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Abstract: This study explores the use of structure from motion (SfM), a computer vision 
technique, to model vine canopy structure at a study vineyard in the Texas Hill Country. 
Using an unmanned aerial vehicle (UAV) and a digital camera, 201 aerial images (nadir 
and oblique) were collected and used to create a SfM point cloud. All points were 
classified as ground or non-ground points. Non-ground points, presumably representing 
vegetation and other above ground objects, were used to create visualizations of the study 
vineyard blocks. Further, the relationship between non-ground points in close proximity to 
67 sample vines and collected leaf area index (LAI) measurements for those same vines 
was also explored. Points near sampled vines were extracted from which several metrics 
were calculated and input into a stepwise regression model to attempt to predict LAI. This 
analysis resulted in a moderate R2 value of 0.567, accounting for 57 percent of the 
variation of LAISQRT using six predictor variables. These results provide further 
justification for SfM datasets to provide three-dimensional datasets necessary for 
vegetation structure visualization and biophysical modeling over areas of smaller extent. 
Additionally, SfM datasets can provide an increased temporal resolution compared to 
traditional three-dimensional datasets like those captured by light detection and  
ranging (lidar).  

Keywords: structure from motion; SfM; bundle adjustment; point cloud; LAI; vegetation; 
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1. Introduction 

Identification of spatial variation in leaf canopy density is important in crop management and for 
accurate biomass estimation. Within viticulture specifically, being able to recognize such disparities 
provides vineyard managers the opportunity to examine and address this spatial variability by adjusting 
the management scheme with the potential of improving the crop [1]. Vine canopy density is vital in 
protection and production of high quality winegrapes. Moderate canopy density is typically desired, 
depending on the time of the growing season, specific location, and grapevine varietal [2]. Passive 
remote sensing datasets like aerial and satellite-based imagery of vineyard canopy can successfully 
identify such variability in canopy density and subsequent crop health within vineyard blocks [3–6]. 
Calculated vegetation indices, namely the normalized difference vegetation index (NDVI; [7]), highly 
correlate with changes in canopy density measured by leaf area index (LAI; ratio of leaf surface area to 
ground surface area following [8]). More recently, other datasets, like those provided by active remote 
sensors, are beginning to play a role in such viticultural research. 

Unlike imagery, both terrestrial and airborne discrete return light detection and ranging (lidar) 
systems provide an additional third dimension of information (Z) for height and volumetric analysis. 
Terrestrial lidar has been successfully implemented to explore biophysical properties of  
vines [9–13]. Keightley et al. [10] measured uprooted grapevine trunk biomass with a stationary 
terrestrial lidar scanner. Rosell et al. [9] utilized a tractor-mounted lidar sensor to create three-
dimensional (3D) scenes of vineyards and fruit orchards. These lidar data were found to be strongly 
correlated with field measurements and therefore were highly accurate when used to portray the entire 
crop structure (trunks, canopy, and trellis systems if present). Similarly, Llorens et al. [12] generated 
whole vineyard 3D canopy structure maps with a lidar sensor mounted on a tractor while moving 
between vine rows. Llorens et al. [11] modeled leaf area and accurately gauged ideal pesticide 
amounts for vineyards and orchards. Sanz-Cortiella et al. [13] used a tractor-mounted lidar system to 
study pear tree leaf density and found that the sensor provided an accurate 3D representation of leaf 
area but was highly affected by the height and angle of the sensor. Rosell et al. [9] suggested that lidar 
data may be used to explore relationships with LAI. Llorens et al. [12], in turn, reported a moderate, 
positive correlation between number of lidar returns and measured LAI of a given portion of canopy. 
Similarly, high total leaf area of juvenile trees has been shown to directly correlate with point density 
of the terrestrial lidar point cloud [14]. In all of these cases, collected terrestrial-based lidar point 
clouds exist in a Cartesian coordinate system requiring a highly accurate location tracking global 
positioning system (GPS) mounted on the lidar sensor platform (tractor or otherwise) for proper 
georectification [12]. 

To a much lesser extent, airborne lidar datasets have proven useful in visualization of vine canopy 
and vineyard structure leading to accurate delineation of vineyard parcels [15]. Although not 
specifically applied to viticulture, airborne lidar datasets can confidently predict LAI and other 
biophysical characteristics of tree vegetation by calculating several height-based metrics [16–19]. Yet 
another method, that of statistically-based modeling, was implemented by [20] to look at single vine 
canopy and explore potential light interception for different grapevine varietals. For sake of 
practicality and cost though, airborne and terrestrial lidar datasets have proven difficult to acquire [21] 
and repeat acquisitions are usually cost-prohibitive. Due to this, alternative ways to gather similar 
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datasets have emerged like Structure from Motion (SfM) [22]. Most recently, successful vineyard 
canopy modeling has been completed by way of SfM primarily for visualization [23,24]. Across an 
entire vineyard, Turner et al. [23] compared a pre-growth and full-growth point cloud of vineyard 
canopy in natural color by way of SfM. At a more reduced scale, another SfM-based vineyard analysis 
accurately classified vine structures (grapes, canopy, trellis and other hardware) along portions of a 
vine row [24]. 

