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Abstract: Estimates of above ground biomass density in forests are crucial for refining
global climate models and understanding climate change. Although data from field studies
can be aggregated to estimate carbon stocks on global scales, the sparsity of such field
data, temporal heterogeneity and methodological variations introduce large errors. Remote
sensing measurements from spaceborne sensors are a realistic alternative for global carbon
accounting; however, the uncertainty of such measurements is not well known and remains
an active area of research. This article describes an effort to collect field data at the Harvard
and Howland Forest sites, set in the temperate forests of the Northeastern United States
in an attempt to establish ground truth forest biomass for calibration of remote sensing
measurements. We present an assessment of the quality of ground truth biomass estimates
derived from three different sets of diameter-based allometric equations over the Harvard
and Howland Forests to establish the contribution of errors in ground truth data to the error
in biomass estimates from remote sensing measurements.
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1. Introduction

Understanding the global carbon cycle and its influences on atmospheric greenhouse gases is among
the most pressing issues in ecosystem science. Forests act as substantial terrestrial carbon sinks: they are
estimated on average to absorb 2.7 Petagrams of carbon per year (PgC·yr−1). However, the uncertainties
associated with these estimates are on the order of 1 PgC·yr−1 [1]. Systematic and spatially continuous
estimation of global carbon stocks is key to reducing this overarching uncertainty [2]. Of these stocks,
the carbon held in above- and below-ground forest woody vegetation, i.e., forest biomass carbon
(MgC·ha−1) is a key component. Forest biomass carbon has been estimated by numerous scientific
field studies and national programs [3–6], but aggregating data from inconsistent and spatially limited
studies to generate global estimates of biomass may lead to errors [7]. Remote sensing offers a potential
solution to greater global consistency of estimates. Although biomass carbon (hereafter referred to as
biomass) estimates derived from remote sensing may be less accurate at the plot scale than field (ground)
measurements, remote sensing is technically capable of spatially continuous biomass estimates over the
entire globe at some set level of spatial detail. Thus it has the potential to eliminate inconsistencies due to
differences in measurement programs between diverse countries or agencies. It could eliminate the need
for sampling and extrapolation, which has been shown to constitute as much as 98% of total biomass
estimation error [8].

Given the need to mitigate the uncertainty in estimates of forest biomass, new spaceborne sensors have
been proposed. Recent examples have been the proposed NASA DESDynI (Deformation, Ecosystem
Structure and Dynamics of Ice) mission [1,9], the proposed ESA BIOMASS mission [10] and the efforts
associated with the JAXA ALOS satellites [11]. An important consideration for these sensor programs
has been the need to demonstrate observation strategies and test algorithms for combining observations
similar to those expected from proposed satellite sensor missions in order to estimate forest biomass and
assess its accuracy. To that end, large-scale coordinated field surveys have been developed. During the
summer of 2009 such a field study was carried out over several sites in the Northeastern United States. At
these sites, forest composition, structure and biomass data were collected for a large set of hectare-sized
fixed-area plots concurrently with remote sensing observations from radar and lidar sensors.

1.1. Study Goal and Objectives

Algorithms to derive biomass estimates from radar and lidar sensors are currently typically calibrated
using field biomass data collected over forest plots. Thus in order to assess the quality of estimates from
remote sensing instruments, an analysis of the uncertainty of ground-truth estimates is necessary. At
the level of a field plot, such as the ha-sized plots in the Northeastern United States sites, one source of
error that may contribute to reduced accuracy of field—and hence remote sensing—biomass estimates
is that associated with applying allometric biomass equations to the new field data. Therefore, our goal
was to examine the different sets of existing diameter-based allometric equations used for estimating
above-ground forest biomass and to analyze the uncertainties associated with using these different
equations to estimate forest biomass. We carried this out using diameter data collected at two
well-measured sites as part of the 2009 Northeastern United States field surveys. Three compilations
or studies [12–14] that present existing diameter-biomass regressions for North American forests were
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chosen for inter-comparison. There are several existing studies [8,15] focusing on tropical forest
biomass that account for error sources such as allometric uncertainty, measurement and sampling errors.
However, such studies over the temperate North American forests are either outdated or non-existent.
Our work will provide a greater understanding of the uncertainties in remote sensing estimates of forest
biomass for north temperate forests arising from allometric uncertainties.

2. Allometry

Dimensional analysis, or allometry, refers to the relationships between certain elements of a natural
object’s size and shape. In forestry, for example, the diameter and volume of a tree are related. This
allows for prediction of a tree’s volume, and by association its mass, through a much simpler and practical
measurement of its diameter. In simple Euclidean terms the volume of an object is proportional to a
product of its diameter, D, and height, H

V ∝ D2H (1)

However, most natural objects such as trees are not well described by simple Euclidean shapes, especially
given their complex structures (i.e., tree crowns). The use of fractal geometry (suggested in [16])
provides a more realistic alternative. Various studies have demonstrated the usefulness of this approach
in relating tree diameter to crown dimensions in particular [17,18] and to the overall structure of trees in
general, so that the relationship between volume and a diameter-height product is given by

V ∝ DαHβ (2)

with both α, β positive and generally regarded to be bounded by 2 < α + β < 3. To take this a step
further, analyses such as in [19] use biomechanics to report that height scales as a function of diameter,
such that

H ∝ Dγ (3)

with 0 < γ ≤ 1. So Equation (2) becomes

V ∝ DαDβγ = εDα+βγ (4)

with ε as the proportionality constant. Since mass (or biomass when talking of trees) is a product of
density (ρ) and volume, the total above ground biomass of a tree, M , can be written as

M = ρεDα+βγ = aDb (5)

In general a theoretical value of around 8/3 has been suggested for the coefficient b [20]. In practice, both
a and b have been shown to vary with tree species and ecological conditions among others. Whenever
possible, these coefficients are empirically determined for the various species encountered in a particular
forest and documented in the form of allometric equations.
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2.1. Methods for Developing Allometric Relationships

