remote sensing means that the actual individuals being studied (benthic organisms in this case) 
can be resolved. Overhead imagery and acoustic mapping, in contrast, are indirect methods for study in 
coral reef biology and ecology, because, rather than resolving individual organisms, they quantify 
proxies of biodiversity or they correlate with in situ measurements (Turner et al. [1]).  

Direct remote sensing of the seabed complements indirect methods of coral reef remote sensing, 
because it allows different types of measurements to be made. For example, species identification for 
many benthic organisms is possible from underwater images, so species diversity indices can be 
calculated. Sizes of individual coral colonies can be measured and tracked through time. The fate of 
individuals impacted by bleaching or disease can be tracked through time. Many other uses for the 
imagery can be imagined, but in general, such measurements are infrequently used, due to two 
obstacles. First, until recently, it was difficult to obtain large numbers of seabed images across large 
enough areas to create statistically viable sample sizes. Second, extraction of quantitative information 
from seabed images is a laborious task that requires a significant time commitment of expert analysts. 

Two technological advancements in the early 2000s qualitatively changed the acquisition of 
underwater imagery. One development was the widespread availability of digital, consumer-level still 
and video cameras. Digital cameras, along with associated advancements in batteries and storage, have 
largely removed constraints on the quantity of images that can be acquired. In 2000, a SCUBA diver 
with a Nikonos underwater camera was limited to 36 photographs per dive, but in 2013, the same diver 
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with a digital camera can capture literally thousands of images in a single dive. The second 
development was the increased sophistication and availability of platforms, such as remotely operated 
vehicles (ROVs), autonomous underwater vehicles (AUVs) and towed bodies. These new platforms 
allow image capture at depths and across spatial scales that are not possible with divers or practical 
(for expense reasons) with manned submersibles. 

Advancements in underwater image acquisition have largely removed the first obstacle to fully 
exploiting seabed images for coral reef remote sensing, but, ironically, they have exacerbated the 
second. It is now easy and common to collect more imagery during reef surveys that can be practically 
analyzed by hand. Nevertheless, images of reef surveys are useless to understanding reef processes 
unless examined by an expert analyst. Software packages, such as CPCe [2], have facilitated the 
transfer of information from imagery to analysis; however, humans are still “in the loop.”  

An automated process for classifying underwater optical imagery would enhance the study of coral 
reef dynamics and processes by reducing the analysis bottleneck and allowing researchers to take full 
advantage of large underwater image datasets. Efforts to automate classification have been made for 
well over a decade [3], but no single algorithm is yet widely accepted as robust. A few of the most 
challenging obstacles to classification accuracy in coral reef environments include: significant  
intra-class and inter-site variability in the morphology of benthic organisms [4], complex spatial 
borders between classes on the seabed, subjective annotation of training data by different analysts, 
variation in viewpoints, distances and image quality, limits to spatial and spectral resolution when 
trying to classify to a free taxonomic scale, partial occlusion of objects due to the three-dimensional 
structure of the seabed, lighting artifacts due to wave focusing [5–7] and variable optical properties of 
the water column. 

The existing methods for coral reef image classification have been tested on unique image datasets 
within the papers in which they were published; their utility has not been demonstrated on common 
datasets. Without comparison on standard datasets, it is impossible to assess the relative effectiveness 
and efficiency of these methods: Pizarro [8], Beijbom [4], Marcos [9] and Stokes and Deane [10]. All 
the previous algorithms used fixed classification schemes for all types of underwater optical image 
datasets. In general, however, characteristics, such as the size, number, resolution and color 
information of the images, vary from dataset to dataset. Therefore, a fixed recipe for automated 
classification for all types of optical image datasets might not always provide the best solution. 

The goals of this work are to develop an improved method for classifying underwater optical 
images of coral reefs and to compare the proposed method with existing alternative approaches. The 
main difference of this new method, relative to previous algorithms, is that classification schemes 
should be malleable depending on the characteristics of each dataset (e.g., the size of the dataset, 
number of classes, resolution of the samples, color information availability, class types, etc.). In the 
proposed method, different combinations of features and classifiers are tuned to each dataset prior to 
classification to increase classification accuracy. Our new method is compared with the existing 
algorithms for accuracy and time requirement on six image datasets (Section 4). Finally, image 
classification methods were applied to a composite mosaic image to demonstrate the applicability of 
this approach for images that cover areas larger than a single image.  
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2. Review of Existing Algorithms for Automated Benthic Classification Using Optical Imagery  

A short summary of existing algorithms for automated benthic classification using optical imagery 
is given in Table 1, with entries in bold corresponding to the published methods tested in Sections 4 
and 5 of this paper.  

Table 1. A brief summary of methods classifying benthic images. All the methods 
mentioned here are specific to coral reef habitat classification. The methods in bold are 
used in Sections 5 for performance comparison and are referred to by the underlined 
author’s names. The last column, N, contains the number of classes used for testing in each 
method, as reported in their respective papers. 

Authors Features Classifiers N 

Beijbom [4] Maximum response (MR) filter bank 
Library for support vector 
machines (LIBSVM) 

9 

Padmavathi [11] 
Bag of words using scale-invariant feature transform 
(SIFT) and kernel principal component analysis (KPCA) 

Probabilistic neural network 
(PNN)  

3 

Stokes & Deane 
[10] 

Color: (RGB histogram) 
Texture: discrete cosine transform (DCT) 

Probability density weighted 
mean distance (PDWMD) 

18 

Marcos [12] 
Texture: local binary pattern (LBP)  
Color: normalized chromaticity coordinate (NCC) 
histogram 

Linear discriminant analysis 
(LDA) 

2 

Pizarro [8] 

Color: normalized chromaticity coordinate (NCC) 
histogram 
Texture: bag of words using scale-invariant feature 
transform (SIFT), Saliency: Gabor filter response 

Voting of the best matches 8 

Mehta [13] Pixel intensity Support vector machines (SVM) 2 

Gleason [14] 
Multi-spectral data 
Texture: grey level co-occurrence matrix (GLCM) 

Distance measurement 3 

Johnson-Roberson 
[15,16] 

Texture: Gabor filter response 
Acoustic 

Support vector machines (SVM) 4 

Marcos [9] 
Color: normalized chromaticity coordinate (NCC) 
histogram 
Texture: local binary pattern (LBP) 

3-layer feed-forward back 
projection neural network 

3 

Clement [17] Texture: local binary pattern (LBP) Log-likelihood measure 2 

Soriano [18] 
Color: normalized chromaticity coordinate (NCC) 
histogram 
Texture: local binary pattern (LBP) 

Log-likelihood measure 5 

Pican [3] 
Texture: grey level co-occurrence matrix (GLCM) 
self-organizing map 

Kohonen-Map 30 

Only published methods that exclusively used optical imagery and produced accurate multi-class 
classifications were chosen for comparison against the proposed classification scheme. Among these 
works, Marcos [9] used mean hue-saturation value (HSV) or normalized chromaticity coordinate 
(NCC) color features, which in many cases, are not discriminative enough for classification among 
classes. In the work of Pizarro [8], an entire image is classified as one class. Therefore, within-image 
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The coefficient for the red color channel modification is computed with the following equation:  

1 1 1 2 2 2 3 3 3
2 2 2

1 1 2 2 3 3

R R R
R

R R R

R R R R R RC
R R R

α α α
α α α

+ +=
+ +

 

Here, 1R  is the ideal red component value of the first marker, R1 is the red component of the first marker 

of the working image, αR1 is the corresponding weight of individual color channels and CR is the red 
correction factor. In our case, we used the same weights for all three channels. However, since the red 
color attenuates very fast in the underwater environment, αR1 could be given less weight than the other 
channels when applied to different data. Once computed, the red correction factor CR is multiplied with 
the linear version of the red color channel to obtain an approximately corrected version.  

