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Abstract: This paper examines a land surface solar radiation partitioning scheme, i.e., that
of the Community Land Model version 4 (CLM4) with coupled carbon and nitrogen
cycles. Taking advantage of a unique 30-year fraction of absorbed photosynthetically
active radiation (FPAR) dataset, derived from the Global Inventory Modeling and Mapping
Studies (GIMMS) normalized difference vegetation index (NDVI) data set, multiple other
remote sensing datasets, and site level observations, we evaluated the CLM4 FPAR’s
seasonal cycle, diurnal cycle, long-term trends, and spatial patterns. Our findings show that
the model generally agrees with observations in the seasonal cycle, long-term trends, and
spatial patterns, but does not reproduce the diurnal cycle. Discrepancies also exist in
seasonality magnitudes, peak value months, and spatial heterogeneity. We identify the
discrepancy in the diurnal cycle as, due to, the absence of dependence on sun angle in the
model. Implementation of sun angle dependence in a one-dimensional (1-D) model is
proposed. The need for better relating of vegetation to climate in the model, indicated by
long-term trends, is also noted. Evaluation of the CLM4 land surface solar radiation
partitioning scheme using remote sensing and site level FPAR datasets provides targets for
future development in its representation of this naturally complicated process.
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1. Introduction

Partitioning of incident solar radiation among various components at the land surface, especially
from vegetation and underlying soil for vegetated regions, determines the energy absorbed by
vegetation, evapotranspiration, partitioning between surface sensible and latent heat fluxes, and the
energy and water exchange between the land surface and the atmosphere [1-10]. How solar radiation
reaches underlying soil through between-crown gaps and within-crown gaps is an essential part of
micrometeorological, climatological, biogeochemical, and hydrological modeling [11-15]. Various
authors have explored numerical solutions to the partitioning problem, in both one-Dimensional (1-D)
and three-Dimensional (3-D) geometries [13,16-19]. Though the complexity of the problem fully
justifies the need for a 3-D model, 1-D models have been popular because of their ability to
approximate it in a relatively simple form and to give reasonable results [16,17]. In the Community
Land Model (version 4.0, CLM4), this process is formulated by a 1-D land surface solar radiation
partitioning scheme: each sub-grid land cover type, plant functional type (PFT) patch, and bare soil, is
a separate column for energy calculation [18,20]; a 1-D radiative transfer approximation is employed
to simulate the radiative transfer process within canopy at PFT levels [18]. This study aims to address
the performance of this modeling and how to improve it.

The fraction of absorbed photosynthetically active radiation (FPAR) is employed as the diagnostic
parameter for the land surface solar radiation partitioning scheme. FPAR is defined to be the fraction
of PAR absorbed by the canopy [21], and hence, should be decided mainly by the radiative transfer
process within the canopy. However, it can also be affected by the solar radiation reflected by the
ground since plants are not separated from their background in FPAR observations, either at site level
or in remote sensing. Below-canopy PAR sensors at flux sites measure not only the PAR transmitted
through the canopy, but also the PAR directly incident on the ground; digital information at each pixel
in remote sensing represents the averaged spectral information from each surface type within the
instantaneous field of view (IFOV). Therefore, FPAR is an appropriate parameter for this study.

In order to evaluate model performance, the dynamics of the fraction of absorbed photosynthetically
active radiation (FPAR)’s seasonal cycle, diurnal cycle, long-term trends, and spatial patterns are used.
The seasonal cycle of FPAR is essentially driven by leaf presence, growth, and foliage, so it can be
interpreted as a manifestation of plant phenology. The diurnal FPAR cycle, however, is a more
complicated process. It is orchestrated by the angular effect of direct solar radiation, fraction of direct
radiation in total solar radiation, and vegetation coverage in the forest. The study of the diurnal cycle
of FPAR is a novel utilization of flux tower observations. Diurnal cycle observations represent all
aspects of canopy-sun-surrounding relations, while traditional studies, using site level observations,
focus on the seasonal cycle and absolute value at the time when measurements are made, although
series of these measurements may be collected over multiple days [22-26]. The long-term trends of
FPAR could be impacted by two factors: plant phenology changes, such as leaf area index (LAI) and
leaf out time, and plant distribution changes [27]. In addition to temporal dynamics, FPAR spatial
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patterns are also evaluated. Spatial patterns are decided mainly by plant types and geographical
conditions [28]. As analyzed above, the accuracy of the solar radiation partitioning solutions depends,
on not only the performance of the land surface solar radiation partitioning scheme, but also on the
accuracy of input information on vegetation (e.g., LAI) and other conditions. Therefore, our evaluation
needs to generally identify the reasons for discrepancies and focus on those problems related to the
land surface solar radiation partitioning scheme.