Interest in determining above-ground biomass of forests has led to a fairly large body of studies where
allometric equations have been developed and documented for different species in various ecological
regions or biomes. Allometric biomass equations typically use tree diameter as the independent variable
although it is fairly common to use height as a second independent variable along with diameter.
In general allometric equations for a tree species are developed using destructive sampling methods.
The independent variables, including diameter at breast height (dbh; 1.37 m above the ground [21]),
are measured for a representative sample (usually over a range of diameters or ages) of trees of a species.
These trees are then felled and separated into different components including the main stem (trunk),
stem bark, branches and foliage. The fresh weight of each component is measured. Since the intent is
to determine dry biomass, the components are then dried in ovens (throughout this article tree weight or
biomass refers to the above-ground dry biomass). However, it is impractical to dry an entire large tree.
Instead, sampling is used. The stem (or trunk) is cut into smaller pieces (e.g., 1 to 2 m in length) and
fresh weight of each of the smaller sections is recorded. Discs (of a few centimeters in length) are cut
from each section, labeled, weighed and dried in ovens. The dry weight of the discs is measured and the
dry weight of the stem from which they were cut is estimated using the ratio of dry to wet weights [22].
Bark weight is obtained in a similar manner. Some studies account for stump weights by cutting the tree
very close to the ground; those studies that do not, use similar weight ratio methods to estimate stump
weight as well. To estimate the weight of a tree crown, most studies adopt some type of a stratified
sampling approach. Approaches such as this involve cutting branches into sections of a certain size and
separating them into classes or strata based on branch diameter, measured at some distance from the
base. Randomly chosen branches from each diameter class are chosen for drying. Branches that belong
to larger diameter classes are weighed much like the main stem whereas smaller branches are dried intact.
Foliage from the weighed branches is also dried and weighed. The entire crown weight is estimated using
ratios of dry to wet weight. Typically in the next step dbh measurements for the destructively sampled
trees are regressed to their total dry weight of each component (e.g., main stem, branches, etc.) or to
their total above-ground dry tree weight. It should be noted that in most cases, the projected weight
of the total tree allometry is different from the sum of its component allometry. However, some recent
studies (such as [23]) have outlined more statistically sound methods for using the sum of components for
estimating total biomass. In either case, component or total weights are related to dbh using regression
techniques. Since the variation of tree weight is heteroscedastic, that is to say the variation increases
with increasing diameter, the use of simple linear regression becomes complicated. Traditionally, this
problem is circumvented by taking the logarithm of Equation (5), such that

logM = log a+ b logD (6)

and using linear regression to estimate log a and b coefficients. This solves the problems of
heteroscedasticity, however the conversion from logarithmic back to arithmetic units causes a bias in the
mean estimated biomass. To correct for this artifact, Baskerville [24] suggested the following correction
based on properties of lognormal probability distributions,

Mc = exp
(
µ+ σ2

se/2
)

(7)
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where Mc is the corrected mean weight and σse is the standard error in logarithmic units and
µ = logM . The factor eσ2

se/2 is usually referred to as the bias correction factor and is published
by most studies, however there is contention that this correction itself is biased for small sample
sizes [13] thus it is not uniformly published or used. In more recent studies, such as [14] and [23]
the problem of heteroscedasticity is accounted for by modeling variance and using more sophisticated
regression techniques.

3. Using Existing Allometric Equations

Since it is rarely feasible to develop diameter-biomass allometries for a particular locational area
of interest, it is common to use previously developed allometric equations. Because of the large
amount of studies that document such equations, it becomes important to be able to correctly identify
the most representative equations. Typically, biomass allometry studies either focus on one or a
select few species across multiple regions or biomes [25–28]; for multiple species that belong to a
particular region or ecosystem [3,22,29–32]; or constitute literature that focuses on compiling multiple
studies [12,13,33,34]. The cited examples are not meant to be exhaustive, in fact hardly so, since
studies, especially of the first two types, easily number in the hundreds. It is beyond the scope of
this work to summarize all existing equations, however it would be remiss not to look at more than
one of the studies that summarizes multiple sets of biomass allometries. Therefore, we chose three
studies for comparison that are the key comprehensive compilations appropriate for Northeastern United
States temperate forests. Even though these studies summarize coefficients for equations of the same
form Equation (5), they approach the analysis in distinct ways. The first in Ter-Mikaelian [12] lists
species-specific coefficients previously developed by multiple independent studies. The second in
Jenkins et al. [13] develops new coefficients for species grouped into general categories synthesized
from multiple regressions developed by other groups previously via destructive sampling. The third,
Lambert et al. [14], lists species-specific coefficients calculated using raw data in a more rigorous
statistical framework allowing a more accurate assessment of error. A short discussion on the three
studies follows.

3.1. The Ter-Mikaelian Equations

The work by Ter-Mikaelian and Korzukhin [12] summarizes equations for sixty five North-American
tree species from studies conducted in the United States. All coefficients are reproduced or
recalculated for allometric equations of the form given in Equation (5). Some species are
represented by multiple equations derived from different published destructive sampling efforts.
The original objective of this study was to identify the reasons behind the observed variation
between different allometric coefficients for species common to this region. Their subsequently
widely used compilation of a large number of allometric equations was a byproduct of this effort.
A consequence of the intent to conduct a quantitative comparison was the documentation of standard
error for most of the equations. This was a major reason for our selecting this study over previously
established works such as Tritton and Hornbeck [33] that otherwise provide a similar compilation for the
Northeastern USA.
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In the use of allometric equations, there is no strict rationale for which set of coefficients to choose
for a particular species if more than one set exists. It is common to use coefficients based on locational
proximity of where the equation was developed and where it is to be applied. In some cases multipliers
based on, e.g., different soil types are given and that can be matched by equation users to local conditions.
However these are not always the only consideration since large biases can be introduced if equations
are used beyond the range of diameter values that were used for developing the original regressions; thus
sometimes age and size of the application site are factored into the decision. Furthermore, in some cases,
species specific equations may not be available, and applying coefficients developed for another species
may be necessary. It is hard to perfectly ascertain the amount of error introduced by using equations for
different species or even non-site specific equations.

3.2. The Jenkins Equations

Jenkins et al. [13] attempts to rectify the spatial variability among allometric equations seen in
compilations such as the ones listed in [12]. This study aims to develop generalizable equations that
would be applicable for a large set of species across varied biomes. It adopts a meta-analysis approach,
as described in [35], for combining results from multiple existing allometric studies. In short, it involves
generating pseudo-data from published equations and combining all the pseudo-data to generate new
regression coefficients. Here, instead of having species specific coefficients, as in Ter-Mikaelian [12],
species were categorized into ten groups based on similarities in structure and allometric coefficients.
The allometric coefficients generated in this study are all of the same form given in Equation (5).
Although the authors are meticulous in categorizing a large number of important species and careful
to include a wide range of diameters, the drawbacks include the potential for introducing biases resulting
from use of non-species-specific and non-site-specific equations. Furthermore, estimates of standard
error, derived from the pseudo-data, are sub-optimal and may be dominated by spatial variability in the
diameter-biomass relationship.

