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Abstract: Optical and thermal remote sensing data were acquired at ground level over 
several turfgrass species under different soil and irrigation treatments in northern Colorado, 
USA. Three vegetation indices (VIs), estimated based on surface spectral reflectance, were 
sensitive to the effect of reduced water application on turfgrass quality. The temperature-based 
Grass Water Stress Index (GWSI) was also estimated by developing non-transpiring and 
non-water-stressed baselines. The VIs and the GWSI were all consistent in (i) having a 
non-linear relationship with the water application depth; and, (ii) revealing that the sensitivity 
of studied species to water availability increased in order from warm season mix to Poa 
pratensis L. and then Festuca spp.. Implemented soil preparation treatments had no 
significant effect on turfgrass quality and water stress. The differences between GWSI-based 
estimates of water use and the results of a complex surface energy balance model 
(METRIC) were not statistically significant, suggesting that the empirical GWSI method 
could provide similar results if the baselines are accurately developed under the local 
conditions of the study area. 
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1. Introduction 

In recent decades, a fast population growth along with high rates of urbanization has exacerbated 
the pressure on water managers to meet urban water requirements. Such a pressure is substantially 
greater for municipalities in arid/semi-arid regions (e.g., western USA), where water resources are 
scarce and in high demand. Besides the effects of population growth, some of the predicted changes in 
climate, such as higher summer temperatures, prolonged droughts, and less snow pack in the 
mountains will influence both supply and demand in such a way that meeting urban water 
requirements will be even more challenging in the future. Boland [1] argued that since freshwater is 
over-allocated in many parts of the world and it is not feasible to make new water resources available, 
the best solution to mitigate possible consequences of climate change relies in demand management 
rather than in supply development. Even in the regions where developing new water supplies is still 
feasible, long-term planning and significant monetary investments are required for building additional 
infrastructure to store water. Demand management, however, is less time and money consuming and 
less dependent on the uncertain effects of climate change [1]. 

In arid/semi-arid areas, landscape watering could be significantly larger than other uses of fresh 
water by urban residents (e.g., hygiene, drinking, cooking). Kjelgren et al. [2] reported that landscape 
irrigation accounts for about one third of the annual municipal water use of Denver, CO, USA. It 
should be noted that such an estimate includes winter months, when landscape water use is negligible. 
Hence, the same ratio would be significantly larger if winter months are excluded. For instance, 
Cooley and Gleick [3] reported that landscape water use during summer months can reach up to 90% 
of the total municipal water use in southwestern USA. This is mainly due to the fact that in these areas 
summer rainfall is not sufficient to provide landscape vegetation with the amount of water needed to 
achieve the level of aesthetic appearance that is desired by home and business owners and therefore 
irrigation is intensified. Hence, improving landscape irrigation management is necessary to foster 
sustainable management of urban water resources in the western USA [4]. Turfgrass has been the 
focus of irrigation studies during the past few decades, as it is one of the most dominant components of 
urban landscapes [5]. Carrow [6] categorized the methods for identifying the appropriate timing of 
turfgrass irrigation into three groups: (i) based on soil moisture depletion; (ii) based on climatic data 
and reference evapotranspiration; and, (iii) using canopy characteristics such as temperature and 
visible signs of stress. The third approach seems to have received more attention in comparison to the 
former methods. For example, visible rating of turfgrass quality has been extensively utilized by 
researchers and practitioners. However, visual assessment is a subjective process that highly depends 
on the assessor’s definition of aesthetically appealing. Bell et al. [7] found that visual rates of turfgrass 
quality were inconsistent among three human evaluators. In addition, several researchers have used a 
visual rating scale of one to nine [8–10], while others have employed a range of one to ten [11,12] or 
one to six [13]. Developing objective and easy-to-use methods of irrigation scheduling can lead to 
water conservation and can prevent the loss of nutrients from turfgrass systems [2]. 

Optical and thermal remote sensing techniques can be used by turf managers in a consistent and 
non-destructive fashion to evaluate the quality and irrigation needs of turfgrass systems, before stress 
signs intensify enough to become perceptible to human eyes [7,9,14–16]. Previous studies have 
showed that spectral reflectance of turfgrass in different visible and near-infrared portions of the 
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electromagnetic (EM) spectrum is sensitive to several factors including, but not limited to: fertilizer 
and herbicide application rates [9,12]; carbon concentrating mechanism (C3 vs. C4 grasses) [9]; 
irrigation amount and uniformity [14]; and, management practices such as mowing height [11]. In 
addition to optical remote sensing, several thermal remote sensing methods have been used in 
quantifying turfgrass water stress and water consumption. In particular, the Crop Water Stress Index 
(CWSI) has proved to be an effective method compared to other irrigation scheduling methods [17]. 
As a dimensionless ratio, CWSI determines where the measured temperature differential between plant 
canopy and air (dT) falls on a range of possible values for any given climatic condition. The lower 
limit of this range corresponds to non-water-stressed conditions, when the rate of vegetation water use 
or evapotranspiration (ET) is only limited by atmospheric demand (i.e., water vapor deficit). As 
transpiring water is the main process responsible for cooling plants, the upper limit of dT is reached 
when there is no water available to be used by the plant (non-transpiring conditions). There are two 
different approaches to estimate CWSI: (i) physically-based [18]; and (ii) empirical [19]. In the former 
approach, lower and upper limits of dT are modeled based on the partitioning of the available energy at 
the vegetative surface into sensible and latent heat fluxes. Hence, it requires numerous environmental 
variables before it can be applied. The latter approach, however, requires only a few easy-to-obtain 
variables that are used to define linear regression relationships (baselines) between the upper (non-
transpiring) and lower (non-water-stressed) limits of dT and the atmospheric water vapor pressure 
deficit (VPD). 