Current remote sensing (RS) data, and the application of photosynthetically active radiation (PAR)
sensors in flux tower networks, provide appropriate observations for evaluating the CLM4 land surface
radiation partitioning scheme. Some satellite FPAR datasets have been produced based on various
retrieval algorithms and radiative transfer assumptions [23,29,30]. Although they differ in absolute
values, most remote sensing FPAR products are compatible with one another in seasonal cycle and
spatial patterns [26,28,31]. The application of PAR sensors in a flux tower network enables evaluations
of the FPAR diurnal cycle. PAR sensors provide highly accurate measurements of PAR, and have been
put into service in many flux tower sites [22,32,33]. A systematic FPAR observation should consist of
four parameters: incident PAR, reflected PAR, PAR transmitted through the canopy, and PAR
reflected by the ground. Transmitted PAR should be measured by a group of PAR sensors because it is
highly location-sensitive, while PAR reflected by the ground could be ignored if the soil reflectance is
low. Such an integrated observing system exists at limited sites [32]. Hence, it is of great potential to
use both satellite-based and site-level observations to investigate CLM4 performance regarding FPAR
dynamics and spatial patterns.

We have three objectives: (1) to evaluate CLM4 performance in representing FPAR dynamics and
spatial patterns; (2) to identify the agreements and disagreements between CLM4 FPAR and observations;
and (3) to understand the reasons for those differences, and focus on the problems related to the land
surface solar radiation partitioning scheme. In Section 2 we present the data and methods. The
comparisons regarding FPAR dynamics and spatial patterns are shown in Section 3. Specific findings
and implementations are discussed in Section 4, with conclusions drawn in Section 5.

2. Methodology
2.1. Model Description

As the diagnostic parameter for the model, FPAR’s accuracy reflects justifications of the land
surface solar radiation scheme, but is not limited to this. Solar radiation (i.e., direct vs. diffuse
radiation) and plant phenology (i.e., leaf area index (LAI)) are two factors also entering into the
model’s calculation of FPAR. In this study, solar radiation (including direct and diffuse radiation), as
prescribed in forcing data CRUNCEP [34], as estimated based on meteorological station observations
(CRU dataset) and reanalysis product (NCEP dataset).

CLM4 represents the land surface as a hierarchy of subgrid types including glacier, lake, wetland,
urban, and vegetated landunits. The vegetated part is further divided into patches of 16 PFTs and bare
soil. Each subgrid land cover type is a separate column for energy and water calculation [18].

In each PFT patch, the vegetation fractional coverage is 100%. The two-stream module is employed
to calculate the solar radiant fluxes that are reflected, transmitted, absorbed by the canopy, and that are
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absorbed by the underlying soil. Several assumptions are made, including that fluxes are isotropic in
only two directions (upward and downward), the canopy is horizontally homogenous and elements
inside the canopy (including leaves, stems, and trunks) are randomly distributed. The daily output of
CLM4 sums up the fluxes from each PFT that includes bare soil and accounts for the fraction of
vegetated area in the grid. In this study, CLM4 FPAR is defined as:

16 16
i=1 Wilpi + Xi2i Wila, (1)
16 U 16 ]

i=o WiSp,; + LiZoWiSa,

FPAR =

where I, ; (I, ;) is the direct (diffuse) solar radiation absorbed by the canopy in the visible band for

plant type i. S,ﬁ_i(Séli) Is the direct (diffuse) incident solar radiation at the land part of the grid in the

visual band for plant type i [35], and w; is the areal weighting of the plant functional type in the grid,
e, w; = 1, including bare soil (i = 0).