The second image enhancement sub-step, (mandatory) is the Contrast Limited Adaptive Histogram 
Specification (CLAHS) [21]. CLAHS locally enhances the contrast of images by dividing the image 
into several subregions and by transforming the intensity values of each subregion independently to 
comply with a specified target histogram. This method works very effectively for underwater images 
of any size or resolution. For our implementation, we divided the entire image into image patches, 
which ranged in size from 64 × 64 to 256 × 256 pixels, depending on the types of classes present in the 
dataset. Then, each image patch was further divided into 4 × 4 subregions. CLAHS was applied to the 
subregions within each patch.  

The third and fourth sub-steps are optional, as they require color images. The third image 
enhancement sub-step (optional) attempts to reduce the color difference caused by different lighting 
conditions in different images in the dataset using the comprehensive image normalization  
method [22]. With this normalization, the color features present in the images become more consistent, 
making color a better feature for classification throughout the data.  

Finally, the fourth image enhancement sub-step (optional) is color channel stretching. In this sub-step, 
for each individual color channel, we determine the 1.5% and 98.5% intensity percentile, subtract the 
lower from all intensities in that channel and divide the result by the upper intensity percentile.  

3.2. Step Two: Feature Extraction 

Gehler et al. [23] showed that a combination of several texture and color features leads to better 
image classification results than any single type of feature. Our proposed method uses the Gabor filter 
response [24], grey level co-occurrence matrix (GLCM) [25–27] and completed local binary pattern 
(CLBP) [28] as texture descriptors and the opponent angle and hue color histograms (optional) as color 
descriptors [29] to define the features of each image patch to be used in the classification. This 
combination was chosen to represent core texture and color characteristics of given images. In the case 
of the Gabor filter, by defining four sizes and six orientations, we obtain 24 images of filter response. 
Using mean and standard deviation for each of these 24 images, a feature vector of 48 values is 
created. For GLCM features, we use the 22 features [25–27], as listed in Appendix 1. For CLBP 
features, we use the rotation invariant format, resulting in a histogram of 108 bins when concatenated 
for three window sizes of eight, 16 and 24 pixels. The opponent angle and hue color histogram features 
each use 36 bins, for a total of 72 features. 
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3.3. Step Three: Kernel Mapping 

Kernel mapping is used to project the feature vectors to linearly separable feature space. We use 
chi-square and Hellinger kernels in this step. In the histogram features (in our case, the CLBP, 
opponent angle and hue histograms), the rarest bins contain more discriminative information, because 
most of the high frequency bins correspond to the background pixels. The chi-square and Hellinger 
kernels (also known as the Bhattacharyya coefficient) emphasis the low frequency bins (Table 2). 
Also, L1 normalization is used to rescale all the features, so that they are comparable.  

Table 2. Chi-square and Hellinger kernel functions. Here, h and h' are normalized 
histograms, where h' is derived from h with first order differentiation. k is the kernel 
function, γ is the regularization coefficient, and i and j corresponds to histogram bin index.  

Kernel Name Formulation

Chi-square 
( )2'

1'( , ) exp '

h hj j
k h h

h hj j jγ

⎛ ⎞
−⎜ ⎟

⎜ ⎟= − ∑
⎜ ⎟+
⎜ ⎟
⎝ ⎠  

Hellinger ' '( , ) ( ) ( )k h h h i h ii= ×∑

3.4. Step Four: Dimension Reduction (Optional) 

This step performs a mapping of the data to a lower dimensional space in such a way that the 
variance of the data in the low-dimensional representation is maximized. With lower dimension 
(depending on the dataset; in our case, it was almost two-thirds of the original dimension), the 
complexity of the method reduces, as well as the hardware requirements. For highly correlated datasets 
of moderate size (datasets with training samples more than 5,000 and less than 12,000 are considered 
as moderate ones), it was found that reducing the dimension of the feature space using principal 
component analysis (PCA) or PCA with Fisher kernel mapping [30] increases the accuracy when 
classifying with k-nearest neighbor (KNN). Datasets where classes have high inter-class variability and 
low intra-class variability are referred to as highly correlated. In such cases, we transform the feature 
vector with PCA using exhaustive search over all possible dimensions to find the optimum dimension 
where the classification accuracy is maximum. This step is optional, as it is mainly used for reducing 
hardware requirements. 

3.5. Step Five: Prior Settings 

All of the classification methods used in the above scheme requires an estimate of the probability 
that an image patch will fall into any one of the defined classes. Two choices are possible for estimating 
this prior probability: (1) an existing estimate of the actual class frequency, such as the frequency within 
the training data, or (2) by assuming that an image patch has equal probability of falling into any of the 
defined classes. In natural underwater images, the estimated class frequency tends to produce better 
results than equal probability, because classes are seldom evenly populated [31]. For the data in this 
paper, class frequency is calculated from the training set. 
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3.6. Step Six: Classification 

Our algorithm uses one of four types of classifiers depending on the characteristics of the data: 
support vector machine (SVM), k-nearest neighbor (KNN), multilayer perception back propagation 
neural network (NN) and probability density weighted mean distance (PDWMD). These methods are 
found through experimentation to be performing better than other available methods for classifying 
underwater optical imagery. Directions on how to select the appropriate classifier for a given datasets 
are presented in Section 5. 

3.7. Step Seven: Map Classification 

The last step of our approach, referred to as thematic mapping, applies the image classification to 
large area optical maps of the benthos. These large-area representations (commonly known as image 
mosaics) are obtained by registering and blending large sets of individual images acquired at  
close range [32–34].  

The first sub-step to create a classified mosaic image consists of using a sliding window (of the 
same size as the training patches) to segment the image mosaic. The shifting of the window depends 
on the segmentation resolution desired. Large shifts provide coarser segmentation, lower resolution 
and lower computation expenses and vice versa. We used 16 pixels shifts for the particular example 
presented in this work.  

Each result has a confidence level, which depends on the distance from the class boundary created 
by chosen classifier. Class labels are assigned if the results exceed a confidence threshold (the 
confidence threshold is arbitrarily chosen); otherwise, the patch is assigned a background label. After 
creating the initial segmentation using classification with the sliding window, the second sub-step 
involves the use of a morphological filter to check for consistency with the neighborhood surrounding 
each patch. In general, one object should be positively classified several times, as long as the object 
occupies a significant portion in the window and the shift size is much less than the patch size. The 
underlying assumption of morphological filtering is that each classified patch should have at least two 
patches in the eight-patch-neighborhood classified as the same class. Otherwise, the classified patch is 
re-assigned to the most prominent class label in the eight-patch-neighborhood. A potential drawback of 
this approach is that the final classification results may tend towards dominant, contiguous-cover 
classes reducing the representation of rare classes.  