Since the CWSI method is implemented in this study to evaluate the presence and severity of stress in 
turfgrass communities (and not agricultural crops), the term Grass Water Stress Index (GWSI) will be used 
instead hereafter. Both the physically-based and the empirical approaches of GWSI have been previously 
implemented to study water stress in turfgrass systems under varying hydro-climatological conditions. 
Several researchers have reported that the empirical approach fails to provide an accurate estimation of dT 
baselines for different turfgrass species such as bermudagrass (Cynodon dactylon L.) [20], Kentucky 
bluegrass (Poa pratensis L.) [21], creeping bentgrass (Agrostis stolonifera L) [10,21], and tall fescue 
(Festuca arundinacea L.) [22,23]. All of these studies have reported that the poor performance was 
mainly due to the fact that upper and lower dT limits were not only a function of VPD, but also the 
incoming irradiance. For example, Jalali-Farahani et al. [20] observed about three units of increase in 
the intercept of the non-water-stressed baseline when net radiation increased from 200 to 600 W·m−2. 
Payero et al. [23] also reported 5.7 units of increase in intercept and 1.2 units of decrease in slope of 
the non-water-stressed baseline as solar radiation increased from zero to 1,000 W·m−2. A similar study 
of several crops showed that the lower dT limit under shaded conditions was always smaller than the same 
value under sunlit conditions, with a 3.8 °C difference on average at VPD of 3.6 kPa [24]. Such a 
dependence on incoming irradiance was not observed when the method was developed by Idso et al. [19], 
since input data were all collected close to solar noon and only if “the crops did not experience 
significant shading due to clouds.” Therefore, it is not surprising that the empirical approach does not 
perform well under conditions different that those it was developed under. The effect of incoming 
irradiance would be negligible if the clear-sky guidelines are followed in estimating dT limits based on 
the empirical approach. 

The present study was conducted in northern Colorado in the semi-arid western USA in order to 
find out if optical and thermal remote sensing techniques were efficient in monitoring the quality, 
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water stress, and water use of several turfgrass species under different soil and irrigation treatments. 
More specific research objectives were as follows: 

• To investigate the sensitivity of several vegetation indices to soil preparation and water 
application treatments in order to explore the possibility of replacing them with the traditional 
visual rating, performed by human assessors; 

• To estimate the GWSI based on the empirical approach and to identify the effects of 
experimental treatments on this stress indicator; 

• To compare the performance of several turfgrass species under limited levels of water 
availability; and, 

• To estimate turfgrass water use based on the GWSI approach, as well as a complex surface 
energy balance model. 

To the best of our knowledge, the GWSI method has been mainly used to identify the timing of 
irrigations. Hence, using GWSI to estimate turfgrass water use will assist irrigation managers to 
identify both the timing and the amount of irrigation events, using the same index. 

2. Methods and Materials 

2.1. Study Area  

This experiment was conducted during the summer of 2011 (20 July–27 September) at the 
Conservation Gardens (Lat: 40°19.3′, Long: −105°4.6′, Alt: 1,548 m) in Berthoud, northern Colorado, 
USA. The Conservation Gardens are a research and demonstration site developed and managed by the 
Irrigation Management Department at the Northern Colorado Water Conservancy District (Northern 
Water hereafter). This site was established to provide landscape owners and professionals with 
information on water-conserving practices and it includes several turfgrass species under different soil 
and water treatments. Figure 1 demonstrates a false-color multispectral airborne image of the study 
site. The experiment focused on two major treatments. The first treatment was a variable irrigation 
depth treatment (treatment I hereafter), where sprinklers were installed at only one side of five 
rectangular plots, resulting in a water application rate that decreased with distance from sprinklers. For 
each turfgrass plot, remote sensing readings were taken at four distances from the line-source 
sprinklers, namely 1.0, 2.1, 3.3, and 4.5 m. According to irrigation application records (audit), the 
average irrigation rate was about 13 mm·h−1 at the closest distance, which resulted in a total 
application depth of 190 mm during the study period. As a result, the Water Application Adequacy 
(WAA), defined as the ratio of applied water (gross depth of irrigation and precipitation) divided by 
the total grass reference ET (ETo) during the same period was 74%. At the farthest distance, irrigation 
rate was only 5 mm·h−1, resulting in a total irrigation depth of 73 mm and a WAA of 38%. The five 
plots of turfgrass mixes or blends included in this treatment were: 

(i) Warm-season mix, WSM: a mixture of 70% blue grama (Bouteloua gracilis L.) and 30% 
buffalograss (Bouteloua dactyloides L.); 

(ii) Aggressive Kentucky bluegrass (Poa pratensis L.), AKB: a blend of cultivars ‘Rampart’ 
(50%), ‘Touchdown’ (25%), and ‘Orfeo’ (25%); 
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Table 1. Key weather variables during the study period (20 July–27 September 2011). 