As for plant phenology, the plant phenology cycle in the CLM4 is fully-prognostic, resulting from
coupling Carbon-Nitrogen (CN) model: the seasonal timing of new vegetation growth and litterfall
responds to soil and air temperature, soil water availability, and day-length, in varying degrees
depending on a specified phenology type for each PFT. LAI calculation is based mainly on the specific
leaf area SLA (m? one-sided leaf area per gC) and the total canopy leaf carbon (C,, gC - m~2 ground
area) [36]. A linear relationship between SLA and canopy depth is assumed as:

SLA(X) = SLA, + mx 2

where SLA, is SLA at the top of the canopy, m is a linear coefficient, and x is a parameter describing
the canopy depth as an overlying leaf area index. SLA, and m are both fixed for each PFT. Total
canopy leaf carbon C, can be found by integrating over the canopy:
I | In [(mL + SLA,)] — In (SLAy)
L= J SLA() T @)
0 (%) m

Given C; calculated from the CLM4, L can be solved as:
L= SLAy[exp(mC;) — 1]
m

(4)

C, is a dynamic carbon pool affected by gains from photosynthesis, and losses to litterfall and
mortality, including from fire [37,38]. In addition to the dynamics of leaf carbon pool, feedbacks
between carbon cycle and nitrogen cycle are also considered, which would also limit the rate of carbon
accumulation in canopy leaf carbon [18].

2.2. Model Simulation

In this study the coupled CN version of CLM4 was driven by historical meteorological data
CRUNCERP, land use and land cover, atmospheric CO, concentration, and anthropogenic nitrogen
deposition. Beginning with the steady model state in 1901, CLM4 was run to 2009 with the previously
mentioned historical forcings. Detailed information about the driver datasets and model settings can be
referred to [39,40]. The half-degree monthly FPAR output during 2003-2005 was selected for direct
comparison with all satellite observations due to the availability of remote sensing datasets. The period
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of 1982-2009 was selected for inter-annual change trend comparison between CLM4 FPAR and
GIMMS FPAR3g.

2.3. Observation Data Description

2.3.1. Moderate Resolution Imaging Spectroradiometer (MODIS) Fraction of Absorbed
Photosynthetically Active Radiation (FPAR)

The Moderate Resolution Imaging Spectroradiometer (MODIS) FPAR algorithm is based on 3-D
radiative transfer theory. Inverse Look-Up-Tables (LUTS) are generated for six major biomes defined
by MODIS; model configurations for each biome differ from each other by fractional coverage,
structural characteristics including canopy height, leaf type, and soil color. Measured surface
reflectances (atmospherically corrected bidirectional reflectances) at a maximum of seven spectral
bands are used for the inversion [29]. The MODIS daily product is computed daily at 1 km resolution
globally. The maximum FPAR value (across the eight days) is selected for the eight-day product [21].
Based on the eight-day product, Zhao [41] produced an improved product with cloud-contaminated
pixels gap-filled.

2.3.2. Fraction of Photosynthetically Active Radiation (FPAR) 3g/Leaf Area Index (LAI) 3g Derived
from Global Inventory Modeling and Mapping Studies (GIMMS)

GIMMS FPAR3g/LAI3g is computed based on improved versions of MODIS FPAR/LAI [42,43]
and GIMMS NDVI13g generated from the Advanced Very High Resolution Radiometeters (AVHRR)
using an artificial neural network. GIMMS NDVI3g and its long-term (June 1981-2011) global coverage
at frequent intervals provide a unique opportunity to explore vegetation long-term dynamics [44]. It is
therefore used as the sole dataset for long-term trend evaluation. However, the AVHRR data lacks
correction for aerosol scattering and water vapor absorption [45], resulting in possible atmospheric
artifacts in the GIMMS data sets.

2.3.3. Joint Research Center (JRC) FPAR

The Joint Research Center (JRC) generic FPAR algorithm has been used to develop FPAR products
for both Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Medium Resolution Imaging
Spectrometer (MERIS) [30,46]. It is not biome-specific, but defines FPAR as “green” instantaneous
FPAR under direct illumination. Its input data are top of atmosphere (TOA) bidirectional reflectance
factors (BRFs) in blue, red, and near-infrared bands. Blue band is used to remove the atmospheric
effects [47]. For the monthly composite, median values which are the closest to the temporal average
estimated over the compositing period are selected to generate the statistics [48].