3.8. Parameter Tuning 

There are several parameters in each option of the proposed classification framework that need to 
be tuned beforehand. To select the parameters of these options, exhaustive search was done on 
underwater optical image datasets (we used the EILAT (Eilat dataset), Rosenstiel School of Marine 
and Atmospheric Sciences (RSMAS), Moorea labeled corals (MLC) 2008 and EILAT 2 datasets). 
Once the parameters of all the sub-steps in the proposed method are tuned using the mentioned 
datasets, those specific parameters can be used for other underwater optical image datasets.  
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4. Methodology for Evaluating the Classifiers 

4.1. Choosing Different Configurations  

A unique feature of our classification framework is the ability to use different configurations, i.e., 
different combinations of sub-steps with different parameter values to suit the needs of a particular 
image dataset. Therefore, determining which of the various options to use in each step was critical. A 
series of experiments were conducted varying the choice of options within each step, while keeping the 
options for the other steps constant. In all the experiments, for each possible configuration, we used 10 
crossfold random validation, meaning that 90% of the image patches were used for training and 10% 
were used for testing, over 10 iterations. With crossfold random validation, we reduced the possibility 
of having results biased by over-fitting [35].  

To determine the best combination of image enhancement options, i.e., step 1, we used color 
correction for datasets containing color reference markers in the image. To select among the CLAHS, 
normalization and color channel stretching options, we ran the same classification with those different 
options, keeping the other steps fixed as follows: opponent angle and hue channel histograms, CLBP, 
Gabor filter response and GLCM in the feature extraction step, L1 normalization in the kernel mapping 
step, PCA in the dimension reduction step, class frequency prior settings and the KNN classifier. 

The best combination of feature extraction options, i.e., step 2, was determined by varying the use 
of hue and opponent angle color histograms, CLBP, Gabor filter response and GLCM, while keeping 
the options for the other steps set as follows: CLAHS in the image enhancement step, L1 normalization 
in the kernel mapping step, PCA in the dimension reduction step, class frequency in the prior 
probability settings step and the KNN classifier. 

To determine the best combination of kernel mapping options, i.e., step 3, we varied the use of the 
chi-square kernel, Hellinger kernel and L1 normalization, while keeping the options for the other steps 
set as follows: CLAHS in the image enhancement step, opponent angle and hue channel histograms, 
CLBP, Gabor filter response and GLCM in the feature extraction step, PCA in the dimension reduction 
step, class frequency in the prior probability settings step and the KNN classifier. 

Finally, to determine the best combination of dimension reduction and classifier options, i.e., steps 
4 and 6, we varied the use of PCA and the Fisher kernel with each of the four classifiers, while keeping 
the options for the other steps set as follows: CLAHS in the image enhancement step, opponent angle 
and hue channel histograms, CLBP, Gabor filter response and GLCM in the feature extraction step and 
L1 normalization in the kernel mapping step. 

In the Section 5.5, our insights on how to decide on what configuration to use based on the 
properties of any new dataset are discussed. The insights are backed up by the results presented in 
Section 5.1. For our method, we are selecting among the options proposed in the framework (Figure 1) 
according to the characteristics of the dataset (e.g., size, number of classes and resolution of the 
samples, color information availability, class types and so forth). Since there is no single configuration 
that works best in all datasets, it is proposed to select appropriate options from the framework and use 
the tuned parameters of the methodologies to get the best performance. We tuned the parameters for all 
the methodologies using the underwater optical image datasets described in Appendix 2: EILAT, 
RSMAS, MLC 2008 and EILAT 2. As we are using these previously tuned parameters, no additional 
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time would be required in tuning parameters for a new benthic habitat dataset. The datasets are 
summarized first in Section 4.2, then the methods for performance evaluation and comparison and 
thematic mapping in Sections 4.3–4.4, respectively. 

4.2. Datasets 

The relative performance of published classification algorithms has not been tested on common 
datasets. To address this issue, our proposed classification scheme and four other existing algorithms 
were tested against six image datasets that represent a variety of challenging environments. A seventh 
dataset is used along with datasets 1–3 to guide selection of the various options available in our 
proposed framework. Finally, an eighth dataset is used to illustrate the potential for generating 
thematic maps of large contiguous areas of the seabed using this automated classification framework. 
A brief summary of the image datasets used in this work is presented in Table 3. Appendix 2 contains 
a more detailed description of the various datasets. Figure 3 shows an example of images patches from 
the EILAT dataset.  

Table 3. A brief summary of the image datasets used in this work. N represents number of 
patches in each datasets. Detailed descriptions with sample patches are given in Appendix 2. 

Name Classes N Resolution Color

EILAT 
Sand, urchin, branches type I, brain coral, favid coral, branches 
type II, dead coral and branches type III 

1,123 64 × 64 Yes 

RSMAS 

Acropora cervicornis, Acropora palmata, Colpophyllia natans, 
Diadema antillarum, Diploria strigosa, Gorgonians, Millepora 
alcicornis, Montastraea cavernosa, Meandrina meandrites, 
Montipora spp., Palythoas palythoa, Sponge fungus, 
Siderastrea siderea and tunicates 

766 256 × 256 Yes 

MLC 
2008 

Crustose coralline algae, turf algae, macroalgae, sand, 
Acropora, Pavona, Montipora, Pocillopora, Porites 

18,872 312 × 312 Yes 

UIUCtex 

bark I, bark II, bark III, wood I, wood II, wood III, water, 
granite, marble, stone I, stone II, gravel, wall, brick I, brick II, 
glass I, glass II, carpet I, carpet II, fabric I, paper, fur, fabric II, 
fabric III and fabric IV 

1,000 640 × 480 No 

CURET 
61 texture materials imaged over varying pose and 
illumination, but at constant viewing distance. 

5,612 200 × 200 No 

KTH-
TIPS 

sandpaper, crumpled aluminums foil, Styrofoam, sponge, 
corduroy, linen, cotton, brown bread orange peel,  
cracker B 

810 200 × 200 No 

EILAT 2 Sand, urchin, branching coral, brain coral and favid coral 303 128 × 128 Yes 
Red Sea 
mosaic 

Sand, urchin, branching coral, brain coral, favid coral, 
background objects 

73,600 3,257 × 5,937 Yes 

4.3. Criteria for Evaluation and Comparison with Other Methods 

An error matrix and precision recall curve are used to evaluate the classification quality of each 
classification method. The error matrix quantifies the accuracy of each classified category as a 
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percentage based on the total number of validation points in each category [36]. The overall accuracy 
(OA) of the classified dataset is derived from the error matrix as the sum of the number of correctly 
classified tested examples divided by the total number of tested examples. The precision-recall curve is 
computed by varying the threshold on the classifier (from high to low) and plotting the values of 
precision against recall for each threshold value. The average precision (AP) summarizes the 
precision-recall curve by measuring the area under the curve. 

Figure 3. Example images patches from the EILAT dataset showing 12 examples (in 
columns) of each of the eight classes (in rows, from top to bottom: sand, urchin, branches 
type I, brain coral, favid coral, branches type II, dead coral and branches type III). 