Parameter Value Units 
Average daily minimum air temp. 12.6 °C 
Average daily mean air temp. 20.9 °C 
Average daily maximum air temp. 29.3 °C 
Average daily mean wind speed 1.5 m·s−1 
Average daily vapor pressure 1.1 kPa 
Average daily solar radiation 20.6 MJ·d−1 
Total precipitation 54.0 mm 
Average daily ETo 4.7 mm·d−1 
Total ETo 329.0 mm 

Table 2. Experimental plots, abbreviations, and total irrigation water applied during the 
study period (20 July–27 September 2011). 

Treatment Experimental plots Abb. Irr. (mm) 

Irrigation 
depth (I) 

Warm Season Mix, 1.0* I-WSM-1 190 
Warm Season Mix, 2.1 I-WSM-2 169 
Warm Season Mix, 3.3 I-WSM-3 129 
Warm Season Mix, 4.5 I-WSM-4 73 
Agg. Kent. Bluegrass, 1.0 I-AKB-1 190 
Agg. Kent. Bluegrass, 2.1 I-AKB-2 169 
Agg. Kent. Bluegrass, 3.3 I-AKB-3 129 
Agg. Kent. Bluegrass, 4.5 I-AKB-4 73 
Texas Hyb. Bluegrass, 1.0 I-THB-1 190 
Texas Hyb. Bluegrass, 2.1 I-THB-2 169 
Texas Hyb. Bluegrass, 3.3 I-THB-3 129 
Texas Hyb. Bluegrass, 4.5 I-THB-4 73 
Fine Fescue, 1.0 I-FF-1 190 
Fine Fescue, 2.1 I-FF-2 169 
Fine Fescue, 3.3 I-FF-3 129 
Fine Fescue, 4.5 I-FF-4 73 
Tall Fescue, 1.0 I-TF-1 190 
Tall Fescue, 2.1 I-TF-2 169 
Tall Fescue, 3.3 I-TF-3 129 
Tall Fescue, 4.5 I-TF-4 73 

Soil 
Preparation 
(S) 

Deep tillage, No compost  S-DN 259 
Deep tillage, Low compost S-DL 259 
Deep tillage, High compost S-DH 259 
Shallow tillage, No compost S-SN 259 
Shallow tillage, Low compost S-SL 259 
Shallow tillage, High compost S-SH 259 

* Distance from line-source sprinklers (m). 
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2.2. Remote Sensing Data 

Turfgrass spectral reflectance was obtained using a hand-held, multi-spectral radiometer (model 
MSR5, CROPSCAN Inc., Rochester, MN, USA) that was equipped with two sets of upward- and 
downward-looking detectors in five wavebands centered at blue (485 nm), green (560 nm), red 
(660 nm), near infrared (NIR, 830 nm), and short-wave infrared (SWIR, 1650 nm) parts of the EM 
spectrum. These wavebands are selected in a fashion to be compatible with sensors on-board the 
Landsat Thematic Mapper 5 satellite. Each sensor has a 28° field of view (FOV), resulting in a circular 
target area with a diameter that is half of the height of radiometer above the target. Downward looking 
sensors detect reflected radiance in the mentioned five bands, while the upward looking sensors 
measure the incoming radiation through a flashed, opal glass, cosine diffuser. Obtained information 
was then sent to a multichannel data-logger controller, where surface reflectance in each band was 
computed as the ratio of downward to upward radiations considering temperature and sun angle cosine 
correction [25]. To be able to measure turfgrass temperature, a pre-calibrated infrared thermometer or 
IRT (model IRt/c.2, Exergen Corp., Watertown, MA, USA) with a 35° FOV was attached to the MSR5 
radiometer. Measurements of IRT were synchronized with radiometer measurements and all of the 
data were sent to the data-logger controller for analyses and recording. Turfgrass temperature and 
reflectance were measured using the combined IRT/radiometer on seven dates during the 70 days of 
study period. The entire data collection over all plots took 37 minutes on average and it was always 
within two hours of the solar noon, under cloud-free conditions. To take the readings, the sensors were 
held at a nadir view angle and about 1 m above the surface. In order to provide more replication in 
space, four readings were taken over different spots of each experimental plot. This resulted in four 
readings for each level of treatment I and eight readings for each level of treatment S, since the latter 
treatment had two replicates. The average of four/eight readings was used in the analysis. 

2.3. Vegetation Indices 

The optical remote sensing data collected by the multi-spectral radiometer were further analyzed to 
assess the effects of turfgrass species and implemented treatments on spectral signatures. Three 
Vegetation Indices (VIs) were calculated and used in the analyses to explore the potentials and 
limitations of utilizing VIs as an alternative to the traditional visual rating approach that is currently 
implemented by turfgrass professionals. These VIs were the Normalized Difference Vegetation Index 
(NDVI) [26], the Soil Adjusted Vegetation Index (SAVI) [27], and the Visible Atmospherically 
Resistant Index (VARI) [28]: 

NDVI = (ρ830 – ρ660)/(ρ830 + ρ660) (1) 

SAVI = (1.0 + L) (ρ830 – ρ660)/(ρ830 + ρ660 + L) (2) 