2.3.4. Site-Level FPAR

We use data from the Bartlett Experimental Forest flux tower site (44.06 N, 71.29W, and 272 m
elevation) in north central New Hampshire, USA. This measured data is available from the AmeriFlux
Web page [49]. Half hour-averaged measurements from 1 January 2005 to 30 December 2006 were
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used in this study. The vegetation is primarily deciduous forest [28]. The flux tower is 25 m in height
and set in a relatively flat area. Quantum sensors are placed above and below the vegetation canopy.
Above-canopy sensors are located at the top of the tower, sensors facing upward measure the incident
photosynthetic photon flux density (Qincigent) While sensors facing downward measure the
photosynthetic photon flux density reflected from the canopy (Qrefiected). SiX below-canopy sensors are
placed in a circle (radius = 15 m) centered at the base of the tower [32]. They face upward and thereby
measure the photon flux density transmitted through the canopies or gaps (Qtransmitted). Site-level FPAR
is calculated by:

FPAR = Qincident‘Qreflected_Qtransmitt:ed (5)
Multiple sites for various plant types are desired to rigorously evaluate the model’s performance.
However, due to the data availability, Bartlett Experimental Forest flux tower site was initially selected
in this study to qualitatively diagnose model’s performance in deciduous forest.

Qincident

2.4. Assessment of Consistency between Model and Observation Data Sets

Several analyses were performed over various temporal and geographical extents. Diurnal cycle
was performed over the Bartlett Experimental Forest flux tower site from 2005 to 2006, seasonal cycle
and spatial patterns were performed globally from 2003 to 2005, and long-term trends were conducted
globally over the 28-year period of 1982—-2009.

Prior to the analysis, data were resampled by averaging at 0.5<resolution if needed, grids defined as
non-vegetated in MODIS, and dominant vegetation distribution was masked in all datasets. To assess
the consistency between the model simulated FPAR and observations, several sets of analyses
were performed as follows:

2.4.1. Diurnal Cycle

Prior to the analysis, observation on rainy and cloudy days were eliminated, because clouds and
aerosols control the ratio of diffuse to total incident solar radiation [50], and diffuse radiation is less
sensitive to the solar angle. Rain and cloud are decided by precipitation measurement and diffuse solar
radiation (if diffuse PAR > 500 pumol/(m*s), respectively. To better present the diurnal cycle, half-hourly
FPAR data were normalized at a daily level by:

FPARy j) (6)

FPARwij) = Tpp
n(i,j) FPAR,, 4 @

where FPARy,; jy is normalized FPAR on day i, at time j, FPAR,; ;) is FPAR on day i, at time j,
FPARpmax iy Is maximum FPAR on day i.

2.4.2. Seasonal Cycle

FPAR seasonal cycle comparisons are made at two spatial scales: global and aggregated by
dominant MODIS vegetation types. The MODIS FPAR algorithm uses the MODIS land cover product
with the International Geosphere Biosphere Program (IGBP) classes [44,51]. The JRC generic FPAR
algorithm does not consider land cover type [45,46]. The CLM4 has a subgrid system representing
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vegetation as patches of PFTs that are derived from various datasets including MODIS Vegetation
Continuous Fields data, AVHRR Continuous Fields Tree Cover Project data, MODIS global land
cover mapping, Ramankutty and Foley global cropping, and Willmott and Matsuura climate data
set[52]. As MODIS and CLM4 use different vegetation classification systems, the dominant
vegetation distribution from MODIS is employed for the comparison of this paper. We define the
dominant biome type in each half-degree grid as the land cover for the grid [53]. Prior to the analysis,
monthly FPAR were averaged for each grid over 2003 to 2005. Monthly FPAR data at global and
biome level were calculated by:

i iFPAR i X Area; ; X frac; ;
FPARa(m,b) = Zl'] a(m,i,j) L,j f i,j,b (7)

Zi,j Areai,j X fraci,j,b
where FPAR gy IS FPAR in month m for biome b (or for the global, if b = 0), FPARy(n ;5 IS
FPAR at computational grid (i,j) in month m, Area;, ; is the area for the grid (i, ), frac; ;, is the

fraction of land unit at computational grid (i, j). Grids that are not dominated by the target biome were
defined as frac; j, = 0. Correlation coefficients (i.e., correlation and p-value) are calculated based on
FPAR 4 (m,py- Monthly FPAR anomalies at global or biome level were calculated by:

8
FPARanotmp) = FPARa(mp) — FPARmeants) ®

where FPARgpno(mp) 1S FPAR anomaly in month m for biome b (or for the global, if b =0),
FPARyean (i) 1s averaged FPAR over the whole time period.