SfM is a computer vision technique based heavily on the principles of photogrammetry wherein a 
significant number of photographs taken from different, overlapping perspectives are combined to 
recreate an environment (keypoint matching of features across images). SfM stems from a number of 
works, namely that of [25,26], which documents the development of the Bundler algorithm that is now 
employed by the most well-known SfM platform: Microsoft PhotoSynth. Although SfM was first 
intended to be used for ground-based applications, it has been used from aerial platforms and for 
geographic applications [22,27–33]. For use in such geographic applications, the SfM output, which is 
made up of an internally consistent arbitrary coordinate system, must be transformed to real-world 
coordinates. Accordingly, georeferenced SfM datasets are similar to lidar datasets consisting of a set of 
data points, the keypoints generated from SfM product creation, with X, Y, and Z information (known 
as a point cloud in its entirety) with additional color information (red, green and blue [RGB] spectral) 
from the photographs. The cost to collect SfM point clouds remains very low compared to lidar; hence, 
there exists great interest in using such methods to model in 3D. 

SfM-based 3D models have been used extensively in recreating urban and cultural 
features [26,27,31,34], and to a lesser extent topography and other surface features [30,33] such as 
vegetation [23,28]. The accuracy of the SfM approach, however, is often less trusted than other similar 
datasets provided by airborne or terrestrial lidar systems. Despite this, a number of research results 
insist that SfM point clouds are in fact comparable if not more accurate than lidar point 
clouds [22,28,33]. Unfortunately, comparison of such datasets is difficult unless both datasets are 
collected for the same research purpose and at similar point densities.  

The SfM approach with vegetation has proven more difficult than with urban and other features 
because of their more complex and discontinuous structures [21,28]. Keypoint matching is 
considerably more difficult when working with vegetative features because of leaf gaps, repeating 
structures of the same color, and inconsistent/random geometries. The resulting SfM point cloud can 
therefore be more random and less uniform in its spatial coverage [28]. Despite this, satisfactory 
results of vegetation modeling (canopy height) with SfM have been reported [28]. Placement of 
colored field markers, modification of the SfM algorithms, increasing the number of photographs 
captured, and taking images at higher altitudes were just a few of the suggestions provided to improve 
vegetation modeling when implementing the SfM approach [28]. 

Besides [23,24], no studies have reported specifically modeling vineyard vegetation with SfM. 
More importantly, no studies have explored the relationship between SfM point clouds and in situ LAI 
measurements as have been explored with lidar data. Consequently, this study uses SfM to create a 3D 
vineyard point cloud to visualize vineyard vegetation as well as attempt to predict vine LAI based on 
information derived from the created SfM point cloud. A number of metrics are calculated with 
extracted points from the SfM point cloud that are compared to LAI measurements to explore how LAI 
relates to said metrics (point heights, number of points, etc.). 
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2. Materials and Methods 

2.1. Study Site  

The Texas Hill Country American Viticultural Area (THCAVA) was officially recognized in 1991 
and is located in central Texas west of Austin and north of San Antonio (Figure 1). This viticultural 
area contains 22 wineries, encompasses parts of 22 counties, and covers an area of over 36,000 square 
kilometers (14,000 square miles). This study looked at two contiguous vineyard blocks managed by 
one winery within the THCAVA. These two blocks of trellis-trained Tempranillo (Vitis vinifera) vines 
are shown outlined in red in Figure 2 and total approximately 1.9 ha (4.8 acres). Within this outlined 
area, the eastern block (separated by the dashed red line) was planted five years prior to the western 
block. Due to this, vines in the western block have significantly younger, smaller canopies than those 
in the eastern block. Both blocks are included to provide obvious leaf canopy size and density variation 
throughout the study site to enhance the robustness of the model results. All of the study vines are 
between five and fifteen years of age. The vines within the block immediately west of the highlighted 
study vines are not included because they are even less mature and are a different varietal. In total, the 
study blocks include 39 rows of vines with approximately 70–90 vines per row (around 3,000 vines 
total). The precise location of the study vineyard within the THCAVA is not disclosed as requested by 
the property owners. 

Figure 1. The Texas Hill Country American Viticultural Area (THAVA) located in central 
Texas, west of Austin and northwest of San Antonio. THCAVA wineries are clustered in 
the eastern portions of the vast viticultural area.  
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Figure 2. The study vineyard blocks, located in the Texas Hill Country American 
Viticultural Area, are shown outlined in red. The dashed line separates the study blocks. 
The western block is significantly younger than the eastern block, leading to desirable 
variation in vine canopy structure and density across the site. 