3.3. The Lambert Equations

Lambert et al. [14] attempt a more statistically rigorous approach to generate best linear unbiased
estimators of biomass. The approach, based on methods proposed in [23], provides species-specific
equations generated by fitting actual raw diameter and biomass data collected over many sites across
Canada. The use of raw data, instead of the pseudo-data approach used in Jenkins et al. [13], also allows
for a more rigorous characterization of error. The approach outlined in [23] is a departure from the
standard approaches in two distinct ways. First, it does not use the logarithms of diameter and biomass
to circumvent the problem of heteroscedasticity. Instead it models the variance in a power-law sense,
much like the diameter-biomass relationship itself. Secondly, it recognizes the possibility of correlation
between component biomasses themselves. The process of separating a tree into its components, such
as main stem, branches, canopy, etc., to estimate its dry weight during the development of allometric
equations leads to biased estimates of total biomass. To account for this bias, Lambert et al. [14] use
an approach known as Seemingly Unrelated Regression (SUR) so that the sum of component biomass
estimates can be used to generate unbiased estimates of total biomass. Furthermore, it allows the use
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of a variance-covariance matrix to account for correlations between components when estimating the
total error. Lambert et al. [14] list coefficients for each component, so that the total biomass can be
estimated using

Mstem = astem D
bstem (8)

Mbark = abark D
bbark (9)

Mfoliage = afoliage D
bfoliage (10)

Mbranch = abranch D
bbranch (11)

Mtotal = Mstem +Mbark +Mfoliage +Mbranch (12)

where Mi is the dry biomass for the ith component defined here as either stem, bark, foliage,
branches or total, D is the diameter at breast height (dbh) and ai, bi are regression coefficients for a
particular component.

4. Error Propagation Analysis

Several factors determine the error in estimating the biomass of a tree from a measurement of its
diameter. These factors include (but are not limited to) [13] error in estimating coefficients of the
allometric equations during their development, the use of those coefficients outside of the species and
ecosystem from which they were developed, inconsistencies in methodologies between different species
equations, and the error in measuring diameter of the tree an allometric equation will be applied to. It is
not possible to perfectly account for every error source, but an analysis of the error sources that can be
characterized in some mathematical framework is necessary. Since the sources of error may depend on
the choice of allometry, a treatment for the three allometries chosen for this work is presented.

4.1. Errors in Estimates from the Ter-Mikaelian Equations

Three potential error sources in forest biomass estimates are considered for this type of allometry:
biomass error due to an error in measurement of tree diameter (σm) during application of an allometric
equation, error in determining allometric coefficients (σa) during the development of the allometric
equation, and errors in using these allometric coefficients in a novel site (σs). Assuming that the
equations are chosen properly, these three error sources should account for most of the error in biomass
estimates [15]. It is assumed that the three sources of error are independent, so that the total error in the
estimates of tree weights can be written as

σt =
√
σ2
m + σ2

a + σ2
s (13)

Here, σm refers to the error in weight due to an error in measurement of dbh during field surveys where
the intent is to use existing allometric equations. While the dbh measurements are also expected to be
error prone when the trees were destructively sampled to generate the allometric equations themselves, it
is assumed for the purposes of this analysis that this error is subsumed under σa. The dbh measurement
error, σD, can then be propagated to an error in tree weight by using a Taylor series expansion of the
allometric model, as suggested in [15]. Given an allometric model that consists of only diameter as
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the independent variable, the error in the above ground biomass can be written as a function of the
measurement error as

σ2
m

M
=
σ2
D

D2

(
∂ ln (f)

∂ ln (D)

)2

(14)

where σD is the uncertainty in the measurement of diameter (D) and ∂ ln (f) /∂ ln (D) is the partial
derivative of the natural log of the allometric model function, f , with respect to the natural log of the
diameter. Since the allometric model function is of the form f = aDb, the measurement error, σm, is
given by

σm = M b
σD
D

(15)

During the development of allometric equations a complex interplay of factors determine the
uncertainty of model coefficients, σa, which include the natural variability in tree structure, sampling
methodology and measurement uncertainties among others. Most studies just report the standard error
in estimate (SEE) or the root sum of squares of the fit residuals, σse, as a means of estimating σa

without addressing each factor separately. Since standard errors are dependent on the methodology
chosen for fitting diameter and weight, it is not simply equal to σa. Most studies summarized in [12]
use log-transformed variables for regression and the standard error is also reported in logarithmic
units. In such cases, σse must be transformed into arithmetic units. This is not as simple as using
the inverse-logarithm since the statistics of random variables are skewed during this transformation.
Baskerville [24] suggested the following conversion to estimate the allometric error from standard error
in logarithmic units derived from properties of lognormal distributions

σ2
a = exp

(
2σ2

se + 2µ
)
− exp

(
σ2
se + 2µ

)
(16)

where µ is the logarithm of estimated biomass, i.e., µ = logM . Some studies use base-10 logarithms,
in such cases a similar correction is used but with the corresponding anti-log function. A few studies
in [12] provide standard error in arithmetic units, in those cases it is assumed that σa = σse.

The third component of error, σs (site error), captures the error in biomass estimates introduced
by using coefficients developed at a site different to which the equation is later applied. Few, if any,
have attempted to quantify this error even though it is widely recognized as a potential uncertainty
primarily driven by soil conditions and climate [34,36]. However, an imperfect estimate of σs can be
obtained by employing a bootstrap type approach [37]. The single-stage bootstrap is a technique from the
non-parametric class of methods used in statistics for arriving at estimates of variation (or error) in data.
It relies on resampling the data and using the spread of mean values from the various combinations of the
resampled data to estimate the variance of errors. This approach, adopted for the analysis presented here,
takes advantage of the fact that Ter-Mikaelian et al. [12] usually include more than one set of allometric
coefficients per species, developed by different researchers in different locations. For example, this
compilation [12] lists nine sets of coefficients for red maple (Acer rubrum) and seven for paper birch
(Betula papyrifera). Locations where these equations were developed extend from West Virginia in
the south to Nova Scotia in the north, in essence representing a range of ecoregions that may exist in
the Northeastern United States. Different biomass estimates of a tree can be generated for a particular
diameter by using different subsets of the equations and averaging estimates for each subset. In that
manner, various combinations of these equations can be used to generate a large number of biomass
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estimates for a particular tree. If all combinations are used, 126 different biomass estimates can be
obtained using combinations of five equations from a total of nine for red maples, while 35 different
biomass estimates can be obtained for paper birch using combinations of four equations from a total of
seven, providing enough samples for a crude estimate of the variance in allometric coefficients due to
geographic variability.

Figure 1 shows biomass estimates from the nine red maple equations and the seven paper birch
equations and mean values from different combinations of these equations. A sample standard deviation
from the full set of combinations is computed and quadratic fits to diameter values are used as an
estimate of σs.

Figure 1. Variation between estimated biomass values from the different allometric
equations summarized in [12] for red maple (Acer rubrum) and paper birch
(Betula papyrifera).

10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

dbh [cm]

B
io

m
a

s
s
 [

k
g

]

Red Maple

 

 

Brenneman (West Virginia) 1978

Bridge (Rhode Island) 1979

Crow, Erdmann (Michigan) 1983

Freedman (Nova Scotia) 1982

Ker (Nova Scotia) 1980

Ker (New Brunswick) 1984

Perala Alban (Great Lakes) 94

Wiant (West Virgina) 1977

Young (Maine) 1980

Combinatorial

10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

dbh [cm]

B
io

m
a

s
s
 [

k
g

]
Paper Birch

 

 

Baskerville (New Brunswick) 1965

Freedman (Nova Scotia) 1982

Ker (Nova Scotia) 1980

Ker (New Brunswick) 1984

Perala, Alban (Great Lakes) 1994

Schmitt, Grigal (Canada−US) 1981

Young (Maine) 1980

Combinatorial

To obtain uncertainties in estimates of forest biomass at some spatial scale, σsp, the per-tree errors
(σt) are aggregated over the area of interest (assuming that the individual tree errors are uncorrelated),
such that

σ2
sp =

N∑
i=1

σ2
ti

(17)

where N is the total number of trees for the particular area in question, and σ2
ti

is the total error in tree
weight for the ith tree.