2.4.3. Long-Term Trends

Long-term trends are calculated based on GIMMS FPAR3g and CLM4 FPAR from 1982 to 2009
by linear regression. For each 0.5<pixel, the slope and significance level (indicated by p-level) were
calculated from time series comprised of 28 annual mean values (one value for each year from 1982 to
2009). Trends in LAI are also calculated in order to diagnose source discrepancies. ,

2.4.4. Zonal Patterns

Similar to monthly FPAR, zonal FPAR were also calculated by the grid area and land unit fraction:
YjFPARyjy X Area; j X frac;; (9)

FPAR () =
a(® YjArea;; X frac;;

where FPAR,; is the averaged FPAR for latitude band i. FPAR,; ;) is FPAR at computational grid
(i,)), Area;  is the area for the grid (i, ), frac; ; is the fraction of land unit at computational grid
(i,7). Zonal FPAR anomalies at global or biome level were calculated by:

_ (10)
FPARgno(iy = FPARqi) — FPARyean(i

where FPAR 350y Is FPAR anomaly for computational latitude band i, FPARpyean (1at) 1S the mean
value for the averaged FPAR of all latitude bands.
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2.5. The Angular Effect in Fraction of Absorbed Photosynthetically Active Radiation (FPAR) under
Direct Solar Radiation

To illustrate the angular effect in FPAR with direct solar radiation, we regard tree crowns as
spheroids-on-sticks (Figure 1). K, and K, are the sunlit background portion and the sunlit canopy

portion, respectively. They correspond to the areal fraction of ground and canopy under direct
solar radiation.

Figure 1. Geometry of a spheroid-on-a-stick, with three parameters: h, stem height from
ground to the bottom of crown, and r and b, the horizontal and vertical radius of the
spheroid, redrawn from [54].

~

il 4,(6)

According to the Boolean Scene Model introduced in [54], in a sparse random distribution of the
spheroids, the sunlit background portion is:

Ky = e~ 240(®) (11)
where 4 =% is the number of canopies in a unit of surface area, and A,(0) is the average areal

projection of the canopy onto the background at the zenith angle 0. From this expression for K, the
proportion of sunlit canopy portion can be immediately obtained, as both sum to 1.

K.=1—e *4(® (12)

For a single canopy area at vertical angle, A,,(0) = nrb, where r and b are the horizontal and
vertical radius of the spheroid, respectively. For the off-vertical angle, A,(8) = nrb/cos6. Thus,
we have:

Kc =1— e—/’lm‘b/cose (13)

Therefore, as the solar zenith angle decrease, the canopy intercepts less direct solar radiation,
resulting in the angular effects in FPAR under direct solar radiation. It is important to note that such an
effect is restricted to sparse vegetation. For a fully-vegetated area under direct solar radiation, the
angular effect is negligible, because the bare soil is thoroughly covered by the vegetation and thus
receives little solar radiation, regardless of how the solar zenith angle changes.
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3. Results
3.1. Diurnal Cycle

As illustrated earlier regarding angular effect, a canopy attenuates a larger fraction of the incident
solar radiation in the morning and a much smaller share at noon. Therefore FPAR is expected to have a
valley around noon.

Figure 2 shows the normalized FPAR for each day in 2005 and 2006 from both observations and
model. From the site-observed FPAR figures (Figure 2(a,b)), we can see the minimum value occurring
around noon in the early-growing months (March, April and May, MAM), which is only around 30% of
the maximum FPAR. It verifies the angular effects of FPAR that we illustrated earlier. Minimum value is
also shown around noon in MAM in the model simulated FPAR (Figure 2(c,d)), but is around 80% of the
maximum FPAR. Figure 3 shows the monthly gross primary production (GPP) estimation from site
observations [55]. It shows that the vegetation at the site starts photosynthetic activities in March and
peaks in July. This peak possibly indicates the fully-grown canopy (i.e., high LAI values). By comparing
Figures 2 and 3, we notice that the diurnal cycle is more significant before the GPP peak month (usually
June for this site). One possible reason is that the between-crown gaps have been filled in by growth of
leaves (high LAI) when GPP peaks. This assertion might explain the inter-annual differences between
2005 and 2006. Diurnal cycles exist with a clear valley pattern around noon after the GPP peak (July) in
2005, but not in 2006. Correspondingly, the GPP peak in 2005 is around 0.5 umol/(m?s) lower than that
in 2006 (Figure 3). Since GPP is a good indicator for LAI, the lower GPP in 2005 suggests a lower LA,
and thus between-crown gaps cannot be filled by lower LAI canopies.