 

To compare the proposed framework, four underwater image algorithms (Pizarro [8], Beijbom [4], 
Marcos [9] and Stokes and Deane [10]) and two state-of-the-art texture classification methods (Caputo [19] 
and Zhang [20]) are used. Each algorithm is implemented as closely as possible to the original papers 
(the parameters are tuned with exhaustive search). The first four algorithms (initially developed for 
underwater imagery) are used to classify all six of the test datasets. The two texture-classification 
algorithms are only used to classify the three texture datasets. The results for each algorithm are 
evaluated in terms of the overall accuracy and average precision of the classification. The time 
required to execute each method is reported in Section 5.3. The effect of changing the number of 
training samples in the datasets is also evaluated in Section 5.3.  

4.4. Mosaic Image Classification 

Finally, our proposed algorithm and first four algorithms are implemented on a mosaic image to 
create a thematic map of a contiguous section of the seabed covering an area larger than a single 
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image. The mosaic is created using the methods by [32–34] from survey images (283 high-resolution 
digital still images and rendered at 1 mm per pixel) of shallow water coral reefs in the Red Sea, near 
Eilat [37]. The mosaic covers an area of 19.2 square meters. 

To train the classifier for the mosaic, we use entire 1,123 image patches in the EILAT dataset. The 
sliding window used to classify the mosaic is of size 64 × 64 pixels (same as the size of training image 
patches). The sliding window is moved with 16 pixels shift (either horizontally or vertically) per 
iteration. In total 73,600 image patches are classified within the mosaic image. 

To examine the effects of morphological filtering, we created a ground truth by manually 
classifying the Red Sea mosaic with help of experts. We use this ground truth for a qualitative 
assessment of the proposed method and the other existing algorithms. The classification results (color 
coded) on the mosaic are presented and discussed in the Section 5.4. 

5. Results 

Having presented, in the previous section, the criteria and methods for evaluating the classifiers, 
this section now presents experimental results. These results allow for assessing the impact of different 
configurations, for evaluating and validating the proposed method, for comparing against the other 
selected approaches and for making recommendations on the best configuration for future datasets. 

5.1. Evaluation of Different Configurations 

Among the image enhancement options, (step 1), CLAHS alone produced the best results for the 
EILAT, RSMAS and EILAT 2 datasets. CLAHS with color channel stretching produced the best 
results for the MLC 2008 dataset (Table 4). CLAHS, color correction and color channel stretching 
produced the best result for the MLC 2008 dataset. 

Table 4. Overall accuracy (%) with different image enhancement options as evaluated with 
the EILAT, RSMAS, EILAT 2 and MLC 2008 datasets. The configurations for the other 
steps are fixed as follows. Feature extraction: completed local binary pattern (CLBP), grey 
level co-occurrence matrix (GLCM), Gabor filter response, opponent angle and hue 
channel histogram; kernel mapping: L1 normalization; dimension reduction: principal 
component analysis (PCA); prior: class frequency; classifier: k-nearest neighbor (KNN). 
CLAHS and NA stand for ‘contrast-limited adaptive histogram specification’ and ‘not 
applicable’, respectively. 

 EILAT RSMAS EILAT 2 MLC 2008
No pre-processing 90.7 70.1 80.1 64.0 
Color correction NA NA NA 63.8 

CLAHS 92.9 85.8 87.4 69.3 
Normalization 70.7 64.5 58.8 58.2 

Color channel stretching 67.1 58.8 62.9 70.5 
CLAHS + Color correction NA NA NA 70.9 
CLAHS + Normalization 91.0 85.2 87.3 68.1 

CLAHS + Color channel stretching 91.4 82.4 81.7 72.7 
CLAHS + Color correction + Color channel stretching NA NA NA 73.2 
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Regarding the feature extraction options, (step 2), the combined feature vector of color histogram 
(hue and opponent angle), CLBP, Gabor filter response and GLCM worked most effectively on 
EILAT, RSMAS and MLC 2008 datasets (Table 5). For the EILAT 2 dataset, the color features are not 
discriminative enough to aid the classification performance in the combined feature vector. In general, 
if color images are available, color histograms can be used together with texture descriptors. The 
combination of CLBP, Gabor filter response and GLCM (texture descriptors) works better than any 
single feature in all four datasets.  

Table 5. Overall accuracy (%) with different feature extraction methods as evaluated with 
the EILAT, RSMAS, EILAT 2 and MLC 2008 datasets. In this experiment, fixed 
configurations on the rest of the steps are as follows. Image enhancement: contrast limited 
adaptive histogram specification (CLAHS); kernel mapping: L1 normalization; dimension 
reduction: principal component analysis (PCA); prior: Class frequency; classifier: k-nearest 
neighbor (KNN). Different combinations of completed local binary pattern (CLBP), grey 
level co-occurrence matrix (GLCM), Gabor filter response and color histogram (hue + 
opponent angle) are evaluated in this experiments. 

 EILAT RSMAS EILAT 2 MLC 2008 
CLBP 91.3 74.7 84.8 55.1 
Gabor 85.7 61.2 65.3 39.4 
GLCM 70.9 62.9 58.2 46.8 

Color histogram (hue + opponent angle)  64.2 81.7 53.0 41.3 
CLBP + Gabor 90.5 75.0 87.7 54.9 
CLBP + GLCM 92.2 75.8 86.4 57.1 
Gabor + GLCM 87.6 72.1 77.5 46.3 

CLBP + GLCM + Gabor filter response 93.4 83.5 91.2 62.4 
CLBP + GLCM + Gabor filter response + 
color histogram (hue + opponent angle) 

94.7 89.6 87.3 65.7 

Table 6. Overall accuracy (%) with different normalization and kernel mapping methods as 
evaluated with the EILAT, RSMAS, EILAT 2 and MLC 2008 datasets. In this experiment, 
fixed configurations on the rest of the steps are as follows. Image enhancement: contrast 
limited adaptive histogram specification (CLAHS); feature extraction: completed local 
binary pattern (CLBP), GLCM, Gabor filter response, opponent angle, hue channel 
histogram; dimension reduction: principal component analysis (PCA); prior: class frequency; 
classifier: k-nearest neighbor (KNN). 

 EILAT RSMAS EILAT 2 MLC 2008 
Nothing 87.5 84.8 87.3 61.9 

L1 normalization 91.9 87.6 87.4 64.0 
Chi-square kernel mapping 85.7 87.6 88.1. 63.3 
Hellinger kernel mapping 85.8 87.9 88.5 62.2 

Kernel mapping (chi-square, Hellinger) 89.2 88.1 89.3 65.7 
L1 normalization + kernel mapping  

(chi-square, Hellinger) 
93.4 89.7 91.1 66.5 
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Table 7. Overall accuracy (%) with different dimension reduction and classification 
methods (support vector machine with radial basis kernel having one to all scheme (SVM), 
k-nearest neighbor (KNN), multi-layer back projection neural network (NN) or probability 
density weighted mean distance (PDWMD)) as evaluated with the EILAT, RSMAS, 
EILAT 2 and MLC 2008 datasets. In the table, principal component analysis (PCA), Fisher 
kernel (F), combination of principal component analysis and Fisher kernel (P+F) and no 
dimension reduction (ND) are applied. Moreover, SVM, KNN, NN and PDWMD are 
represented as S, K, N and P, respectively. In this experiment, fixed configurations on the 
rest of the steps are as follows. Image enhancement: contrast limited adaptive histogram 
specific (CLAHS); feature extraction: completed local binary pattern (CLBP), grey level 
co-occurrence matrix (GLCM), Gabor filter response, opponent angle and hue channel 
histogram; kernel mapping: L1 normalization; prior: class frequency. 