VARI = (ρ560 – ρ660)/(ρ560 + ρ660 – ρ485) (3) 

where ρ485, ρ560, ρ660, and ρ830 are surface reflectance in the blue, green, red, and NIR parts of the EM 
spectrum. The parameter L is a coefficient that changes with canopy density, but a value of 0.5 is 
found to be a good representative over a wide range of densities [27]. 
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The NDVI was selected in this study because it is one of the most commonly used VIs and previous 
studies have shown that it is highly correlated with turfgrass visual assessment rates [7,11,12,29]. 
Compared to other VIs, NDVI is more sensitive to sparse vegetation, which makes it ideal for 
evaluating turfgrass growth and quality. A major caveat, however, is that this VI becomes less 
sensitive at denser canopies. Since turfgrass is usually kept at a very short height (unlike many 
agricultural crops), the saturation of NDVI would not impose a major challenge for turfgrass 
management. The selection of SAVI was based on the fact that it is efficient in minimizing the effect 
of soil surface wetness. In other words, when underlying soil is viewed by the remote sensing sensor, 
wet and dry soil surfaces would not cause a significant variation in the value of SAVI [27]. Finally, 
VARI was utilized in this study because it is based on the reflectance in only the visible part of the EM 
spectrum, and thus it would provide a quantification of turfgrass quality that is the closest to human’s 
eye perception. This VI is developed in a fashion to be less sensitive to the effect of atmosphere on 
radiation attenuation [28]. As a result, it can be successfully applied to air- and space-borne imagery 
without the need to account for the atmospheric optical thickness. The visible radiation is reflected at 
the topmost layer of the canopy. Hence, VARI can be interpreted as a color indicator. The NDVI and 
SAVI, on the other hand, take into account the reflected radiation in NIR waveband, which interacts with 
more layers of leaves. Thus, NDVI and SAVI can be regarded as plant growth and health indicators.  

2.4. Grass Water Stress Index 

The GWSI can be estimated using the following equation [18,19]: 

GWSI = (dTm − dTLL)/(dTUL − dTLL) (4) 

where dT is the temperature difference between the turfgrass canopy and the air, measured at a height 
above the canopy. Subscripts m, LL, and UL represent measured, lower limit, and upper limit of dT, 
respectively. All of the variables in Equation (4) have the units of temperature, resulting in a 
dimensionless ratio that theoretically varies between zero and unity. Besides dTm that is obtained by 
measuring turfgrass and air temperatures, the lower and upper limits of dT need to be known in order 
to calculate GWSI. As mentioned before, the empirical approach of Idso et al. [19] was implemented 
in this study to model dT limits using the following equations: 

dTLL = m (VPD) + b (5) 

dTUL = m (VPG) + b (6) 

where “m” is the slope and “b” is the intercept of the linear relationship, VPD is the water vapor pressure 
deficit of the air, and VPG is the vapor pressure gradient (both in kPa), estimated as the change in 
saturated vapor pressure when the air temperature is increased by an amount equal to the coefficient “b”. 
Due to its empirical nature, the coefficients of Idso’s method are plant- and site-specific. To develop 
Equation (5), estimated VPD data were plotted against dTm values that were collected over healthy 
turfgrass after significant irrigation or precipitation events, when non-water-stressed conditions 
prevailed. Under these conditions, dTm can be assumed equal to dTLL. In addition, dTUL was calculated 
using Equation (6). To verify their accuracy, resulted dTUL values were compared with dTm values that 
were measured over a non-transpiring patch of turfgrass. Surface non-transpiring conditions were 



Remote Sens. 2013, 5 2335 
 

 

achieved by spraying a small patch of grass with glyphosate, which inhibited grass photosynthetic 
activities and therefore the transpiration process. 

2.5. Turfgrass Water Use 

Turfgrass water consumption was estimated using two independent methods: a GWSI-based 
method and a surface energy balance model known as METRIC [30]. 

2.5.1. GWSI-Based Water Use 

According to Jackson et al. [18], GWSI is inversely related to the actual plant transpiration (Ta) in 
such a way that a maximum GWSI (unity) translates into no water use and a minimum GWSI (zero) 
corresponds to Ta rates as high as the potential (disease- and stress-free) transpiration rates (Tp): 

Ta = (1 − GWSI) Tp (7)

Equation (7) is based on the assumption that GWSI ranges between zero and unity. Obtaining GWSI 
values that meet this criterion requires an accurate estimation of the upper and lower dT limits. If dTm 
values fall beyond the range that is defined by baselines, GWSI estimates will be either negative or 
greater than one, resulting in Ta values that are larger than the potential rate or negative, respectively. 
Thus, appropriate limits were applied to GWSI values to ensure that Equation (7) did not result in 
unreasonable Ta estimates. The Tp values were calculated through multiplying the basal crop 
coefficients of cool-season grass reported in [31] and the ETo estimates obtained following the  
ASCE-EWRI guidelines for standardized Penman-Monteith method described in [32]. The required 
weather variables were collected at the on-site weather station. 

2.5.2. METRIC-Based Water Use 

METRIC (Mapping ET at high Resolution with Internalized Calibration) is a satellite-based 
remotely sensed surface energy balance model that relies on the simplified form of the energy balance 
equation at land surfaces [30]: 

Rn = G + H + LE (8) 

where Rn is net radiation, G is soil heat flux, H is sensible heat flux, and LE is the latent heat flux, all in 
units of energy (e.g., W·m−2). The first three components (Rn, G, and H) are estimated by integrating 
remotely sensed and in situ weather data, while LE is calculated as the residual of Equation (8). In this 
study, Rn and G were estimated following the equations and steps provided in [30]. The only difference 
was in estimating surface albedo, which was based on the equation provided in [33]. METRIC takes 
advantage of a novel approach in modeling H, which was pioneered by Bastiaanssen et al. [34]. Based 
on this approach, spatially distributed values of H are estimated by interpolating between two extreme 
conditions and by iteratively correcting the aerodynamic surface resistance and friction velocity for the 
effects of atmospheric stability, using the Monin-Obukhov similarity theory [30]. The extreme 
conditions are defined by identifying the so-called hot and cold pixels. The cold pixel is selected over a 
well-irrigated field, where all of the available energy (Rn − G) is used for changing the state of water 
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from liquid to gas. The hot pixel is selected over a dry bare soil, where LE approaches zero due to the 
lack of available water. 