Figure 2. Comparisons of fraction of absorbed photosynthetically active radiation (FPAR)
diurnal cycles between Bartlett Experimental Forest flux tower observation ((a) for 2005 and
(b) for 2006) and Community Land Model version 4 (CLM4) ((c) for 2005 and (d) for
2006). Cloudy and rainy days, observations with incident PAR lower than 50 pmol/(m*s) are
removed in the site data. For comparison, data sets are normalized to show the diurnal cycle.
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The CLM4 FPAR diurnal cycle is shown in Figure 2(c,d). The model shows a much weaker diurnal
cycle in MAM without a valley around noon. This suggests that CLM4 did not adequately simulate the
solar angular effect, although some sun angle dependence may have been included in the model. As for
the angular effect we discussed, the solar zenith angle change from 90<in the morning to a minimum
angle at noon should result in a large change in FPAR. In sum, we have three findings: (1) the site
level FPAR diurnal cycle shows patterns that we expected when canopies are not fully grown; (2) the
CLM4 land surface solar radiation partitioning scheme does not adequately reproduce the diurnal cycle
in FPAR at these times; and (3) though the fractional cover of the canopies do not change, leaf growth
influences between-crown gaps and as such the angular effect in FPAR.

Figure 3. The annual cycle of monthly mean gross primary production (GPP) from Bartlett
Experimental Forest flux tower observations for the year 2005 and 2006.
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3.2. Seasonal Cycle

In an additional global level, we selected ten major biomes among the seventeen vegetation types
defined by the IGBP to conduct the comparison. Figure 4 shows CLM4 generally captured the
seasonal variations displayed by satellite-based FPAR. CLM4-FPAR and remote sensing FPAR have
good correlation over the global and most biomes (Table 1). However, CLM4 FPAR generally has
smaller seasonality and a shift during peak months. For savannas, CLM4 fails to capture the peak and
trough months, and seasonality in CLM4 is less pronounced than in the satellite observations
(Figure 4(i)). Savannas-dominated grids exist in the Sahel region, Southeast Africa and in the western
part of South America. These areas are characterized by seasonal water availability, with most of their
rainfall confined to one season. Correspondingly, we can see strong seasonality from the satellite
observations (Figure 4(i)). However, this discrepancy in seasonality is possibly related to the model
parameterization of LAI estimation rather than to the land surface solar radiation partitioning scheme.
It should be noted that the model and remote sensing agree well in that the evergreen broadleaf forest
retains a rather stable FPAR all year round, though the correlation between them is rather low due to
discrepancies in anomalies. However, their anomalies vary through a range smaller than 0.05
(Figure 3(c)), which is consistent with the relatively stable phenology in tropical rainforest.
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Figure 4. Comparison of 2003 to 2005 averaged seasonal cycle of FPAR anomalies
between remote sensing and CLM4 FPAR at (a) global level and at biome level:
(b) evergreen needleleaf forest, (c) Evergreen broadleaf forest is compared based on FPAR
absolute value due to its special seasonality, (d) deciduous needleleaf forest, (e) deciduous
broadleaf forest, (f) mixed forests, (g) open shrublands, (h) woody savannas, (i) savannas,
(J) grassland, (k) croplands.
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Table 1. Correlation coefficient y with P-value between CLM4-FPAR and satellite-observed
FPAR annual cycle from 2003 to 2005.

GIMMS3g MODIS SeaWiFS MERIS

y p-value y p-value y p-value y p-value
Global 0.953 3.36E-04 0.942 3.34E-04 0.894 8.65E-06 0.873 9.25E-05

Evergreen Needle Leaf Forest  0.86 0.66 0.86 3.28E-04 0.934 0.96 0.893 0.44
Evergreen Broad Leaf Forest  0.14 2.35E-05 -0.860 4.10E-06 -0.016 4.11E-07 0.246 5.25E-06
Deciduous Needle Leaf Forest 0.919 1.90E-05 0.944 191E-04 0.965 1.57E-05 0.941 6.61E-06
Deciduous Broad Leaf Forest 0.923 1.78E-05 0.875 2.92E-05 0.926 2.09E-05 0.938 4.34E-05
Mixed Forest 0.924 192E-07 0.916 4.78E-07 0921 1.35E-08 0.908 1.01E-08
Open Shrublands 097 1.96E-02 0964 256E-05 0.982 1.22E-04 0.983 2.55E-04