 
EILAT RSMAS EILAT 2 MLC 2008 

ND PCA F P+F ND PCA F P+F ND PCA F P+F ND PCA F P+F 
S 94.3 91.9 86.7 90.2 92.1 89.0 81.8 88.2 93.1 91,5 88.9 90.7 75.2 71.7 61.2 70.1 
K 91.7 93.4 85.4 94.9 91.4 92.8 87.4 93.5 88.0 92.2 85.1 92.7 69.5 73.9 64.5 74.9 
N 89.9 88.1 83.2 79.7 88.4 86.4 86.5 80.2 92.5 91.1 86.3 89.2 77.4 75.5 67.9 73.0 
P 91.2 90.5 84.9 87.1 87.9 86.5 85.5 84.3 89.2 89.4 80.7 85.1 79.8 73.3 66.6 71.3 

Table 8. Selected configuration for our method. Three different configurations are used for 
(1) EILAT and RSMAS datasets, (2) MLC 2008 dataset and (3) Columbia-Utrecht 
Reflectance and Texture (CURET), Kungliga Tekniska Högskolan (KTH), University of 
Illinois at Urbana-Champaign (UIUC) datasets. Contrast limited adaptive histogram 
specific (CLAHS), completed local binary pattern (CLBP), grey level co-occurrence matrix 
(GLCM), principal component analysis (PCA) and k-nearest neighbor (KNN) are used in 
the table as acronyms.  

Steps EILAT/RSMAS MLC 2008 CURET/KTH/UIUC 

Image enhancement CLAHS 
CLAHS, color correction, 
color channel stretching 

CLAHS 

Feature extraction 

Opponent angle 
histogram, hue channel 

histogram, CLBP, 
GLCM, Gabor filter 

response 

CLBP, GLCM, Gabor 
filter response, Opponent 

angle histogram, hue 
channel histogram 

CLBP, GLCM, Gabor 
filter response 

Kernel mapping 

L1 normalization,  
chi-square kernel, 

Hellinger kernel (for 
CLBP, color 
histogram) 

L1 normalization,  
chi-square kernel, 

Hellinger kernel (for 
CLBP, color histogram) 

L1 normalization,  
chi-square kernel, 
Hellinger kernel  
(for CLBP, color 

histogram) 
Dimension reduction PCA, Fisher kernel None PCA, Fisher kernel 

Prior Class frequency Class frequency Class frequency 

Classifier KNN 
Probability density 

weighted mean distance 
KNN 
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With respect to the available kernel mapping options (step 3), the best results are obtained by using 
both the chi-square and Hellinger kernels along with L1 normalization, as illustrated in Table 6. 

Finally, for the EILAT and RSMAS datasets the best classifier (step 4) and dimension reduction (step 
6) options are the ones using the KNN classifier with dimension reduction by PCA and Fisher kernel 
mapping (Table 7). For the EILAT 2 dataset, the SVM classifier without dimension reduction produces 
the highest overall accuracy. For MLC 2008, dataset, the maximum overall accuracy is achieved with 
probability density weighted mean distance classifier (PDWMD) and no dimension reduction. 

Using the experimental results above (Tables 4–7), we select the configurations shown in Table 8 
for the respective datasets to be compared with other published methods. For texture datasets 
(Columbia-Utrecht Reflectance and Texture (CURET), Kungliga Tekniska Högskolan (KTH), 
University of Illinois at Urbana-Champaign (UIUC)), we use the same configuration as the EILAT 
dataset without color histograms as feature descriptors. The texture types, distribution and size of the 
grey texture datasets are similar to those of the EILAT dataset.  

5.2. Evaluation of Proposed Classification Method  

The proposed image classification method is evaluated using the MLC 2008 dataset by constructing 
a precision-recall curve and error matrix. Precision is defined as the fraction of retrieved instances that 
are relevant, while recall corresponds to the fraction of relevant instances that are retrieved. High recall 
indicates that an algorithm is capable of returning most of the relevant results. High precision indicates 
that an algorithm returns more relevant results than irrelevant. The precision-recall curves (Figure 4) 
and error matrix (Table 9) for our proposed method applied to the MLC 2008 dataset result in 85.3% 
overall accuracy and 75.3% average precision. The highest precision value is observed for 
Pocillopora, and the lowest for the macroalgae class, as shown in Figure 3. 

Figure 4. Precision-recall curve for individual classes of the MLC 2008 dataset using our 
method. Average precision for this dataset was 75.3%. The highest precision was observed 
for Pocillopora, and the lowest value was for the macroalgae class. Our method resulted in 
85.5% overall accuracy. In the MLC 2008 dataset, the highest number of examples was 
from the CCA class, which also had frequent overlaps with other classes.  

Acropora 

 

CCA Macroalgae 
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Figure 4. Cont. 

Montipora 

 

Pavona Pocillopora 

Porites 

 

Sand Turf algae 

Table 9 shows the error matrix of our method when applied on the MLC 2008 dataset. The highest 
number of examples in this dataset is from the crustose coralline algae (CCA) class, which also has 
frequent overlaps with other classes. The error matrix reflects this fact, as other classes are highly 
confused with CCA (as shown in the 2nd row of Table 9).  

Table 9. The error matrix of our proposed method tested on the MLC 2008 dataset. The 
classes in both row and columns corresponds to A = Acropora, C = CCA, MA = Macroalgae, 
MO = Montipora, PA = Pavona, PP = Pocillopora, P = Porites, S = Sand and T = Turf. Within 
the main 9 × 9 cell portion of the table, the given number corresponds to the raw count of the 
number of validation image patches that fell into a particular target/output combination. 

 Target Class 

O
ut

pu
t C

la
ss

 

 A C MA MO PA PP P S T 

A 146 1 1 0 0 2 2 0 1 
C 9 2408 139 51 29 17 38 116 55 

MA 4 59 372 0 2 10 5 11 4 
MO 0 19 3 336 2 6 2 9 5 
PA 0 31 13 4 202 0 0 4 2 
PP 14 0 6 3 0 691 11 2 8 
P 9 32 7 5 3 11 727 11 40 
S 0 67 3 6 4 1 10 650 60 
T 6 18 16 11 6 6 24 45 817 
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5.3. Comparison with Other Methods 

Table 10 shows error matrices for all four of the compared classification methods when tested on 
the MLC 2008 dataset. The proposed framework achieves the highest overall accuracy (OA) and 
highest average precision for five datasets among six (Tables 11 and 12). For the EILAT dataset, all 
methods work reasonably well, though our method achieves the highest overall accuracy (96.9%). The 
second highest OA is achieved with the Marcos classification (87.9%). The results of the RSMAS 
dataset are similar to those of the EILAT dataset, except the second most accurate method is the 
Beijbom classification, with an overall accuracy of 85.4%. For the MLC 2008 dataset, our method 
results in 85.5% overall classification accuracy.  