 

2.2. Data Collection 

Point cloud creation and 3D modeling was completed using the SfM approach discussed in Section 1. 
This method provides a low cost alternative to generate 3D data similar to lidar data and for sake of 
practicality remains a highly replicable method for future studies. Data were collected during the 
veraison phenological phase of the growing season (nearly 100% or full veraison) following [35]. This 
phenological phase was chosen for modeling because during phases prior to this the canopy may not be 
fully developed, while phases after this may be highly affected by canopy management practices like leaf 
thinning [2]. Additionally, observations from this part of the growing season have been shown to highly 
correlate with eventual vine performance in studies using multispectral imagery [4,6].  

Over 200 images were taken of the study vineyard with an unaltered, off-the-shelf Canon 
PowerShot A480 (RGB) digital camera. Images were captured with the use of a remote controlled 
Hawkeye II unmanned aerial vehicle (UAV) system (www.ElectricFlights.com, Kingsland, TX, USA). 
The camera was mounted in the UAV facing downward for nadir capture. This kitewing plane UAV 
platform was flown in vine row direction (north-to-south) for multiple passes to collect the imagery. 
This flight path was employed because the study UAV flies in a more stable fashion when flown 
directly into (to the south) or with (to the north) the wind. Flying height ranged from 100 to 200 m 
above ground. The Canon Hackers Development Kit (CHDK; chdk.wikia.com) intervalometer script 
was employed to continuously capture images every second during flight. Images not captured within 
this altitude threshold (at or near takeoff, landing, and during ascent/descent) were not included in 
image processing and are not reported in Table 1. Images were captured on a cloud free day  
(16 June 2012) around 11:00 am to minimize the effect of shadowing between the vines rows. The 
UAV captured images at nadir and varying oblique angles. Oblique images were captured both 
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unintentionally, during side-to-side UAV movement caused by crosswinds, and intentionally, by way 
of banking (leaning) the aircraft. Oblique images were included to better gain a sense of and model the 
canopy in 3D, instead of inputting only nadir images. Increased number of differing 
angles/perspectives with overlap only serves to further improve the SfM end product [28]. 

The difficulty of SfM keypoint matching with vegetation has been noted [28] due to the uniform 
and repeating nature of the surface area being modeled. Leaves can also be shiny due to their wax-like 
nature, further deterring proper keypoint matching. To address this and aid efficient SfM product 
creation, a number of colored targets were placed in the field prior to image capture. Nine,  
25-cm wide plastic buckets (pails) were placed in random locations upside-down atop trellis support 
posts throughout the vineyard. These adornments did not touch the vine canopy growing on the trellis 
below. The buckets were painted several different flat (non-shiny) colors (orange, yellow, white, and 
gray) to provide added visual distinctness from the surrounding canopy (green), repeating trellis 
structure (black), and underlying soil (red/brown). The discreteness of these targets within the vineyard 
landscape provides cursory SfM keypoints from which further keypoints can more easily be generated. 
This is assumed to create a more accurate SfM model overall as well as potentially reduce processing 
time. In total, nine buckets were considered enough to aid in cursory keypoint matching, although best 
practices of employing such aids has yet to be tested in SfM studies. 

To properly georeference the SfM point cloud, five ground control points (GCPs) were accurately 
located using a Trimble GeoXH GPS with an external antenna averaging a total of 200 separate GPS 
positions for each location (X,Y: NAD 1983, UTM Zone 14N; and Z: NADV88). GPS acquisition was 
limited to a maximum position dilution of precision (PDOP) of three. Differential correction of the 
collected GPS positions was completed using the Trimble GPS Analyst Extension in ArcGIS and resulted 
in a mean estimated error of 0.1083 m. GCP targets were crafted out of sturdy foamboard, sized 0.6 m by 
0.6 m, and painted red with white and black center targets following [36]. This ensures proper 
identification within the resulting point cloud model. The GCP targets were designed with further distinct 
colors to additionally aid in SfM keypoint matching much like the previously discussed colored buckets. 

LAI data were collected using an AccuPAR LP-80 ceptometer (Decagon Devices, Pullman, WA, 
USA) immediately following UAV image capture for improved accuracy with higher sun angles [37]. 
Similar to [8], offset stratified sampling was implemented consisting of every tenth vine in every fifth 
row starting with the easternmost row (alternating between the first and fifth vine to begin each sample 
row starting from the north). A total of 67 vines were sampled for LAI measurements. Ceptometer 
measurements were taken directly beneath the central portion of the vine canopy beside the vine trunk 
in a perpendicular fashion to the vine canopy row similar to the accurate measurement protocol M3 
reported by [37]. All sample vines were GPS located based on averaging 30 positions rather than 200 
as was employed with the GCPs (mean estimated error of 0.1660 m). Following differential correction 
of the captured GPS positions, collected LAI information for each vine was attributed to their 
respective locations. 