Application of METRIC in the present research had two major differences with regular applications 
of METRIC to satellite imagery. The first difference was in the selection of the cold pixel and the 
performance of the internalized calibration. In METRIC, the cold pixel is selected in an agricultural 
area as one of the coolest pixels with a large biomass (leaf area index greater than 4). In the 
internalized calibration of METRIC, the ET of such a cool and tall agricultural crop is assumed to be 
5% larger than the alfalfa reference ET (ETr). Therefore, ETr values estimated at a standard weather 
station (located within or close to the area of interest) are multiplied by a 1.05 factor and the results are 
regarded equal to the total LE flux at the selected cold pixel. The value of H is then estimated for this 
pixel using Equation (8). In this study, however, the cold pixel was selected over a recently-irrigated, 
stress-free turfgrass at full cover that had the coolest temperature. The fact that the cold pixel was 
selected over a short plant such as turfgrass rather than a tall crop such as alfalfa may introduce some 
error, mainly due to the fact that under similar non-water-stressed conditions, turfgrass has a lower rate 
of water use compared to alfalfa or other tall crops [30]. This difference was compensated for in the 
present study by modifying the internalized calibration process of METRIC in two ways: (i) instead of 
ETr, the grass reference ET (ETo) was assigned to the latent heat flux of the selected cold pixel; and, 
(ii) the multiplication by 1.05 coefficient was avoided. In other words, it was assumed that the 
available energy over the selected turfgrass cold pixel is equal to the ETo rate estimated at the on-site 
weather station. For the hot pixel, readings were taken over a dry, bare soil surface that was located 
close to the experimental treatments and had been cultivated during previous years, so it was not 
compacted. This is in compliance with the guidelines of METRIC about hot pixel selection [30]. 

The second difference between current and regular applications of METRIC was the difference in 
sensor platforms. While air- and space-borne images are acquired at the same instance over a large 
area, ground-based data used in this study were collected over the experimental plots at slightly 
different times. Since the entire data collection period took only 37 minutes on average (with hot and 
cold pixel readings taken at approximately half time), the error introduced by data collection 
asynchronism is not expected to be large. It should be noted that despite the temporal concurrence in 
data collection in regular applications of METRIC to imagery, the LE flux estimated at a standard 
weather station based on high-frequency data collected during a 60-minute period is used to calculate 
the instantaneous H flux over the selected cold pixel. In other words, it is assumed that the 60-minute 
LE flux is similar to the LE flux at the instance of overpass, which may have happened at any time 
during the 60-minute period. 

The results of models that are based on remotely sensed data (e.g., GWSI and METRIC) represent 
surface conditions at the moment of data collection. Therefore, they should be extrapolated to longer 
periods (e.g., daily) for most practical applications. METRIC suggests the use of ETrF extrapolation 
method, which is based on the assumption that the instantaneous ratio of ETa to ETr (ETrF) remains 
constant throughout the day [30]. Once this ratio is estimated, it can be multiplied by daily ETr to 
provide an estimate of daily water use. In this study, however, the ratio of ETa to ETo (EToF) was used 
for extrapolating the METRIC results, not only because it is more compatible with the proposed 
modified internalized calibration, but also because previous studies have shown that the EToF method 
performs better than ETrF under advective conditions of arid/semi-arid regions [35–37]. A similar 
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approach (ETcF) was used to extrapolate GWSI-based water use estimates. This approach is explained 
in details by Taghvaeian et al. [38]. In order to obtain the cumulative water use of turfgrass species 
during the 70 days of study, water use estimates of each method (GWSI and METRIC) were 
interpolated for the days in between the data collection dates, following the procedure outlined in [30]. 

3. Results and Discussion 

3.1. Spectral Characteristics of Turfgrass 

The optical remote sensing data revealed interesting patterns in the spectral characteristics of 
turfgrass species. Figure 2, for example, compares the spectral signature of turfgrass species in 
treatment I, measured at two different distances from the sprinklers and averaged for all measurement 
dates. The spectral signature at the closest distance was similar to that presented in [5]. At this 
location, 38% of the incident radiation in NIR waveband was reflected on average, an indication of 
large number of hydrated cell walls and air cavities in the mesophyll tissue of turf blades. However, 
the average reflectance in the same waveband decreased to 28% at the farthest distance from 
sprinklers. Another noticeable change was the overall increase in reflectance at the three visible bands 
as irrigation rate decreased. In other words, all turfgrass species that received higher rates of irrigation 
were darker in color. Similar changes in surface reflectance at the visible and NIR wavebands caused 
by irrigation treatments were observed in Las Vegas, Nevada for tall fescue [14], annual ryegrass [12], 
and bermudagrass [29]. Previous studies have shown that the SWIR waveband is the most appropriate 
one in the optical part of the EM spectrum for monitoring water status of plant canopies [39], since at 
this waveband, the incoming radiation is absorbed by the moisture content of plant parts. Our results 
showed that SWIR reflectance of turfgrass increased with the decrease in WAA. This means that 
turfgrass canopies that received less amount of irrigation were also at higher levels of wilting (less 
turgid). The average SWIR reflectance at closest distance was 25%, which increased to 35% at the 
farthest distance from sprinklers. The spectral signatures of the FF and TF species at the farthest 
distance resembled that of a bare soil surface, due to the effects of the reduced irrigation rate. 