4.2. Error in Estimates from the Jenkins Equations

The treatment of error in the Jenkins equations is similar to that described in Section 4.1 with the
exception of the site-error σs. The equations developed in Jenkins et al. [13] are derived from studies that
encompass all of the continental United States. The standard error for each group of equations includes
variability due to site conditions and captures the intrinsic variability between the species grouped
together. The standard error is therefore expected to be much larger. However, due to the correlated
nature of psuedo-data used to re-estimate allometric coefficients, standard errors tend to be biased and
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not entirely reliable [13,14]. In the absence of a better method of estimating variance, the standard
error reported in [13] is used as an estimate of biomass uncertainty using the corrections described in
Equation (16), so that the total error is given by

σt =
√
σ2
m + σ2

a (18)

with σm estimated using Equation (15).

4.3. Error in Estimates from the Lambert Equations

The procedure outlined in Parresol [23] is more mathematically involved than those traditionally
employed. Instead of relying on standard error estimates from regressions between diameter data and
an estimate of tree weight, as done for equations summarized in Ter-Mikaelian [12] and Jenkins [13],
this method attempts to include the error in estimated tree weight as well as the regression error.
Because the method estimates total tree weight as a function of the estimated component weights, the
correlations of errors among the components cannot simply be ignored. This is accounted for by using
variance-covariance matrices for the coefficients of the component equations using a statistical
framework known as NSUR (non-linear seemingly unrelated regression). Furthermore, the variance
of component weights is not constant over all observations either (heteroscedasticity). Instead of relying
on the traditional approach of using logarithms to avoid the problem of heteroscedasticity, here the
regression error for each component equation, ei, is modeled such that if

Mi = ai D
bi + ei (19)

then ei is functionally related to the diameter using

ln e2i = b+ ci lnD (20)

In the above formulation, coefficient ci is estimated by fitting diameter to the residuals ei for each
component and also the total biomass. The allometric error in total biomass estimates, σa is
given by

σ2
a = S2

Mt
+ σ2

SUR σii ψt (D) (21)

where σ2
SUR is the SUR system variance or the residual sum of squares from the multiple non-linear

regression analysis, S2
Mt

is the estimated variance in total biomass due to errors in estimating the
coefficients of component biomass equations and σii is the residual root sum of squares from the
particular equation of interest (in this case that of total biomass). The term ψt (D) refers to the function
that models heteroscedasticity, which takes the form of Equation (20), i.e., ψi (D) = Dci . Lambert et al.
publish coefficients ci in [14] for each of the component equations and also for the total biomass. The
variance of total biomass, S2

Mt
is estimated using [23]

S2
Mt

= F′abΣ̂abFab (22)

where Σ̂ab is the estimated variance-covariance matrix of the set of coefficients ai, bi. These
8 × 8 matrices, for two parameters of each of the four component equations, that is, four ai and four bi
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rows/columns, are estimated using the raw tree weight and diameter data. The vector Fab is a row vector
of the derivatives of the model function with respect to the fit parameters. Since the model function, given
in Equation (12), is a summation of components, the vector Fab can be calculated using

Faibi =
∂

∂ (ai, bi)

(
4∑
i=1

aiD
bi

)
(23)

where Fab is an 8× 1 row vector. All parameters needed to estimate the total variance of the weight of a
tree using Equation (21) through Equation (23) are published for each species in Lambert et al. [14].

The site-specific error, discussed in Section 4.1, is not included for the Lambert equations because
the variability modeled by Equation (21) has been shown [14] to encompass the variability between the
different equations summarized in [12]. The error due to measurement in diameter (when applying these
equations) however needs to be propagated through the model function. This takes a slightly different
form than Equation (15) and can be estimated using the Taylor series approximation of the model
function given by

σ2
m =

(
∂Mtotal

∂D

)2

σ2
D (24)

where Mtotal is given by Equation (12). This can be simplified to show easily that

σm =
σD
D

(
4∑
i=1

aibiD
bi

)
(25)

where σD is the error in measuring tree diameter. The total error in estimating the tree biomass is
given by

σt =
√
σ2
m + σ2

a (26)

where σm and σa are given by Equation (25) and Equation (21) respectively.
In the following sections we will use these three different sets of allometric equations on tree diameter

data collected at two sites, the Harvard Forest in Massachusetts and the Howland Forest in Maine. The
purpose is to demonstrate, quantify and compare the uncertainties in biomass estimates generated from
different sets of allometric equations.

5. The Harvard Forest

The Harvard Forest near Petersham, MA is an ecological research facility that has been managed
by the Harvard University since 1907. It is spread over 3,000 hectares and is split mainly into three
tracts: Prospect Hill, Tom Swamp and Slab City (see Figure 2). The forest is representative of the
Transition Hardwoods of central New England [38], with dominant species of red oak (Quercus rubra),
red maple (Acer rubrum), white birch (Betula papyrifera), white pine (Pinus strobus) and eastern
hemlock (Tsuga canadenesis). Most of the forest was artificially planted in the first half of the twentieth
century over reclaimed agricultural land [39]. Permanent sites for research in a wide array of fields such
as biodiversity, conservation, forest-atmosphere carbon exchange and soil warming to name a few are
distributed throughout the forest.
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Figure 2. Harvard Forest tracts and plots. The inset shows a 1-ha plot with its sixteen 25 m
by 25 m subplots numbered one through sixteen.
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5.1. Harvard Forest Field Survey

During the summer of 2009 forest tree data was collected at the Harvard Forest in support of
developing radar and lidar remote sensing biomass mapping algorithms. Fifteen 1-ha forest plots each
measuring 200 m by 50 m were established. Each plot was subdivided into 16 subplots, each 25 m by
25 m. The orientation of each plot was chosen to be either 5 degrees for vertical plots, or 95 degrees
for horizontal plots, in order to align with radar overflight tracks. The shape of the plots was chosen to
maximize the overlap between the square radar pixels and forest measurement data. Of the 15 plots, ten
were in Prospect Hill (titled PH01 to PH10), two in Tom Swamp (TS01, TS02) and one in Slab City
(SC01). The remaining two plots were set in the nearby Federated Women’s Club State Forest (SF02
and SF04). Because the Prospect Hill tract is the main research site at the Harvard Forest, contains the
most diversity in species and has more low relief and accessible areas, most of the plots were placed in
Prospect Hill as seen in Figure 2. Otherwise, the locations of the plots were also chosen based on species
composition, age/structure, topography, accessibility and lidar/radar coverage. Some plots were set in
homogenous stands; PH1 and PH7 are set inside stands of predominantly tall and dense red pine trees,
PH4 and PH2 are set within a hemlock stand, PH6 and PH10 are set within stands of predominantly
young deciduous trees. Plots and subplots were geolocated using a combination of GPS, compass and
tape. Because of the thick canopy cover at the Harvard Forest, the absolute accuracy of the final GPS
reference locations was on the order of 4 m. For each of the 240 subplots, diameter, species and condition
(live or dead) for each tree larger than 10 cm was recorded.
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5.2. Allometric Equations for the Harvard Forest