2.3. Data Processing 

The 3D vineyard point cloud was created automatically using Agisoft PhotoScan (Agisoft LLC, St. 
Petersburg, Russia). It should be noted that manual processing by way of open source software is also 
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possible, but remains more time consuming [28,31,33]. Of the total 206 images captured, 201 were 
input into the model. Five images were not included because they were either overly blurry or did not 
capture the study vineyard within the field of view. The latter was due to the UAV having to turn 
around at the end of the flight line. Such images can potentially introduce noise into the model as well 
as slow processing time (more images; blurry images are more difficult to identify matching keypoints 
across images). PhotoScan, much like Microsoft PhotoSynth (Microsoft Corporation, Seattle, WA, 
USA), automatically generated the 3D model based on input images. This model was then manually 
georeferenced within PhotoScan by way of identifying the GCPs within the model and substituting 
those data point’s arbitrary coordinates with the GPS measured coordinates and applying this 
locational transformation to the entire point cloud. The georeferenced point cloud was then exported 
using the high point density setting to LAS file format. 

Point cloud processing was completed using LP360 (QCoherent Software LLC, Madison, AL, USA). 
Manual removal of noise within the point cloud was first necessary to remove obvious outliers not 
representing actual ground features (points 0.5 m or greater beneath the ground surface and points 10 m 
above the ground surface based on field observation). The spatial extent of the dataset was also reduced 
to decrease processing time. Points greater than 70 m away from the study block outline were removed 
from the dataset. Following this manual effort, the point cloud was processed similar to that of a lidar 
dataset with automatic point filtering to separate ground points from non-ground points. LP360 uses an 
adaptive TIN method to first approximate a terrain surface using the lowest elevations in a large grid and 
then iteratively refines the surface until an accurate representation of bare earth points is achieved [38]. 
After automatic classification, additional manual classification was necessary to reassign obvious 
misclassified points to their proper class for improved ground—non-ground separation.  

The classified LAS file was imported into ArcGIS (ESRI, Redlands, CA, USA) as separate vector 
files of ground and non-ground points. Ground points were used to create a very high spatial resolution 
(0.25 m) digital terrain model (DTM) using ordinary kriging. To create relative height of non-ground 
points, the DTM height was subtracted from the absolute height of each non-ground point. This 
resulted in meaningful heights for each point in the non-ground point cloud representing measurements 
from the ground surface rather than from sea-level.  

2.4. Data Analysis 

Non-ground points were extracted based on proximity to the LAI sampled vines. Points were 
extracted using rectangles sized 1 m by 2 m, centered on sample vine trunk locations, and orientated 
north-to-south in line with the vine rows. Even though LAI measurements were only taken at the 
central base of each vine, these extraction zones are most representative of the full canopy of each 
vine, more so than a circular buffer around the vine location would be. This is due to the trellis system 
onto which the vines are trained to grow and the inherent geometry. Vine-to-vine spacing within each 
row is 2 m. Therefore, a meter to the north and the south of each vine trunk location represents canopy 
from that particular vine. Likewise, canopy width is no greater than a meter wide (east-to-west), which 
provides enough space to include the entire canopy. 

Following extraction of non-ground points to each sampled LAI vine, several metrics were 
calculated to explore correlations with the LAI measurements following [17,18]. These metrics include 
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the count or number of points within each vine’s zone as well as several height-based metrics such as 
mean height, variance, standard deviation, coefficient of variation, kurtosis, percentiles (10th, 20th, 
30th, 40th, 50th, 60th, 70th, 80th, 90th, 100th), percentile differences (100th–10th, 90th–20th,  
100th–50th), and percentile point ratios (i.e., number of points above percentile heights relative to the 
total number of points within the extraction zone). Furthermore, points with heights below 0.3 m and 
above 2.3 m were not included in metric calculation. These points were excluded based on field 
observation, which determined that points at these heights could not represent vine canopy. The 
relationship between these metrics and the measured LAI were modeled using the All Possible Models 
(i.e., best subsets regression) function in the JMP statistical package (SAS Institute, Cary, NC, USA). 