Figure 2. Spectral signatures of turfgrass species under two different irrigation application 
rates: (a) 13 mm·h−1 and (b) 5 mm·h−1 and averaged for all measurement dates. 
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Evaluating the effects of irrigation treatments on turfgrass quality was also performed by comparing 
the VIs. Figure 3 illustrates the variation in NDVI, SAVI, and VARI with the change in WAA. Based 
on the observed pattern, the following conclusions can be made: 

(i) The range of variation in NDVI and SAVI was largest for TF, followed in order by FF, THB, 
AKB, and WSM. This means that Festuca species were the most sensitive and the mixture of 
warm season grasses was the most tolerant to water limitation. 

(ii) Except for the WSM plots, the NDVI-vs.-WAA and the SAVI-vs.-WAA relationships were 
non-linear, having different slopes at WAA levels below and above 0.55. In case of VARI, 
plots of WSM, THB, and TF appeared to have linear graphs, while other species demonstrated 
a non-linear pattern. Other studies have reported similar non-linear relationships between 
turfgrass quality indicators and water availability [8,40].  

(iii) Pairwise multiple comparison analysis (Holm-Sidak method) revealed that NDVI estimates at 
the two highest WAA levels were not statistically different. In comparison with the highest 
WAA (closest distance to sprinklers), NDVI values at the third highest WAA level were not 
significantly different for WSM, AKB, and THB. The difference was significant only for TF 
and FF. At the lowest WAA level (farthest distance), all turfgrass species had a NDVI that was 
statistically different that the values for the highest WAA level. SAVI estimates had a similar 
behavior, suggesting that considerable water conservation can be achieved before turfgrass 
quality is significantly degraded. This is similar to a previous finding that irrigation depths can 
be reduced by 15% at a golf course without affecting the turf quality [13]. 

(iv) According to all VIs, the quality and growth of WSM was poorer under high WAA levels and 
better under low WAA level in comparison to other species. 

(v) Treatment S did not cause any significant variation in estimated VIs, with average NDVI, 
SAVI, and VARI values of 0.88, 0.65, and 0.23, respectively. Since WAA was 95% at this 
treatment, the mentioned values can be regarded as the upper limits that respected VIs can 
reach over a non-water-stressed Kentucky bluegrass turf under conditions similar to those of 
this experiment. 

Figure 3. Effect of water application adequacy on (a) NDVI, (b) SAVI, and (c) VARI, 
averaged for all measurement dates. 
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Figure 3. Cont. 

 

The observed sensitivity of remotely sensed turfgrass growth (NDVI and SAVI) and color (VARI) 
indicators to water availability suggests that these VIs can replace the traditional methods of visual 
quality assessment, which are time-consuming and subjective. For example, it seemed that all of the 
plots with an acceptable aesthetic appearance had a positive VARI during the study period. Thus, a 
VARI value of zero may be an appropriate threshold in managing turfgrass quality. The graphs in 
Figure 3 can also be used by turf managers to quantify the amount of reduction in applied water that 
can be achieved before turfgrass quality is degraded to a level lower than any desired VI. 

3.2. Grass Water Stress Index 

Non-water-stressed baselines were developed for tall fescue and Kentucky bluegrass, following the 
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dTLL = −3.3 (VPD) + 10.3 (9) 
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The non-transpiring baseline was developed by entering the coefficients of Equation (9) into 
Equation (6). Predicted dTUL values varied from 17.0 to 21.9 °C, also bigger than the finding of 
Throssell et al. [17] who reported a dTUL value of about 13.0 °C for Kentucky bluegrass at an air 
temperature of 30.0 °C. However, dTUL values modeled in this experiment had a high accuracy when 
compared with dTm values that were measured over a non-transpiring turfgrass surface, with a mean 
bias error of only 0.7 °C and a root mean square error of 0.6 °C. Such a high accuracy suggests that 
observed differences in the upper and lower dT limits between this study and previous works is mainly 
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due to differences in climatological conditions. It also suggests that the empirical GWSI approach can 
provide accurate results, if it is developed and applied locally under a high intensity of incoming solar 
radiation (around solar noon on cloud-free days). Figure 4 demonstrates the upper and lower dT limits, 
along with dTm values of four experimental plots as an example. According to this figure, dTm values 
for I-WSM-4 and I-AKB-4 plots that received minimum amounts of irrigation were closer to the dTUL 
line compared to the S-SN and I-WSM-1 plots. 

Figure 4. Modeled dTLL (lower solid black lines) and dTUL (upper solid black lines), along 
with dTm values for four experimental plots. 