Table 10. The error matrices of the tested other methods as applied to the MLC 2008 dataset. 
The classes in the rows and columns of each error matrix correspond to A = Acropora, 
C = CCA, MA = Macroalgae, MO = Montipora, PA = Pavona, PP = Pocillopora, 
P = Porites, S = Sand and T = Turf. Within the main 9 × 9 cell portion of each error matrix, 
the given number corresponds to the raw count of the number of validation image patches 
that fell into a particular target/output combination. 

 Ground Truth 

O
ut

pu
t C

la
ss

 

 A C MA MO PA PP P S T 

A 68 28 23 12 0 32 17 1 7 
C 1 2226 94 30 24 30 35 84 111

MA 4 251 228 2 8 29 16 0 22 
MO 0 100 7 169 0 21 21 14 84 
PA 0 33 0 0 197 0 8 4 6 
PP 9 69 36 17 0 554 51 0 8 
P 0 112 28 12 0 60 531 29 67 
S 0 198 3 10 2 5 25 600 105
T 2 156 32 34 0 8 38 94 628

 Ground truth 

O
ut

pu
t C

la
ss

 

 A C MA MO PA PP P S T 

A 112 17 12 1 0 21 12 0 13 
C 3 2366 62 22 25 19 28 67 43 

MA 2 166 318 2 3 28 5 3 33 
MO 4 115 7 247 2 1 10 10 20 
PA 0 38 8 3 177 0 7 6 9 
PP 16 62 21 0 1 625 8 1 10 
P 9 100 8 8 2 4 629 8 71 
S 0 178 4 5 2 3 18 686 52 
T 2 94 12 9 1 4 53 46 771

 

Marcos 
Accuracy: 68.7% 

Stokes & Deane 
Accuracy: 78.3% 

 Ground Truth 

O
ut

pu
t C

la
ss

 

 A C MA MO PA PP P S T 

A 74 37 9 5 6 22 17 2 16 
C 38 1888 106 55 31 94 84 178 161

MA 26 140 301 3 10 26 13 16 25 
MO 4 81 6 175 13 22 43 35 37 
PA 7 37 6 20 147 3 17 4 7 
PP 102 136 34 14 10 363 29 13 43 
P 13 119 22 35 27 27 457 41 98 
S 6 248 17 28 9 23 52 479 86 
T 10 185 28 21 7 38 87 92 524

 Ground Truth 

O
ut

pu
t C

la
ss

 

 A C MA MO PA PP P S T 

A 148 24 9 2 2 27 16 0 8 
C 6 2790 68 35 25 28 66 129 148

MA 2 194 421 15 10 21 10 1 28 
MO 1 128 15 309 4 4 20 15 25 
PA 1 50 4 1 216 9 21 2 7 
PP 5 52 17 5 6 815 16 1 13 
P 8 150 17 13 10 20 740 31 69 
S 0 255 1 4 2 4 36 823 61 
T 3 320 25 13 1 24 69 61 724

 

Pizarro 
Accuracy: 58.2% 

Beijbom 
Accuracy: 73.7% 
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Table 11. Overall accuracy (OA) (%) for each method/dataset. The highest overall 
accuracy obtained for each dataset is shown in bold. 

 Marcos Stokes & Deane Pizarro Beijbom Caputo Zhang Our 
EILAT 87.9 75.2 67.3 69.1 NA NA 96.9 

RSMAS 69.3 82.5 73.9 85.4 NA NA 96.5 
MLC 2008 68.7 78.3 58.2 73.7 NA NA 85.5 

CURET 20.8 49.7 38.1 86.5 98.6 98.5 99.2 
KTH 25.5 88.9 48.3 36.3 95.8 96.7 98.3 
UIUC 14.6 56.9 19.9 32.2 98.2 99.0 97.3 

Table 12. Average precision (%) for each method/dataset. The highest average precision 
for each dataset is shown in bold. NA represents not applied. 

 Marcos Stokes & Deane Pizarro Beijbom Caputo Zhang Our 
EILAT 85.1 73.5 58.1 64.2 NA NA 97.2 

RSMAS 59.2 81.2 67.1 79.9 NA NA 96.2 
MLC 2008 49.5 61.3 46.4 64.9 NA NA 74.8 

CURET 14.7 30.1 29.1 81.5 98.2 98.1 98.4 
KTH 23.5 84.8 39.7 34.6 95.7 96.4 97.7 
UIUC 14.7 43.5 18.2 30.4 97.2 98.5 96.9 

The proposed method achieves almost similar classification accuracy when tested against traditional 
and texture-only image datasets (Table 11). Most of the other methods, however, perform significantly 
worse against texture-only datasets. The failure of the methods by Marcos [9], Stokes & Deane [10], 
Pizarro [8] and Beijbom [4] on standard texture datasets indicates that these methods rely heavily on 
color information. Heavy reliance on color information may limit the robustness of classification 
algorithms, since color can be inconsistent or absent in underwater datasets.  

The two state-of-the-art texture-classification algorithms (Caputo [19], Zhang [20]) perform well 
relative to the proposed method. For the UIUC dataset, our method attains 97.3% overall accuracy, but 
can not beat Zhang [20], which achieves 99% OA. The UIUC dataset has higher resolution than the 
other datasets; therefore, dense descriptors, such as our method, might be influenced by the 
background information resulting in inaccurate classification. Our method is mainly suitable for small 
patch sized image datasets, which is useful for classified mapping on mosaics. 

For CURET and KTH datasets, which have a smaller patch size, our proposed method has higher 
overall accuracy than the texture-only method (Zhang [20]). We compare our proposed method with 
their method in the same experimental conditions and acquire 99.2% accuracy for the CURET dataset 
and 98.3% for KTH datasets, where the reported as state-of-the-art Caputo [19] obtains 98.6% 
accuracy for CURET dataset and Zhang [20] obtains 96.7% for the KTH dataset. 

The classification methods by Marcos and Stokes & Deane are computationally efficient  
(Figure 5). Our method requires less time than the methods by Pizarro [4] and Beijbom [8]. For the 
method of Pizarro, the time for the generation of 500 visual word vocabulary is considered, which 
normally can be computed offline. If that time is taken out, this method can be considered as fast as 
our method. In this context, the method by Stokes and Deane can be considered very efficient. All 
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5.4. Classifying Image Mosaics  

Applying the classification method to segment the full mosaic of Red Sea survey images takes 
approximately seven hours on an Intel core i5-2430M CPU with 2.4 GHz speed and 6 GB RAM.  
The image patches are of size 64 × 64 pixels with a sliding window of 16-pixels shift per iteration, 
result in 73,600 image patches to classify in the full mosaic.  

Figure 7. The accuracy of the tested classification methods applied to the Red Sea mosaic. 
The segmented images are color coded as: favid in violet, brain coral in green, branches I, 
II and III in orange, urchin in pink, dead corals and pavements are in grey.  

Marcos 
Accuracy: 75.9% 

Stokes & Deane 
Accuracy: 67.0% 

Pizarro 
Accuracy: 68.8% 

Beijbom 
Accuracy: 67.4% 

Our 
Accuracy: 83.7% 

Ground Truth 
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Figure 8. Effects of morphological filtering on classification results. (Left) The violets are 
misclassifications, which are removed after morphological filtering (right). 