A square root transformation (LAISQRT) was applied to the field-measured LAI data to meet the 
assumption of data normality (minimize skewness and kurtosis). LAISQRT served as the dependent 
variable (Y) while the height-based metrics served as the independent or explanatory variables (X’s). 
Sample vines with low point counts of less than six were excluded from analysis. This condition was 
imposed based on prior consultation with an expert statistician to determine the minimum number of 
points necessary for reliable metric calculation (i.e., variance, coefficient of variation, etc.). As such, 
the total number of observations included in the regression analysis was limited to 44 of the original 67 
vines. Correlation analyses between each metric and LAISQRT were performed but yielded weak results 
for individual metrics (−0.3372 to 0.3941). However, as is common in lidar-based analyses,  
3D-dervied LAI estimates typically require several predictor variables to accurately quantify structural 
characteristics such as LAI. In that regard, weak individual correlations were not viewed as a limitation 
for further analysis. The All Possible Models procedure was implemented to provide a range of  
one-to-six covariate term models. Candidate models were selected based on a several criteria including 
R2, adjusted R2, RMSE, individual covariates, and overall model significance (α ≤ 0.05). The candidate 
models were also subjected to a Predicted Residual Sum of Squares (PRESS) analysis, which was used 
to determine the prediction error of each candidate model. The candidate model with the smallest 
difference in model root mean square error (RMSE) to PRESS RMSE was selected as the final model.  

3. Results 

3.1. SfM Results and Point Cloud Visualization 

Characteristics of the vineyard SfM model are reported in Table 1. Of the 206 total images captured 
by the digital camera during UAV flight, five were not input into the SfM model. From the 201 input 
images, PhotoScan exported a point cloud with a total of 462,959 points. After removal of noise within 
the dataset, a total of 432,184 points remained (93.3% of original), of which 333,835 points were 
classified as ground (72.1% of original) and the remaining 98,349 points as non-ground (21.2% of 
original). Typically, points flagged and removed as noise were located much higher or lower than 
expected and did not represent any actual feature on the ground or within the vine canopy. The extent 
of the dataset was also reduced to decrease processing time and the points located outside of the 
clipped extent were also classified as noise, comprising 6.7% of the original output point cloud. 

The filtered point cloud provides a clear 3D visualization of the study site as shown in Figure 3 at 
an oblique angle looking north. Points classified as ground are shown in gray, while points classified 
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as non-ground are shown in orange. The background, and therefore any area not being covered by data 
points, is displayed in black. The vine canopy with its distinct trellis-trained rows quickly becomes 
evident, especially at the vineyard edges where features are not found aboveground. Likewise, taller 
objects like the trees to the north of the study vineyard are properly replicated by the SfM model.  

Table 1. Inputs and outputs of PhotoScan and LP360 point cloud processing. 

Total 
Images 

Discarded 
Images 

Input 
Images 

Entire  
Point Cloud 

Noise 
Removed 

Classified 
Ground Non-Ground 

206 5 201 462,959 30,775 333,835 98,349 
100.0% 2.4% 97.6% 100.0% 6.7% 72.1% 21.2% 

Figure 3. The filtered point cloud of ground (gray) and non-ground (orange) points. The 
SfM method provides accurate visualizations of the study site with the vine rows in the 
foreground as well as a fence and taller trees in the background. 

 

For further depiction of the filtering results, a nadir view of an actual UAV captured image (Figure 4(a)) 
and the classified point cloud of the same extent (Figure 4(b)) are shown in Figure 4. This is the 
northwesternmost portion of the study vineyard, the extent of which is denoted with a red outline in 
Figure 4(b). The repeating linear structure of the vine canopy is again apparent in this case. Other objects 
on the ground are also well classified such as the vehicle in the upper-right of Figure 4(a). The points 
representing the vehicle are correctly classified as non-ground. Likewise, other features like the fence 
enclosing the vineyard (between the vehicle and the start of the vine rows) and the building northwest of 
the vehicle are also captured by the point filtering as non-ground. The non-ground points representing 
vine canopy though, are patchy and less uniform than found in other areas of the vineyard (refer back to 
Figure 3). This is not due to misclassification but rather less abundance of points in this area. 

Due to the overlap of the UAV images input into the SfM model, the point density across the 
study vineyard is not uniform. Figure 5 shows both ground point density (left) and non-ground point 
density (right). Overall, ground points have a higher density than non-ground points because many 
more points are classified as ground than non-ground (333,835 vs. 98,349). The spatial pattern of 
high point density though, remains similar across both sets of points. Both display high densities of 
points over the central and western sections of the study vineyard. This is where the most overlap in 

N 
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the input images occurred and results in more keypoints within those areas. Additionally, the 
northern edge of the vineyard shows higher degrees of point density because this was the staging 
area from which the UAV was launched and landed, resulting in more images being taken at the 
north end of the vineyard compared to the south. Mean point densities within the study vineyard 
block (the extent as shown in Figure 5) resulted as follows: 9.07 points per square meter for all 
points (unclassified), 6.33 points per square meter for ground classified points, and 2.74 points per 
square meter for non-ground classified points.  