  

The next step was to estimate GWSI over all experimental plots (Figure 5). For treatment S, 
different levels of added plant compost had no significant effect on water stress. Soil tillage depth did 
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(all datasets passed both equal variance and normality tests). However, the range of GWSI variation 
with WAA was not similar among turfgrass species. While the WSM and AKB varieties had the 
lowest GWSI range of 0.26 and 0.28, respectively, the difference between minimum and maximum 
GWSI values observed over the TF plot reached 0.91, close to the full possible range of unity. 
Therefore, the GWSI results based on the thermal remotely sensed data confirmed the VI results based 
on the optical remotely sensed data that the warm season grasses were the most tolerant and the 
Festuca species were the most sensitive species to water availability. 

Similar to VIs results, turfgrass species had different responses at the same distances from 
sprinklers (i.e., for the same WAA levels). At the farthest location, FF had a GWSI of unity (Figure 6), 
followed by the GWSI of TF (0.93). Bluegrass species (AKB and THB) had the same GWSI values of 
0.53. A similar GWSI value of about 0.50 is reported for Kentucky bluegrass under moderate levels of 
water stress (corresponding to a soil water potential of −0.40 MPa, measured by a gypsum resistance 
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belonged to WSM. This observation was expected because warm season grasses have a higher drought 
tolerance compared to cool season species. In addition, the two warm season species of this study are 
native in Colorado and therefore well-adapted to Colorado’s climate. At the closest location (largest 
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WAA), however, TF out-performed other species with a negligible GWSI. THB had the next lowest 
GWSI (0.10), followed by that of WSM (0.19). The average GWSI was 0.15 for WSM at the second 
closest distance to sprinklers, where WAA was 68%. This result is very similar to the GWSI value of 
0.16 that was estimated for bermudagrass (a warm season species) under a similar relative water use 
(actual to reference ET) of 66% [20]. 

Figure 5. Average GWSI for all of the experimental plots. 

 

Figure 6. Variations in GWSI with changes in water application adequacy. 
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Jalali-Farahani et al. [20] plotted GWSI values vs. percent available extractable water (AEW), defined 
as the ratio of the actual soil moisture minus the minimum amount of extractable water divided by the 
total extractable water. The generated GWSI-vs.-AEW scatterplots also showed a non-linear 
relationship, with GWSI increasing gradually from zero to 0.25 for the first 50% reduction in AEW 
and then increasing sharply until it reached unity. 
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3.3. Turfgrass Water Use 

3.3.1. GWSI-Based Water Use 

Daily turfgrass Ta was calculated based on GWSI estimates for each of the seven dates of data 
collection. As expected, GWSI variations were translated into variations in Ta estimates. The highest 
water consumption rate was estimated over I-TF-1 and I-TF-2 plots (closest to the sprinklers), with 
average transpiration of 4.1 mm·d−1. The lowest water use rate also belonged to a TF plot (the farthest 
distance from sprinklers), with an average Ta of 0.2 mm·d−1. The Ta rates reached a maximum value of 
3.4 mm·d−1 at AKB plots of treatment I, slightly smaller than the maximum Ta rate of 3.8 mm·d−1, 
estimated over the plots of treatment S that had the same type of turfgrass but received more irrigation 
water. Averaging Ta values over all WAA levels (distances from sprinklers) for each turfgrass species 
at treatment I showed that WSM had the highest average transpiration rate (3.3 mm·d−1), followed by 
THB (3.2 mm·d−1), AKB (2.9 mm·d−1), TF (2.9 mm·d−1), and FF (1.9 mm·d−1) species. This trend in Ta 
values agrees well with the observed trends in VIs. Average ETo estimated using the weather station 
data and the ASCE standardized Penman-Monteith method [32] was 4.5 mm·d−1 for the same seven 
data collection dates. 

3.3.2. METRIC-Based Water Use 

In general, the water use results obtained by applying the METRIC energy balance model were 
similar to those of the empirical GWSI approach. For example, I-TF-1 and I-TF-2 plots had the highest 
average METRIC-ETa rates of 4.3 mm·d−1. In addition, the average ETa for the I-TF-4 plot, which was 
the smallest based on the GWSI method, was the second smallest based on METRIC. The differences 
between the daily water use results of GWSI and METRIC methods were always less than 1.0 mm·d−1, 
with an average value of 0.4 mm·d−1 for all plots. This difference was 11% of the average  
METRIC-ETa for the same seven dates. Bastiaanssen et al. [42] reported that at field scale, the error in 
daily water use estimate of the land surface energy balance models can be up to 15%. A more recent 
study showed that on daily scales, the errors in METRIC results can be reduced to 10% if a surface 
roughness model is also incorporated to account for the surface heterogeneity [35]. Hence, the 
observed differences between GWSI and METRIC results in this study are well within the accuracy 
range of the METRIC model. 

Statistical analyses were also performed to identify if there was any significant difference among 
the results of the METRIC and GWSI methods. As the first step, a normality test (Shapiro-Wilk) was 
conducted to select an appropriate group-comparison test. Databases that passed the normality test 
(P = 0.05) were analyzed using the un-paired t-test, while those that did not pass the test were analyzed 
using Mann-Whitney Rank Sum test. The results confirmed that the difference between two methods 
was not statistically significant (P > 0.05) for any of the studied plots. A similar observation was 
reported when the same two methods were applied to estimate water consumption of corn in 
northeastern Colorado [38]. This finding is of great importance, since METRIC is a complex and  
data-intensive model that needs to be applied by a trained operator. The empirical approach of GWSI, 
however, is an easy-to-apply method that neither requires an extensive knowledge on land surface 
processes nor needs extensive data collection and processing. In addition, the procedure can be easily 
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programmed in pocket computers and smart phones. There is also the possibility of applying the GWSI 
approach to air- and space-borne imagery. This method does not rely on optical remote sensing data, 
only a single-layer map of radiometric surface temperature suffices for its application. However, 
GWSI method is only as accurate as the baselines used in defining the lower and upper limit of dT. 
These baselines need to be developed under the specific conditions of each climatic region, so they are 
not transferable among the regions. Surface energy balance models, on the other hand, can be applied 
over large areas comprising different vegetation types, regardless of climatic conditions.  