Table A1 summarizes field diameter data for the 23 species and site-specific allometric equations used
for each to estimate tree biomass. All parameters and statistics listed are for allometric equations of the
form given in Equation (5) with diameters expressed in centimeters and estimated biomass in kilograms.
In Table A1, the entries labeled Min D, Max D and NT, summarize the diameter data collected over
the Harvard Forest. Min D and Max D are the minimum and maximum diameters recorded for a total
number of trees (NT) of the corresponding species. The column ‘Type’ refers to the type of equations
summarized in Ter-Mikaelian [12] used here to determine the weight of the trees surveyed at the Harvard
Forest. With only one very minor species exception this was always AB: total above ground biomass
(Table A1). For the Ter-Mikaelian analysis, AB equations were used to estimate biomass for 99.7% of
the total tree count at the Harvard Forest site.

The columns a, b are the coefficients of the allometric equations. The term ‘Range’ in field
‘Range/Over’ refers to the range of diameter values that either the chosen study reported or was estimated
by [12] and ‘Over’ refers to the number of trees in the diameter data collected over the Harvard Forest
that exceed this limit. Columns ‘MTD’, ‘R2’, ‘SEE’, ‘N’ are representative statistics highlighting the
performance of the regression between tree diameters and weights reported by the researchers that
developed these allometric coefficients. The column ‘MTD’ refers to the method used in fitting the
two variables, which include the use of log-transformed (ln: loge, log: log10) data for linear regression
or the use of weighted-non-linear (abs) regression for estimating the allometric coefficients. R2, the
coefficient of determination, is reported by most studies and summarized in [12]. The SEE (standard
error in estimate) is either reported by the authors or in a few cases had to be calculated from the data
summaries themselves. It is listed in units based on the fit methodology, i.e., either log, ln or abs. The
parameter ‘N’ refers to the number of samples (trees) used in the regression of tree diameter and weight
data for developing the allometric coefficients, while ‘CF’ is the correction factor suggested in [24] to
correct for biases caused by the conversion between arithmetic and logarithmic units. Finally the last two
columns in Table A1 refer to the location where the equation was developed and the equation authors
and their original publication.

When more than one equation was available, particular care was given to choosing equations so
that the weights and errors for most of the trees recorded during the Harvard Forest survey could
be accurately estimated. Ideally there would be coefficients and statistics for every species recorded
during the Harvard Forest survey, but that was not always the case. In the instances where allometric
coefficients and statistics for a particular species were not found in the Ter-Mikaelian study, substitute
equations and statistics were used. Very few individuals of any species for which there was not a specific
equation were encountered during the survey at the Harvard Forest. Thus we assume that the use of
substitute equations would not significantly impact the validity of the results presented here. For instance,
the two statistics SEE and CF for black birch (Betula velutina) were not listed in Ter-Mikaelian, so
they were estimated from the summary in Tritton and Hornbeck [33]. The allometric coefficients for
American chestnut (Castanea dentata) were not listed altogether in [12] so the coefficients from sugar
maple (Acer saccharum) were used instead, as suggested in [3]. Similarly, coefficients for paper birch
(Betula papyrifera) were used for hophornbeam (Ostrya virginiana, an infrequently occurring understory
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species). The SEE statistic for total weight was not available for red pine (Pinus resinosa) so the standard
error of the ‘stem-bark’ equation was used instead. The summary in Ter-Mikaelian does not list the error
from any of the equations in Young et al. [22]; in cases where those coefficients were used, SEE was
estimated for this article from the data summary in [22].

Coefficients from the Jenkins equations from [13] are summarized in Table A2. Both coefficients a, b
are for allometric equations of the form given in Equation (5). This study groups most important species
seen in the United States into eleven general classes. All 23 species measured at the Harvard Forest fall
into eight of those eleven classes. Since Jenkins et al. [34] pay attention to the range of diameter values
over which the coefficients are estimated (especially towards the higher end), very few trees measured at
the Harvard Forest exceed the limits of these equations.

The coefficients of the biomass equations from Lambert et al. [14] of the form given in Equations (8)
through Equation (12) are summarized in Table A3. The coefficients for the four component equations
are listed as ai, bi for the ith component (stem, bark, branches or foliage, respectively). The error
parameters σSUR and σtt are the SUR system variance and error in the total biomass equation as described
in Section 4.3. The field ψt (D) refers to the coefficient of the function that models heteroscedasticity of
error in the total biomass equation, i.e., coefficient ‘c’ in ψt (D) = Dc. The columns ‘Range’ refers to
the range of diameter values the equations were regressed over and ‘N’ to the number of samples or trees
of each species used in the regressions. For species at Harvard Forest for which specific equations were
not provided in Lambert et al. [14], coefficients for general softwood (pines and other gymnosperms) or
hardwood (maples and other angiosperms) equations were used.

5.3. Comparison of Biomass Estimates and Errors

Individual tree weights and associated uncertainties were estimated for the Harvard Forest 2009
dataset using coefficients listed in Tables A1–A3 with the appropriate biomass and error equations
discussed in Sections 3 and 4 respectively. Figure 3 shows the mean tree weights (in kg) for four of
the major tree species encountered at the Harvard Forest as a function of the diameters measured during
the field survey. Error bars using 95% confidence intervals are also shown. Since a majority (90 percent)
of the measured diameters are less than 40 cm, the diameter range in Figure 3 is truncated at 40 cm. In
all cases a diameter measurement accuracy, σD, of 2% was chosen [40].

As expected the mean tree biomass of softwoods (dominantly red pines and hemlocks) are lower
than the mean tree biomass of hardwoods (dominantly red maples and red oaks). Within the hardwood
category, compared with the oaks, red maples have lower specific wood density so they tend to have
lower biomass values. This is noticeable in Figure 3 with the biomass of red maples only slightly greater
than those of hemlocks and pines of the same size. The more noticeable trend in Figure 3 is the large
uncertainty in tree biomass estimates. In all four cases shown here, the error exceeds 100% of the mean
tree biomass for larger diameters. The mean biomass and error estimates from the Lambert equations
tend to be less than or equal to estimates from the other two allometric equations for most species.
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Figure 3. Estimated tree weights with 95% confidence intervals for the four major tree
species at the Harvard Forest.
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These per-tree biomass estimates were summed over all trees in a subplot (one subplot = 0.0625 ha)
and multiplied by the appropriate scale factors to generate estimates of biomass in units of tons/ha. The
biomass errors for the subplots, obtained by using the root sum of squares of the individual tree errors,
were also multiplied by the same scaling factors to convert the errors into units of tons/ha. Figure 4
compares the total biomass estimates for all the subplots obtained using the three different allometries.
Estimates from the Jenkins allometry [13] are plotted against subplot-level biomass estimates from the
Ter-Mikaelian [12] and Lambert [14] allometries. The errors in biomass estimates from each of the
allometries are shown as error-bars of widths corresponding to 95% confidence intervals. The mean
estimates from the Ter-Mikaelian and Jenkins equations are consistent, but the estimates from the
Lambert equations are consistently lower. The subplot-level biomass estimates over the Harvard Forest
range from 50 tons/ha to 500 tons/ha with mean values of roughly 200 tons/ha from the Lambert and
250 tons/ha from the other two allometries.