Figure 4. A comparison of an actual UAV captured image (a) and the filtered point cloud 
(b) for the same area. In (b), ground points are gray and non-ground points are orange. For 
both (a) and (b), the extent of the study vineyard is shown with a red outline. 

 

(a) (b) 

Despite spatial variation in point density, the SfM point cloud can be used to create powerful 
visualizations of the study vineyard at a number of scales (see Figure 6(a–c)) including whole vineyard 
(Figure 6(a)), partial vineyard or vine row (Figure 6(b)), and partial vine row or per vine (Figure 6(c)). 
The three-dimensional perspective provided in this case increases the ability to perceive the SfM 
representation of the vine canopy and the density of the non-ground points. This is especially the case 
with Figure 6(b) in which the low angle provides a view similar to that of standing at the study site 
looking down the vine rows. Elements added for visual effect include: colored DTM surface, lines 
representing trellis wires, red poles with cone bases to represent the sampled vine trunk locations and 
generalized vine heights, red transparent partitions to highlight the sample vine rows, and extraction 
rectangles (boxes). The 1 m by 2 m extraction rectangles exist within 0.3 to 2.3 m above the DTM 
surface and are displayed in a transparent brown hue only in Figure 6(c). All of the points within these 
shapes were extracted and attached to that particular LAI sampled vine. 

N 
 

N
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Figure 5. The density of points (local average number of points per square meter) for both 
the ground and non-ground is highest in the central and western portions of the vineyard 
block where the most overlap in UAV images occurred. 

 

Figure 6. Three-dimensional visualization of the study vineyard (a–c) including sample 
vines (red poles) with highlighted sample rows, non-ground point cloud (green spheres), 
projected trellis wiring (gray lines), and underlying DTM surface. (a) Whole vineyard scale 
showing GCPs as red squares with inner white circles. (b) Partial-vineyard scale showing 
the clustering of points representing the individual vine row canopies. (c) Per-vine scale 
highlights the extraction zones for point inclusion/exclusion (transparent brown) and actual 
points (green).  

 
(a)

N 
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Figure 6. Cont. 

 

 

Ceptometer collected LAI data throughout the study vineyard resulted in a large range of values 
from 0.54 to 5.65. Indeed, a large variation in canopy density across the study site existed, which may 
be attributed to ceptometer uncertainty [37,39,40]. The spatial distribution of these collected values are 
interpolated and shown with Figure 7. This figure confirms the previously mentioned east-west block 
differentiation in canopy density based on age of the vines where the more established vines to the east 
have larger, denser canopies while the vine canopies to the west are considerably smaller and less 
dense. The location of the stratified sample of 67 vines is also shown along with the vine row structure. 
Spacing of the sample points appears to be less uniform in the western block (greater distance between 
sample points); this is due to removal of vines in the western block, especially noticeable in the last 
sampled row furthest west. 

N (b)

N 

(c)
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Figure 7. Canopy density (measured LAI) across the study vineyard blocks. The 
eastern portion of the vineyard is notably denser, which relates to more mature vines 
being located there. 

 
3.2. Relationship between SfM Output and LAI 

In total, 44 of the 67 sampled vines had point counts of six or greater. These 44 observations (n) 
were used to evaluate the relationship between the SfM height metrics and field-measured LAI 
(Table 2). The final model was selected based on the best subset of covariates and explained 57% of 
the variation in field-based measures with an RMSE of 0.24. The six covariate terms used to predict 
LAISQRT include the variance (Var), coefficient of variation (CV), the 50th and 90th percentile heights 
(Per5 and Per9), the difference between the 100th percentile height and the 50th percentile height 
(Per10-5), and the ratio of the number of points above the 60th percentile to the total number of points 
within the extraction zone (RatioPer6). A summary of the parameter estimates and overall model 
performance is provided in Table 2. 

The regression results are shown graphically in Figure 8 with observed LAI on the X-axis and 
predicted LAI on the Y-axis. Estimates were back-transformed to LAI and the observed vs. predicted 
values are shown around a one-to-one relationship line (gray) and a regression fit trend line (black). 
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Table 2. Results of stepwise multiple regression predicting LAI based on SfM  
derived metrics. 

R2: 0.567 | R2 Adj.: 0.495 | RMSE: 0.236, n: 44 | F Ratio: 7.86 | p < 0.0001 
Term Estimate Standard Error t Ratio Prob > |t|, α = 0.05 
Intercept 4.61 0.979 4.71 <0.001 
Var 4.77 1.97 2.42 0.020 
CV −5.05 1.58 −3.19 0.003 
Per5 −2.91 0.565 −5.16 <0.001 
Per9 1.85 0.422 1.38 <0.001 
Per10-5 −0.716 0.289 −2.48 0.018 
RatioPer6 −2.45 0.996 −2.51 0.017 

= 4.61 + (4.77 × Var) − (5.05 × CV) − (2.91 × Per5) + (1.85 × Per9)  
− (0.716 × Per10-5) − (2.45 × RatioPer6) 

Figure 8. Scatterplot of LAI predicted with SfM height metrics (Y-axis) and  
field-measured LAI (X-axis). The line black line indicates the regression fit while the gray 
line indicates a one-to-one relationship between observed and predicted LAI.  