Figure 7 demonstrates box plots of estimated Ta and ETa, averaged for all data collection dates. As 
this figure suggests, the range and median of turfgrass water use estimates were similar among both 
methods, except for the two farthest locations from the sprinklers in treatment I. In other words, the 
difference between water use estimates of GWSI and METRIC methods had a negative relationship 
with the depth of applied water (or the WAA level). This is most probably due to the fact that at lower 
WAA levels (farther distances from sprinklers) turfgrass canopy was not fully closed. Hence, parts of 
the underlying soil may have been viewed by the IRT, despite our effort to take readings only over 
turfgrass. This would have contaminated the measured turfgrass temperatures, resulting in larger 
GWSI and consequently smaller Ta estimates. The difference between GWSI and METRIC results was 
reduced from 11% to 8%, when only the higher-quality plots (those that had a positive VARI) were 
included in the analysis. 

Figure 7. Box-plots of estimated turfgrass water use based on GWSI and METRIC 
methods for all measurement dates. 

 
A traditional approach in estimating the water requirement of non-water-stressed agricultural crops 

is to obtain the so-called crop coefficients (Kc) for each growth stage of the crop under consideration 
and then multiply these coefficients by the reference ET. Due to its widespread application, Kc values 
are reported for major agricultural crops and turfgrass species in publications such as the FAO paper 
56. According to the tables in FAO paper 56, mid-season Kc is 0.87 and 0.97 for warm season and cool 
season turfgrass, respectively, after adjustment are made to account for the arid/semi-arid climate of 
the study area [31]. In this study, turfgrass Kc values were obtained through dividing the METRIC-ETa 
by the ETo. The average METRIC-Kc at the closest distance to the sprinklers (non-water-stressed) was 
0.86 over WSM and 0.98 over TF, very similar to the values proposed in the FAO paper 56. The FAO 
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paper 56 also outlines a procedure for estimating a stress coefficient (Ks), which reduces the actual 
water use estimate in proportion to the experienced soil water deficit in the root zone of studied plant. 

Daily values of water use based on both METRIC and GWSI methods were interpolated for the 
days in between remote sensing data acquisition dates and then summed to provide an estimate of the 
cumulative water consumption for the entire seventy days of study. The results had a pattern similar to 
that of daily values, with a total water use that ranged from 8 to 300 mm based on GWSI and from 12 
to 321 mm based on METRIC (Figure 8). Grass reference ET was 329 mm during the same period. For 
both average daily and cumulative water use estimates, it should be noted that uncertainties associated 
with sensors, methods, and assumptions propagate to the final approximations. Further studies are 
required to address the error propagation and the sensitivity of each model (especially the GWSI) to 
uncertainties in input variables. 

Figure 8. Total turfgrass water use during the study period (70 days) based on GWSI and 
METRIC methods. 

 

4. Conclusions 

Ground-based optical and thermal remote sensing data were used to study the quality, water stress, 
and water consumption of several turfgrass species under different soil and irrigation treatments in 
northern Colorado, USA. Reducing water application from 74% to 38% of the total grass-based 
reference ET resulted in average NIR reflectance to decrease from 38% to 28%, while the SWIR 
reflectance increased from 25% to 35%. Reflectance in the visible bands also experienced about a 
twofold increase. Measured surface reflectance in multiple wavebands was used to estimate three 
vegetation indices (VIs), namely NDVI, SAVI, and VARI. Utilizing the simple empirical approach of 
estimating grass water stress index (GWSI) was also investigated. Similar non-water-stressed baselines 
were developed for tall fescue and Kentucky bluegrass species. The modeled estimates of  
non-transpiring turfgrass temperature had a small error (0.7 °C) when compared to the temperature 
readings taken over a non-transpiring patch of turfgrass. All optical (three VIs) and thermal (GWSI) 
indicators were consistent in having a non-linear relationship with water application depth. They also 
revealed that Festuca species were the most sensitive and warm season species were the least sensitive 
to water limitation. 
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The difference between turfgrass water use estimates based on GWSI and METRIC methods was 
not statistically significant, suggesting that GWSI can be used for identifying both the timing and 
amount of irrigation events. This difference was 0.4 mm·d−1 on average, which was 11% of the 
METRIC-based estimates and smaller than the expected error of METRIC model when applied at field 
scale (15%). The range of cumulative water use estimates for all experimental plots was 8–300 mm 
and 12–321 mm based on GWSI and METRIC methods, respectively. METRIC-based crop 
coefficients for non-water-stressed plots were similar to tabulated values reported in the FAO paper 56, 
being 0.86 and 0.98 for warm season and cool season turfgrass, respectively. More studies need to be 
conducted to include several growing seasons, as yearly variation in climatological conditions could 
have a significant effect on turfgrass response to different soil and irrigation treatments. 
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