Figure 5 shows the per-tree weights aggregated for the corresponding plots to generate hectare-level
biomass totals from the three allometric equations. Estimates of errors are shown as error-bars using
95% confidence intervals. The biomass values for the fifteen 1-ha plots over the Harvard Forest range
from 115 to 350 tons/ha. The confidence intervals for these hectare-level biomass estimates are fairly
narrow, with mean errors of 2 tons/ha for the Lambert and Ter-Mikaelian allometries and slightly higher
errors of 4 tons/ha for estimates using the Jenkins allometry.
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Figure 4. Comparison of subplot-level biomass estimated over the Harvard Forest using
the Ter-Mikaelian [12] (Table A1), Jenkins [13] (Table A2) and Lambert [14] (Table A3)
allometric equations.

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

Biomass [t/h] (Jenkins)

B
io

m
a

s
s
 [
t/
h

] 
(M

ik
a

e
lia

n
, 
L

a
m

b
e

rt
)

 

 

Ter-Mikaelian

Lambert

Figure 5. Hectare level biomass estimates using Ter-Mikaelian [12] (Table A1), Jenkins [13]
(Table A2) and Lambert [14] (Table A3) allometric equations.
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Figure 6 shows a comparison of the estimated errors as a function of mean biomass at the 1-ha (plot)
and 0.0625-ha (subplot) level for the three sets of allometric equations. The error from the Jenkins
equations is higher with a mean value of 18.8 tons/ha for subplots and 4.95 tons/ha for 1-ha plots.
The mean error for both the Ter-Mikaelian and Lambert allometries is roughly the same at 2 tons/ha
and 7 tons/ha for plot and subplot level estimates respectively. The maximum error in subplot level
estimates can be as high as 86 tons/ha for the Jenkins equations while the maximum for both Lambert
and Ter-Mikaelian equations are on the order of 30 tons/ha. At the ha-level the Jenkins equations again
display a maximum error of approximately 8 tons/ha. The biomass error at the subplot-level has a
strong dependence on the mean biomass value for either allometry. Errors from the Jenkins equations
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also display an increase in their variance as a function of the mean biomass values at both subplot and
ha-levels. This effect is less noticeable for the other two allometries.

Figure 6. Subplot (left) and hectare level (right) biomass error as a function of mean
biomass from the Ter-Mikaelian [12] (Table A1), Jenkins [13] (Table A2) and Lambert [14]
(Table A3) allometric equations.
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6. Howland Forest, Maine

The Howland Forest research facility, managed by the University of Maine since 1989, is spread
over 200 ha in central Maine near the town of Howland, 50 km north of Bangor, Maine. Figure 7
shows its two tracts, one near the town of Howland and the other near Penobscot. The forest, a
boreal-northern hardwood transitional forest, consists mainly of spruce, fir, hemlock, pines and maples.
The topography of the region is generally flat and the field sites are also laid out in low relief areas.
At Howland and Penobscot, plots of the same dimensions as those established at the Harvard Forest
were laid out and surveyed. The field surveys over Howland/Penobscot and Harvard were part of the
same data collection effort so the methodology over these two sites was deliberately similar. We use data
from both the Howland and Penobscot Forest surveys, however for simplicity they are hereafter referred
to as the Howland Forest.

6.1. Howland Forest Field Survey

At the Howland Forest 11 1-ha plots were surveyed during the summer of 2009. Data from 12 1-ha
plots were also collected at Penobscott. A total of 28 species were recorded during the two field surveys.
Of those, eight account for roughly 90% of the total tree stem count and biomass. The field data recorded
species, diameters (dbh) and condition over all subplots within the multiple 1-ha plots.

6.2. Allometric Equations for the Howland Forests

Of the 28 species recorded at the Howland Forest, 17 had been encountered at the Harvard Forest
as well. For species common to both the Harvard and Howland Forest datasets, allometric equations
summarized in Section 5.2 were used to generate biomass and error estimates over the Howland



Remote Sens. 2013, 5 3024

Forest. For the species that were only seen at the Howland Forest and not at the Harvard Forest,
coefficients from the Ter-Mikaelian equations [12] were selected (Table A4). Coefficients for green ash
(Fraxinus pennsylvanica) were not summarized in [12], therefore those of black ash (Fraxinus nigra)
were used. Similarly, coefficients from bigtooth aspen (Populus grandidentata) were used for balsam
poplar (Populus balsamifera). For a small number of stems, species was not recorded. In such cases the
coefficients for balsam fir (Abies balsamea) were used since it was the most widespread species.

Figure 7. Howland Forest Research facility includes two sites, one near the town of Howland
and the other near Penobscott in central Maine.
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The eleven species unique to the Howland Forest dataset belong to the same eight classes for
the Jenkins equations as summarized in Table A2. Balsam fir (Abies balsamea) belongs to the
True Fir/Hemlock class, mountain maple (Acer spicatum) to the Soft Maple/Birch class, while black
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ash (Fraxinus nigra), green ash (Fraxinus pennsylvanica) and American elm (Ulmus americana) are
classified as Mixed Hardwoods in [13]. For the two spruce species, Norway and black (Picea abies,
Picea mariana) coefficients from the Spruce class were used, while coefficients from the Cedar/Larch
class were used for white cedar (Thuja occidentalis). Both balsam poplar (Populus balsamifera) and
trembling aspen (Populus tremuloides) are classified into the Aspen/Adler/Willow category. Biomass for
the unidentified trees was estimated using the True fir/Hemlock equation.

Allometric coefficients from Lambert et al. [14] for the species unique to the Howland forest are
summarized in Table A5. Here, coefficients for most of the species were available, except for mountain
maple (Acer spicatum), green ash (Fraxinus pennsylvanica) and Norway spruce (Picea abies). For the
first two, coefficients from the general hardwood equations were used, while the coefficients from the
softwood equation were used for Norway spruce. The biomass of all the unidentified trees was estimated
using a general hardwood equation as well.