Woody Savannas 0.66 0.94 0.918 0.90 0.887 0.28 0.868 0.11
Savannas 0.024 1.80E-06 0.042 1.51E-06 0.341 1.35E-05 0.487 1.58E-05
Grassland 0.952 2.07E-06 0.954 1.13E-05 0.928 8.99E-05 0.926 2.43E-04
Croplands 0.953 1.70E-06 0.942 4.59E-06 0.894 8.83E-05 0.873 2.12E-04
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In order to identify the reasons for the discrepancies in FPAR seasonality, we compared the
seasonality of CLM4 LAI and GIMMS LAI3g to various estimates of FPAR (Figure 5). CLM4 LAI
lacks seasonal variations in comparison with GIMMS LAI3g at the global level (Figure 5(a)), which
can explain why CLM4 FPAR has fewer seasonal variations. For savannas, significant disagreements
in FPAR, between model and observations, are also shown to have similar discrepancies in LAl
(Figure 5(b)). As asserted earlier, the FPAR seasonality could be considered as a manifestation of plant
phenology. The comparisons between LAI and FPAR, from the model and observations, verify this
assertion and, hence, suggest that the discrepancies in seasonality between CLM4 FPAR and
observations are due to problems in the calculation of LAI.

Figure 5. The annual cycle of monthly mean FPAR and leaf area index (LAI) anomalies
for (a) the global, and (b) savannas (2003~2005)
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3.3. Long-Term Trends

Figure 6 displays the statistics of the long-term analysis. The color represents the slope of linear
regression fit for the annual mean FPAR and the black dots are grids exceeding 90% significance.
GIMMS FPAR3g (Figure 6) shows that Western Europe, Eastern America, the Sahel region, part of
Eurasia, and the northern high latitudes are the areas with significant increasing trend in FPAR and
LAI. Among these areas, changes in Western Europe are due to the afforestation of former arable
land [56], an anthropogenic factor that is already included in the current CLM4. The rest of the areas
are all transitional ecoregions: the Sahel region is a transition zone of semi-arid grasslands, savannas,
steppes, and thorn shrublands lying between the Sahara desert and the Sudanian Savannas [57];
Eastern America and part of Eurasia are transitional zones of coniferous and broadleaf trees; the
northern high latitudes are mainly the Arctic tundra ecosystem which is also ecologically transitional
due to climate change [58]. As the satellite observations shows, these areas are highly sensitive to
global climate change and thus have significant long-term trends.

The CLM4 simulations are in broad agreements with the increasing trends illustrated by GIMMS3g
datasets (Figure 6). However, the model has fewer grid cells exceeding the statistical significance level
of 90% (Figure 6). Since long-trends are primarily driven by changes in forcing factors (e.g., CO,
concentration, precipitation, and temperature), these discrepancies suggest that the CLM4 needs to
improve its correlation between climate and vegetation. Annual changes of vegetation growth possibly
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caused by other factors such as nitrogen deposition and land use and land cover change are beyond the
scope of this paper and are detailed in [40]. Although our study does not examine land cover change,
extensive FPAR increase in the northern high latitudes suggests dynamic vegetation change
(Figure 6(b)). As several studies asserted, shrub expansion exists in Northern Alaska, Siberia, and the
Pan-Arctic [59-61]. It would thus be necessary to employ a dynamic vegetation model (e.g., Dynamic
Global Vegetation Model, DGVM) to reproduce expansions of certain plant types. In sum, we have
two findings in regards to the CLM4: (1) CLM4 does capture the long trends in FPAR at the global
level, but has much smaller significance levels due to its excess variability in its annual values;
(2) discrepancies in the northern high latitudes further suggest that CLM-DGVM is required to fully
evaluate model’s performance for long-term trends.