 

4. Discussion  

4.1. General Study Limitations 

This study presents preliminary findings using SfM to visualize vine canopy and predict LAI. The 
scope of this study remains limited to a one-time data acquisition in July 2012 at a single vineyard site 
in the THCAVA. The potential utility of the presented method, therefore, remains limited to this 
dataset. Due to the high variation of SfM output (i.e., point density) based on image input, it is highly 
likely that the captured image data influences the success with which this method is employed. In 
general, comparative SfM studies exploring the degree to which SfM models vary in recreating the 
same subject at or near the same time period would be very useful. Specifically, further SfM-based 
viticultural research would benefit greatly from replicating such analyses over several data acquisitions 
within the growing season, over several years, and across several vineyard sites. At that point, the 
robustness of this method can fully be recognized. Continued success and advancement of this method 
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may also lead to exploration of differences between grapevine varietals and management practices 
(more or less leaf thinning). 

Though LAI measurements over the study area were obtained in a manner to mitigate potential 
error sources, error may have been introduced in the LAI data acquisition either through the sampling 
strategy or measurement theory. For example, the ceptometer requires specific parameters that can 
influence how LAI is calculated by the device including illumination conditions and leaf angle 
distribution [40]. Slight changes in illumination conditions throughout the measurement period can 
also influence LAI measurements because the device requires information on the total to direct 
flux [40]. Work [37] reported that the best results from a SunScan ceptometer were obtained under 
very specific illumination conditions, namely when the sun was neither directly overhead nor parallel 
to the vine rows. Further, even though the number of PAR sensors was limited to account for the 
relatively narrow width of the vine rows, the physical footprint of the sensor likely varied despite best 
efforts to position the sensor exactly the same for all measurement locations. Lastly, LAI 
measurements are likely influenced by the trellis system itself, as the wooden components and wires 
influence light interception.  

4.2. SfM as an Alternative Source of High-Density 3D Data 

The low cost and relative ease of creating 3D visualizations by way of SfM will likely see an 
expansion of use within the coming years. Inputting 201 images to PhotoScan, with relatively little 
user input, resulted in a dense (unclassified) point cloud with a mean of 9.07 points per square meter 
for use in visualization and analysis. A relative disadvantage of the SfM method of creating 3D 
datasets, however, is the random nature of SfM-obtained points within the output point cloud, since 
points can only be assigned based on conjugate feature recognition, or the ability of the matching 
algorithm to identify similar features in two or more images. Spatial variation in point cloud density is 
likely to occur when creating SfM-based models even with careful planning of image capture. As 
Figure 5 illustrates, higher point densities tended to result from increased overlap between images. As 
such, a potential solution would be to ensure that the entire study area be redundantly imaged. In short, 
to minimize spatial variation in point density across a study area, UAVs equipped with autopilot and 
flight planning functionality could be programmed with automated image capture to ensure more equal 
study site coverage. This includes obtaining a great deal of overlap of images at the edges of the study 
site, which can be obtained by buffering the desired coverage area by a generous distance. 

SfM-acquired topographic datasets [33] were comparable to airborne lidar data in terms of point 
densities and horizontal and vertical precision. For vegetation-based studies, such as those presented 
here, the ability to image the ground surface due to the trellis-row nature of the vineyard provided an 
opportunity to filter ground from non-ground points and generate SfM-derived terrain and canopy 
datasets. This may not always be the case, especially in areas of high canopy density, where the ground 
is not visible to the passive imaging system. However, if lidar data are available for an area, the SfM 
technique may be used to acquire vegetation canopy information such as height or percent cover as 
long as the lidar data are used to model the bare ground [28].  

As it currently stands, multi-temporal lidar acquisitions are not economically feasible for fine/small 
scale acquisitions; however, a simple, low cost aerial camera system can be easily configured to 
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provide similar information and more frequently than commissioning a lidar acquisition. Nonetheless, 
we explicitly state, that unlike lidar, the accuracy of the projected point coordinates are dependent on 
the geometric transformation between field-measured GPS positions and clearly identifiable features in 
the imagery and point density is variable and dependent on image overlap and conjugate surface 
features. Future research in SfM-acquisition for 3D datasets would certainly benefit from guidance 
regarding image acquisition and spatial redundancy as well as optimal placement of GCPs to distribute 
transformation uncertainties equally throughout the study area as this may affect location (X,Y) and 
height (Z) accuracies. 