6.3. Comparison of Biomass Estimates and Errors

Total biomass estimates for the 23 plots and the corresponding 368 subplots at the Howland Forest
were estimated by summing the tree biomass estimates obtained using the three different allometric
equations. Unlike the Harvard Forest dataset, a larger number of low-biomass sites were sampled during
the field surveys over the Howland Forest. Figure 8 shows the comparison of subplot-level biomass
estimates from the three allometric equations; Jenkins [13], Ter-Mikaelian [12] and Lambert [14]. Errors
in these subplot-level biomass estimates are shown as error-bars using 95% confidence intervals.

Figure 8. Comparison of subplot-level biomass estimated using the Ter-Mikaelian [12]
(Table A4), Jenkins [13] (Table A2) and Lambert [14] (Table A5) allometric equations over
the Howland Forest.
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As was the case with the Harvard Forest estimates, the Lambert allometry (shown here in green)
consistently underestimates the biomass values compared with the Jenkins equations. Mean biomass
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estimates from Ter-Mikaelian and Jenkins equations, however, are similar. The range of biomass values
at the Howland Forest at the subplot-level is similar to the Harvard Forest (of roughly 450 tons/ha),
however there are more subplots with fairly low biomass values (less than 50 tons/ha) that are not present
in the Harvard Forest dataset.

Figure 9 shows the biomass estimates for the twenty three hectares at the Howland Forest obtained
from the three different allometric equations. The biomass estimates from these sites, with the descriptor
H for Howland and P for Penobscot, range from close to zero (plot P9) to about 270 tons/ha (plot P1).
The high biomass values at Howland are not as high as those at the Harvard Forest (of up to 350 tons/ha),
primarily due to the larger number of hardwoods at the Harvard Forest site. However, the low biomass
sites, such as P9 at Howland, are much lower than any found at the Harvard Forest, primarily because
they are comprised of very low density, small trees (about 77 trees in total with diameters ranging from
6 to 13 cm). Similar site structures were not surveyed at the Harvard Forest.

Figure 9. Comparison of hectare-level biomass estimated using the Ter-Mikaelian [12]
(Table A4), Jenkins [13] (Table A2) and Lambert [14] (Table A5) allometric equations over
the Howland Forest.
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Figure 10. Subplot and plot level biomass error as a function of mean biomass from the Ter-
Mikaelian [12] (Table A4), Jenkins [13] (Table A2) and Lambert [14] (Table A5) allometric
equations over the Howland Forest.
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Figure 10 shows the error estimates from the three allometries as a function of mean estimated
biomass at the two spatial scales (subplots and hectares). These errors, much like those for the Harvard
Forest, increase as a function of the mean biomass value for both the subplot and ha-levels. The variance
of the errors from the Jenkins equations increases as a function of the mean biomass as well. Of the three
allometric equations the mean errors are highest for the Jenkins equations at 8.7 tons/ha and 2.3 tons/ha
for subplots and hectares respectively. Much like Harvard Forest, both the Ter-Mikaelian and Lambert
allometries yield lower and consistent mean error values of roughly 1 ton/ha and 4 tons/ha for hectares
and subplots.

7. Implications for Remote Sensing

Remote sensing instruments such as radar and lidar do not measure tree weights or forest biomass
directly, but rather measure some aspect of forest structure, which is in turn related to forest biomass.
Typically, algorithms used to translate remote sensing observations to forest biomass estimates rely on
field data (often called “ground-truth”) for calibration and validation. The quality of remote sensing
estimates of forest biomass is therefore directly affected by the quality of the ground-truth data. Of
particular interest to any analysis of remote sensing algorithms used to predict biomass is the bias
and uncertainty in those biomass estimates. Assuming that remote sensing algorithms can be properly
calibrated, the amount of bias is likely dominated by the difference between field estimates of biomass
and the actual forest biomass. Analyzing this bias is a difficult proposition, as it implies cutting down
and weighing a sub-sample of the measured trees, which would be time-consuming and prohibitively
expensive. Researchers are left with a large set of allometric equations that may or may not predict
forest biomass accurately. It is therefore instructive to at least compare the variability between biomass
estimates from the various allometric equations to understand the range of possible ground-truth values.
We did so by comparing the biomass estimates from Ter-Mikaelian, Jenkins and Lambert allometric
equations and analyzing their associated uncertainties. In addition, we have provided an estimate of the
contribution of errors in ground truth-data to the total error budget of remote sensing biomass estimation
algorithms. There was good agreement between the biomass values, at both subplot- and hectare-levels
estimated using the Ter-Mikaelian and Jenkins allometries at both the Harvard and Howland sites. The
Lambert biomass estimates were consistently lower, in some cases by up to 30 percent. Two factors
distinguish the Lambert equations. First, the methodology used to develop the Lambert equations is
somewhat different, and second, the destructive sampling tree data was collected in more northern
Latitudes, across Canada instead of within the United States. While it is tempting to choose the
Ter-Mikaelian or Jenkins equations because of their apparent agreement, the Lambert study has its merits
because of the thorough and sound nature of the statistical framework analysis presented there.

Tables 1 and 2 summarize statistics for errors in biomass estimates at subplot- and hectare-scales
respectively at the Howland and Harvard Forests. The statistics in terms of the mean, the maximum
and the minimum for each of the three allometries are expressed in units of tons/ha. The errors in
biomass estimates at the Howland Forest are lower in general than the errors at the Harvard Forest. This
difference can primarily be attributed to the lower biomass estimates at the Howland Forest. Errors
from the Jenkins allometry seem to be largest among the three allometries, with errors in estimates from
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the Lambert allometry consistently the lowest. At the subplot-level, the largest error is approximately
30 percent of the estimated biomass value for that subplot, which can exceed remote sensing
requirements [1,41], necessitating a careful analysis of the quality of ground truth data. At the ha-level
however, biomass error is almost always within 5 percent of the biomass estimate, suggesting that at
larger spatial scales the quality of ground-truth data improves significantly, possibly to the point that
this data can be used for calibrating remote sensing algorithms. For instance, the best case RMS error
between lidar measurements and field estimates of biomass over the Harvard and Howland Forests is on
the order of 30 tons/ha [42]. Average errors of less than 5 tons/ha in ground truth estimates are thus only
a small part of the total error budget and likely acceptable for calibration/validation purposes.

Table 1. Subplot scale comparison of biomass errors from the three allometries at the two
study sites. All errors are listed in units of tons/ha.

Ter-Mikaelian Jenkins Lambert

Harvard
Mean 7.740 18.578 8.828
Min 2.415 3.799 2.171
Max 31.735 86.245 33.992

Howland
Mean 4.179 8.786 3.947
Min 0.099 0.213 0.102
Max 27.138 47.858 15.220

Table 2. Hectare scale comparison of biomass errors from the three allometries at the two
study sites. All errors are listed in units of tons/ha.