Figure 6. Global distribution of linear regression slopes in (a) GIMMS FPAR3g and
(b) CLM4 FPAR from 1982 to 2009. Grids with slopes exceeding the 90% confidence
level are marked with black dots.
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3.4. Spatial Patterns

The zonal anomalies of FPAR from 2003 to 2005 are displayed in Figure 7 and the correlation
coefficients between CLM4 and RS FPAR are also calculated. CLM4 FPAR has a very similar pattern
to that of remote sensing observations. Statistics show that they are highly correlated (0.879 for
GIMMS3g, 0.997 for MODIS and MERIS, and 0.990 for SeaWiFS), and these correlations are all
significant (p < 5%). They all have peaks around the equator and 25N, and troughs around 305 and
15N. The difference between FPAR at the equator and the 25N in CLM4 simulation is around 0.071,
which is much smaller than that in GIMMS3g (0.203) and MODIS (0.162), and close to that in
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SeaWiFS (0.113) and MERIS (0.079). Figure 8(g) shows the month of maximum FPAR simulated by
the CLM4. Compared with remote sensing observations (Figure 8(a—d)), the CLM4 does well in
capturing the main characteristics of the FPAR peaking in June-July-August (JJA) in the northern
hemisphere and in December-January-February-March (DJFM) in the southern hemisphere. However,
the peak months in the CLM4 are generally one or two months earlier. The CLM4 simulations also
have much less spatial heterogeneity in the month of maximum FPAR. Take north hemisphere for
instance, satellite observations show FPAR peaks in June for Southern north America and west
Europe, in July and August for northern north America and most Eurasia. The CLM4, however,
estimates FPAR in most north hemisphere peaks in June with small high latitude area peaks in July.

Figure 7. Comparison of zonal mean FPAR between remote sensing observations and
CLM4 FPAR averaged from 2003 to 2005. Correlation coefficients (i.e., correlation and
p-value) are calculated between CLM4 zonal mean FPAR and each satellite FPAR dataset.
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In the Amazon, CLM4 FPAR and satellite-based FPAR have an interesting discrepancy.
Satellite-observed FPAR for evergreen broadleaf forest shows weak seasonality (Figure 4(c)), but the
spatial distribution of month with the maximum FPAR value has an unexpected pattern. Divided by
the equator, FPAR in the northern part of the Amazon peaks around November, December, and
January, while in the southern part it peaks around June, July, August, and September
(Figure 9(a,b,d)). The probability density function of month with maximum FPAR value
(Figure 9(f,9)) verifies that such differences exist among satellite-based observations. However, CLM4
FPAR has an opposite temporal-spatial distribution as we can see from Figure 8(g). The probability
density function of month with maximum FPAR value (Figure 9(f,g)) also verifies such differences
between the CLM4 FPAR and satellite-based FPAR.
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Figure 8. Comparison of month of maximum FPAR between RS observations and CLM4
FPAR averaged from 2003 to 2005, (a) GIMMS3g, (b) MODIS, (c) MERIS, (d) SeaWiFS,
and (e) CLM4 simulation.
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Figure 9. Month of maximum FPAR in the Amazon from (a) GIMMS3g, (b) MODIS,
(c) MERIS, (d) SeaWiFS, and () CLM4 simulation. Probability density function of maximum
FPAR months in the northern (f) and southern (g) parts of the Amazon, divided by the equator.
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4. Discussion
4.1. Problems with the Diurnal Cycle in the CLM4

Comparison of site level observations and model simulations shows CLM4’s FPAR has a slight
diurnal cycle (FPAR at noon is around 80% of the maximum) but at a much smaller magnitude than
site level observation (FPAR at noon is around 30% of the maximum). Sun angle could influence
radiation transfer process through both between-crown gap probability and within-crown gap
probability [19]. In order to identify the reasons for the insignificant angular effect in the CLM4, we
used the 2-stream module from the CLM4 and conducted a sensitivity test in a two-element model that
is simplified from the current CLM4 land surface scheme. In the two-element model, a grid is set
consisting of two patches: one is vegetated with 100% canopy coverage, its coverage is set to be fc;
and the other is bare soil with a fraction of (1 — fc). Related parameters are set as follows: (1) leaves
and stems are set as blackbodies with reflectance and transmittance of 0; (2) ground albedo is 0.2 for
both visual and infrared bands, and for both direct and diffuse radiation; and (3) only direct solar
radiation is considered. We calculate the fraction of canopy absorbed radiation in incident solar
radiation for the whole grid under different fc and LAI conditions. A 3-D mode