4.3. SfM LAI Estimates Compared to Lidar and Spectral-Based Approaches 

The results of this study are similar to accuracies reported from other vineyard site lidar-based LAI 
estimation. For example, [12] was able to account for 49% variability of field-measured LAI using the 
number of lidar returns from a tractor-mounted terrestrial lidar. Llorens et al. [11] achieved a 
maximum R2 value of 0.40 for a regression model that used the number of lidar canopy returns 
acquired from a tractor-mounted terrestrial lidar. An exception to other lidar-based approaches is [41], 
who achieved exceptional R2 values of up to 0.99 using a tree area index metric derived from very high 
density terrestrial lidar scanner data.  

Passive optical imagery acquired by either aerial or satellite-based platforms has been the traditional 
data used to estimate LAI and has, with the exception of [41] produced better results than lidar for 
vineyard canopy LAI. For example, Johnson [8] used 4 m multispectral IKONOS imagery to calculate 
predictor variables based on NDVI and accounted for 91 to 98% variability in field-measured LAI over 
four different measurement dates. In another study, Johnson [6] used NDVI derived from IKONOS 
imagery and was able to account for 72% of field-measured LAI. Using 0.25 m multispectral aerial 
imagery and a NDVI threshold of 0.6, Hall et al. [42] calculated planimetric vine canopy area that 
accounted for 83% of the variability of LAI over several phenological stages.  

4.4. Potential of SfM as a Source of 3D Data for LAI Estimation 

Although the results of our SfM-derived LAI model only explained a moderate percent of variation 
in field-measured LAI (R2 = 0.567), these results provide proof-of-concept in that SfM data, due to its 
similarity with lidar may be used to predict LAI for vineyards. However, several issues provide 
discussion points in terms of the SfM point densities. As mentioned previously, low point densities in 
portions of the vineyard were an issue that quickly became apparent during metric calculation of  
point- and height-based regression covariates. Out of 67 LAI-sampled vines, 23 field-measured LAI 
observations were excluded from regression modeling because the extraction zones surrounding the 
vines failed to have more than five points. Higher density of points may have led to an improved R2 
value between LAI and the SfM metrics, although we acknowledge that this relationship is not evident 
in the current modeled output. 

Our regression analysis included a series of point- and height-based metrics. Additional research 
could address the calculation and implementation of more traditional lidar-derived metrics used to 
predict LAI such as the laser penetration metric [43], laser penetration index, or the laser interception 
index [44]. Lastly, higher point density may allow for analysis of points within the X, Y axis. Analysis 
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within this plane at designated height profiles could lead to accurate estimates of vine canopy width 
and overall size. A metric like this could further bolster the regression model that currently is primarily 
based on height-based metrics. Such analysis was attempted in this study but was unsuccessful 
presumably due to the lack of points. 

5. Conclusions 

This study presented several visualizations of vine canopy from the whole vineyard to single vine 
scale based on a SfM-derived point cloud. This generated model of vine canopy was created by 
capturing 201 aerial photographs with a digital camera mounted on a kitewing UAV. The SfM point 
cloud was then classified as ground and non-ground with non-ground points representing vegetation. 
This method was successful at quickly, practically, and inexpensively recreating the vineyard 
environment at the study site including the vine canopy. Using extracted points from this point cloud, 
this study reported moderate success in relating measured LAI of vine canopy to SfM point cloud 
derived metrics with an R2 value of 0.567. 

More work utilizing this rapidly developing SfM-methodology is necessary. This is especially the 
case with vegetation related studies because of the added level of difficulty associated with it. At this 
stage, modeling vegetation with SfM remains highly experimental and only moderately successful as 
shown by this and other studies [28]. The reasonable success of this method in such an early stage 
provides hope that this technique can be improved upon. The practical and inexpensive nature of the 
SfM method of 3D modeling makes it highly attractive to researchers and practitioners within a variety 
of fields.  

Future work using SfM for vegetation should employ colored targets to aid in keypoint matching. 
Likewise, higher point density is always desirable and can be obtained by acquiring more images, 
although this will prolong processing time to generate the point cloud. Implementation of this SfM 
method to predict LAI of other types of vegetation, particularly in forestry, would be worth exploring. 
SfM point clouds could also be utilized to estimate volumetric variables like biomass. Within the realm 
of viticulture, using this method at and between each phenological phase (budbreak, flowering, 
veraison, and harvest) to quickly generate whole vineyard 3D maps of vine growth both for 
visualization and LAI would be useful for vineyard managers wanting to assess spatial variation in size 
and density of vine canopy. It would be worth exploring potential variability in the prediction of LAI 
based on phenological phase, where fuller or lesser dense canopies may improve the accuracy of  
LAI prediction.  
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