 
Before morphological filtering 

 
After morphological filtering 

The classification results of each method on the Red Sea mosaic image are shown in Figure 7. 
Misclassifications tend to be on the borders of objects (Figure 8). Morphological filtering alters some 
results by maintaining neighborhood consistency (Figure 8, right). Morphological filtering increases 
the classification accuracy from 82.8% to 83.7% (Figure 8). In Figure 9, the left is the input mosaic 
image and on the right is the segmented and color coded thematic map. 

Figure 9. The original (left) and classified Red Sea mosaic (right). The segmented images 
are color coded with the same classification scheme as Figure 6. 
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5.5. Recommendations for Classifying Future Datasets 

The application of multiple classification methods to six image datasets results in the following 
recommendations concerning future image classifications.  

1. If the dataset contains low contrast or blurred images, CLAHS works very well as an 
image enhancement step. If color markers are available in raw images, color correction can 
be performed to enhance the color constancy.  

2. For texture description, the concatenation of GLCM, Gabor filter response and CLBP 
works consistently well. If images have good reliable color information, then opponent 
angle and hue color channel histograms can be added, with the texture descriptor assigning 
equal weights to both color and texture descriptors.  

3. In all the cases of image patch classification, sparsely populated bins within histograms 
possess higher distinctive information than the high frequency bins. This statement is 
based on the assumption that high frequency bins often represent the background of the 
object and contain less distinctive information. The chi-square and Hellinger kernels can 
be used to modify bin counts and boost the population of low frequent bins. L1 
normalization of the feature vector is necessary in all cases before applying the classifier 
for training and testing.  

4. If the dataset is small (datasets with training samples less than 5,000 are considered as 
small ones), then PCA and Fisher kernel mapping works very effectively to reduce the 
feature dimension. However, for large (Datasets with training samples more than 12,000 
are considered as large ones) datasets, almost all the features become useful, and the 
dimension reduction is much less effective. In large datasets, almost all the dimensions 
become discriminative, and only a few dimensions are reduced with PCA. Therefore, for 
large datasets, this dimension reduction step can be avoided.  

5. Class frequency works well as prior in all the cases. 
6. For smaller datasets, the KNN classifier has the best performance. However, as the 

datasets get larger, the effectiveness of this method reduces, owing to the higher storage 
requirements, lower efficiency in classification response and lower noise tolerance. Some 
recent works [38] address this problem of KNN. However, SVM (linear SVM with one 
against the rest scheme) and neural networks (multilayer perception with back projection 
configuration) can be appropriate classifiers for bigger datasets. For underwater images, 
the classification based on probability density weighted mean distance (PDWMD) from 
the tail of the distribution by Stokes and Deane [10] works efficiently, both in terms of 
time and efficiency.  

7. Morphological filtering can increase the accuracy of the classification results.  
8. For smaller datasets, the KNN classifier has the best performance. However, as the 

datasets get larger, the effectiveness of this method reduces because of high storage 
requirements, low efficiency in classification response and low noise tolerance. Some 
recent works [38] address this problem of KNN. However, SVM (linear SVM with one 
against the rest scheme) and neural networks (multilayer perception with back projection 
configuration) can be appropriate classifiers for bigger datasets. For underwater images, 
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the classification based on probability density weighted mean distance (PDWMD) from 
the tail of the distribution [10] works efficiently both in terms of time and efficiency.  

9. In our method, all the features used are partially or completely scale and rotation invariant. 
These features are therefore able to mitigate the effects of limited scale variation of 
individual classes. For larger scale variation, it is important to have enough training 
examples of individual classes at different scales. In the future, multi-resolution mapping 
might be useful for benthic habitat covering large scale variations of individual classes.  

6. Conclusion 

Large datasets of benthic images, which have been enabled by digital acquisition and innovative 
platforms, such as remotely operated vehicles (ROVs) or autonomous underwater vehicles (AUVs), 
provide a new opportunity for remote sensing of coral reefs, as well as a challenge. The opportunity 
lies in the types of measurements that can be made from direct remote sensing of benthic organisms. 
The challenge lies in efficiently extracting biological or ecological information from the raw images. 
Some form of automated analysis will be required to make full use of this rich data source. 

Our proposed method presents a novel image classification scheme for benthic coral reef images 
that achieved the highest overall classification accuracy of any of the tested methods and had moderate 
execution times. This paper used six standard datasets to compare the set of methods that are 
representative of the state-of-the-art in automated classification of seabed images. On state of the art 
Moorea labeled corals (MLC) dataset [4], our method achieved 85.5% overall accuracy, whereas all 
the other compared methods attained less than 80%, including the method by Beijbom [4].  

The proposed method can be configured to the characteristics (e.g., size, number of classes and 
resolution of the samples, color information availability, class types and so forth) of individual 
datasets. We provided guidelines for choosing the appropriate configuration for future classification of 
reef images. The results suggest that using a selective combination of various preprocessing steps, 
feature extraction methods, kernel mappings, priori and classifiers for various datasets can give better 
results than using a single method for all datasets. The results can be extended over large continuous 
areas by using mosaics of underwater images. On the Red Sea mosaic image, our proposed method 
resulted in 83.7% overall accuracy, which is at least 8% higher than the other methods tested.  

The experimental part of our work allowed us to identify classification problems that are specific to 
underwater images. On one hand, there are many classes in underwater imagery that have samples with 
very clear differences in shape, color, texture, size, rotation, illumination, view angle, camera distance 
and light conditions. On the other hand, there are overlapping classes that look almost the same from 
specific angles and distances. Finding optimal patch size and patch shift are still open questions. 
Moreover, additional challenges, such as motion blurring, color attenuation, refracted sunlight patterns, 
water temperature variation, sky color variation and scattering effects, have to be reduced to maintain 
the image quality and the reliable information content. These issues highlight areas where future 
research may continue to improve the accuracy and efficiency of automated classification methods.  

Applying automated classification techniques to mosaic composites produces a rapid (in terms of 
expert annotation time) technique of characterizing reef communities that can be used to track changes 
over time. Quantifying benthic community composition over the scale of hundreds of square meters by 
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automated analysis of underwater image mosaics is a novel capability in coral reef science and 
provides a new spatial scale from which reef dynamics can be observed and studied. In addition to the 
time saved by applying a single training dataset to a large-area reef mosaic, applying automated 
classification schemes to mosaics can also reduce computational time, since it bypasses the 
redundancy of classifying highly overlapping images. Furthermore, the techniques presented here are 
not uniquely limited to coral reef classification and may prove useful in other ecosystems.  
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Appendix 1 

Table A1. List of statistics used for GLCM feature calculations. The GLCM feature vector 
consisted of 22 features calculated from the following table. C is the L1 normalized  
co-occurrence matrix (defined over an image to be the distribution of co-occurring values 
at a given offset). The pixel row and column are represented by i and j. N is the number of 
distinct gray levels in a quantized image (we used 16 in our case), µ and S are the mean 
and standard deviation and H is the entropy of C. C is a N by N matrix. I is the input image 
of n × m size. The offset is [Δx Δy]. We used [0 3], [−3 3], [−3 0], [−3 −3] offset values; 
calculated statistics individually for each features and then averaged to get final results. 
These offset values represent 0, 45, 90 and 135 degrees angular neighborhood with a 
distance of three pixels from the center pixel. 
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Table A1. Cont. 
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Appendix 2 

A2.1. EILAT Dataset 

The EILAT dataset contains 1,123 image patches, each being 64 × 64 pixels in size (Figure 3), 
taken from images of reef survey near Eilat in the Red sea. A group of experts have visually classified 
the images into eight classes (sand, urchin, branches type I, brain coral, favid coral, branches type II, 
dead coral and branches type III). Two of the classes have a larger number of examples compared with 
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others. The image patches were extracted from the original, full-size images, which were all taken with 
the same camera.  

A2.2. RSMAS Dataset 

The RSMAS dataset was obtained from reef survey images collected by divers from the Rosenstiel 
School of Marine and Atmospheric Sciences of the University of Miami. This dataset has examples of 
different classes of underwater coral reefs taken with different cameras at different times and places. 
The database consists of 766 image patches; each 256 × 256 pixels in size, of 14 different classes (see 
Figure A1). The image patches are larger than those in the EILAT dataset, which means that they are 
more likely to contain mixed classes.  

Figure A1. A subset of the RSMAS dataset; showing 12 examples, in columns, of each of 
the 14 classes (in rows from top to bottom: Acropora cervicornis (ACER), Acropora 
palmata (APAL), Colpophyllia natans (CNAT), Diadema antillarum (DANT), Diploria 
strigosa (DSTR), Gorgonians (GORG), Millepora alcicornis (MALC), Montastraea 
cavernosa (MCAV), Meandrina meandrites (MMEA), Montipora spp. (MONT), 
Palythoas palythoa (PALY), Sponge fungus (SPO), Siderastrea siderea (SSID) and 
tunicates (TUNI). 

 

A2.3. Moorea-Labeled Corals (MLC) dataset 

The MLC dataset [4] is a subset of images collected for the Moorea Coral Reef Long Term Ecological 
Research site (MCR-LTER) packaged for computer vision research. It contains 2,055 images from three 
habitats: fringing reef, outer 10 m and outer 17 m, from 2008, 2009 and 2010. It also contains random 
points that have been annotated. The nine most abundant labels include four non-coral classes: 
(1) crustose coralline algae (CCA), (2) turf algae (Turf), (3) macroalgae (Macro) and (4) sand; and five 
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coral genera: (5) Acropora (Acrop), (6) Pavona (Pavon), (7) Montipora (Monti), (8) Pocillopora 
(Pocill) and (9) Porites (Porit). For our work, we are only using the 2008 dataset. In the MLC 2008 
dataset, we used randomly selected 18,872 image patches, of 312 × 312 pixels in size, centered on the 
annotated points. All nine classes were represented in the random image patches (Figure A2). 

Figure A2. A subset of the MLC dataset showing two examples for each class. First row: 
Acropora, Porites, Montipora. Second row: Pocillopora, Pavona, Macroalgae. Third row: 
Sand, Turf algae, CCA.  

 

The MLC is a good test dataset for classification algorithms, due to the large number of samples. 
Furthermore, each image contains plaques with known reference colors, thereby allowing accurate 
color correction. The MLC dataset is also challenging to classify, because each class exhibits great 
variability with respect to coral shape, color, scale and viewing angle. For example, two growth forms 
of Acropora and Porites have distinctly different appearance (Figure A2, top row left and center). The 
color and scale of the Pocillopora patches varies widely (Figure A2, middle row left). Macroalgae 
varies tremendously in shape and color and often protrudes from underneath the corals, resulting in 
image patches with mixed classes (Figure A2, middle row right). Both CCA and Turf algae tend to 
overgrow dead coral, which poses a challenge for automated analysis, since the coral skeleton retains 
its shape, but has the surface color and texture of the algae that overgrows it. Also, CCA and Turf are 
similar and, therefore, hard to discriminate. 

A2.4. UIUCtex Dataset  

The University of Illinois at Urbana-Champaign texture (UIUCtex) dataset [A1] contains 40 images in 
each of 25 texture classes: bark I, bark II, bark III, wood I, wood II, wood III, water, granite, marble, stone 
I, stone II, gravel, wall, brick I, brick II, glass I, glass II, carpet I, carpet II, fabric I, paper, fur, fabric II, 
fabric III and fabric IV (Figure A3). Textures were viewed under significant scale and viewpoint changes. 
The dataset includes non-rigid deformations, illumination changes and viewpoint-dependent appearance 
variations. All the image patches of this dataset are of 640 × 480 pixel size. 

A2.5. CURET Texture Dataset 

The Columbia-Utrecht Reflectance and Texture (CURET) dataset [A2] contains 61 texture classes, 
each with 92 images of size 200 × 200 pixels. Materials were imaged over varying pose and 



Remote Sens. 2013, 5 1840 
 
illumination, but at constant viewing distance. The changes of viewpoint and of the illumination 
direction significantly affect the texture appearance (Figure A4). 

Figure A3. A subset of UIUCtex dataset showing 4 examples from each of 5 classes (from 
the left group of 4 to the right: bark I, bark II, bark III, wood I and wood II). 

 

Figure A4. A subset of CURET texture dataset showing 4 examples from each of three 
classes (from the left group of four to the right: felt, plaster and Styrofoam). Note the large 
intra-class variability caused by viewpoint and illumination changes. 

 

A2.6. KTH-TIPS Dataset 

The Kungliga Tekniska Högskolan Textures under varying Illumination, Pose and Scale  
(KTH-TIPS) dataset [A3] contains images of 10 types of natural materials to provide variations in 
scale, as well as variations in pose and illumination. Images are captured at nine scales spanning two 
octaves (relative scale changes from 0.5 to two), viewed under three different illumination directions 
and three different poses, thus giving a total of nine images per scale and 81 images per material of the 
size 200 × 200 pixels. In total, there are 810 images comprising 10 different classes (sandpaper, 
crumpled aluminums foil, Styrofoam, sponge, corduroy, linen, cotton, brown bread orange peel, 
cracker B) present in this dataset (Figure A5).  

A2.7. EILAT 2 Dataset 

The EILAT 2 dataset contains 303 image patches. A group of experts have visually classified the 
images into five classes: sand, urchin, branching coral, brain coral and favid coral (Figure A6). Patches 
are of medium resolution (each 128 × 128 pixels in size) taken from points on the object to keep the 
visual aspects of the object and, in some cases, a portion of the background. Here, all the images are 
taken with the same camera. This dataset was used only as part of the process for selecting, which 
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options to use in the image framework. Thus, the EILAT 2 dataset can be considered a middle ground 
between the EILAT and RSMAS datasets. 

Figure A5. A subset of KTH-TIPS dataset showing six examples from each of two classes: 
sponge (left) and cotton (right). The six examples include two different illuminations and 
three different scales.  

 

Figure A6. A subset of the EILAT 2 dataset showing 10 examples, in columns, of each of 
the five classes (in rows from top to bottom: favid coral, brain coral, branching coral, sand 
and urchin). 
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