Ter-Mikaelian Jenkins Lambert

Harvard
Mean 2.096 4.950 2.286
Min 0.970 1.716 1.183
Max 3.503 7.984 2.917

Howland
Mean 1.173 2.373 1.027
Min 0.043 0.160 0.079
Max 3.143 5.395 1.979

8. Conclusions

In this article, an effort was made to characterize the uncertainty of biomass estimates from data
collected during field surveys over the Harvard and Howland Forests, representing typical eco-regions of
the Northeastern United States. The field data consisted of diameter and species information from every
tree larger than 10 cm over a total of 38 one-ha plots spread throughout the two sites. Three different
sets of allometric equations were used to estimate mean biomass and the errors associated with those
estimates. A comparison of the biomass and error estimates over the Harvard and Howland sites using
the three allometries at subplot (25 × 25 m) and hectare (50 × 200 m) scales was presented. At the
Harvard Forest, the biomass estimates ranged from 50 to 500 tons/ha for subplots and 113 to 250 tons/ha
for one-ha plots, while at the Howland Forest the biomass values of up to 450 tons/ha and 250 tons/ha
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were estimated at subplot and one-ha plot scales respectively. The average error in subplot-scale biomass
estimates varied between 4 and 20 tons/ha, while at one-ha scales these errors were smaller and ranged
between 1 and 5 tons/ha.
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Appendix

A. Allometric Tables

Table A1. Summary of diameter data for the 23 species catalogued at the Harvard Forest and the allometric coefficients chosen from
Ter-Mikaelian and Korzukhin[12].

Species Min D Max D NT Type a b Range/Over R2 SEE MTD CF N Region Author
Striped maple (Acer pennsylvanica) 9.14 17.78 23 ST 0.0839 2.2300 (1–8)/23 0.987 0.279 ln 1.040 8 New Hampshire Hocker and Early, 1983 [43]

Red maple (Acer rubrum) 8.12 69.21 2850 AB 0.1789 2.2334 (10–52)/23 0.98 0.116 ln 1.007 150 Michigan, Wisconsin Crow and Erdmann, 1983 [25]

Sugar maple (Acer saccharum) 10.66 45.21 31 AB 0.1599 2.3376 (1–41)/1 0.993 0.141 ln 1.010 45 New Brunswick Ker, 1980 [26]

Yellow birch (Betula alleghaneisis) 10.166 53.85 234 AB 0.1684 2.4150 (1–55)/0 0.994 0.099 log 1.011 14 New Hampshire Whittaker, 1974 [29]

Black birch (Betula lenta) 9.652 48.514 305 AB 0.0629 2.6606 (5–50)/0 0.990 0.0133 log 1.002 8 West Virginia Brenneman, 1978 [30]

Paper birch (Betula papyrifera) 8.89 81.65 499 AB 0.1074 2.4313 (3–33)/16 0.99 0.141 ln 1.010 45 Nova Scotia Ker, 1980 [27]

Grey birch (Betula populifolia) 9.5 9.5 1 AB 0.1218 2.3123 (1–23)/0 0.99 0.141 ln 1.010 44 Nova Scotia Ker, 1980 [27]

American chestnut (Castanea dentata) 10.414 18.542 7 AB 0.1599 2.3376 (1–41)/0 0.993 0.141 ln 1.010 45 New Brunswick Ker, 1980 [26]

American beech (Fagus grandifolia) 8.89 71.95 130 AB 0.1957 2.3916 (1–60)/2 0.994 0.089 log 1.009 14 New Hampshire Whittaker, 1974 [29]

White ash (Fraxinus americana) 3.175 59.56 78 AB 0.1535 2.3213 (1–28)/25 0.992 0.141 ln 1.010 46 New Brunswick Ker, 1980 [26]

Tamarack (Larix laricina) 41.14 44.19 2 AB 0.0946 2.3572 (1–31)/2 0.993 0.141 ln 1.010 45 New Brunswick Ker, 1980 [27]

Hophornbeam (Ostrya virginiana) 13.46 13.46 1 AB 0.1074 2.4313 (3–33)/16 0.99 0.141 ln 1.010 45 Nova Scotia Ker, 1980 [27]

Red pine (Pinus resinosa) 4.318 53.361 1230 AB 0.0778 2.4171 (3-46)/11 0.993 0.111 ln 1.006 69 Upper Great Lakes Perala, Alban, 1994 [32]

Red spruce (Picea rubens) 9.906 2.451 103 AB 0.2066 2.1830 (1-35)/9 0.982 0.107 log 1.013 15 New Hampshire Whittaker, 1974 [29]

White pine (Pinus strobus) 8.89 111.76 947 AB 0.0696 2.4490 (3–66)/28 0.99 0.2092 ln 1.022 35 Maine Young, 1980 [22]

Bigtooth aspen (Populus grandidentata) 10.033 40.132 9 AB 0.0983 2.3373 (1–34)/2 0.99 0.156 ln 1.012 30 Nova Scotia Freedman, 1982 [44]

Pin cherry (Prunus pennsylvanica) 8.89 10.795 6 AB 0.1556 2.1948 (3–24)/0 0.99 0.372 ln 1.071 30 Maine Young, 1980 [22]

Black cherry (Prunus serotina) 8.89 48.260 197 AB 0.1225 2.4253 (5–40)/11 0.99 20.41 abs n/a 19 West Virginia Wiant, 1977 [31]

White oak (Quercus alba) 8.89 57.15 187 AB 0.0472 2.7010 (5–40)/18 0.986 32.66 abs n/a 19 West Virginia Wiant, 1977 [31]

Red oak (Quercus rubra) 7.112 136.906 2102 AB 0.0643 2.6598 (5–40)/302 0.988 35.87 abs n/a 19 West Virginia Wiant, 1977 [31]

Black oak (Quercus velutina) 11.684 51.81 16 AB 0.0945 2.5030 (5–40)/1 0.99 22.68 abs n/a 19 West Virginia Wiant, 1977 [31]
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Table A1. Cont.

Species Min D Max D NT Type a b Range/Over R2 SEE MTD CF N Region Author

American basswood (Tilia americana) 13.71 13.71 1 AB 0.0617 2.5328 (5–50)/0 0.96 0 abs n/a 13 West Virginia Brenneman, 1978 [30]

Eastern hemlock (Tsuga canadenesis) 4.572 89.916 1473 AB 0.0991 2.3617 (3–51)/129 n/a 0.130 ln 1.0085 36 Maine Young, 1980 [22]

Table A2. Coefficients from Jenkins et al. [13] with the twenty three species at the Harvard Forest grouped into eight categories.

Tree/Shrub species a b Max Dbh R2 SEE
Aspen/Alder/Willow 0.1098 2.3867 70 0.95 0.507441

Bigtooth aspen (Populus grandidentata)
Soft Maple/Birch 0.1477 2.3651 66 0.96 0.491685

Striped maple (Acer pennsylvanicum), red maple (Acer rubrum), yellow birch (Betula alleghaniensis), black
birch (Betula lenta), paper birch (Betula papyrifera), gray birch (Betula populifolia)

Mixed Hardwood 0.0837 2.4835 56 0.98 0.360458
American chestnut (Castanea dentata), white ash (Fraxinus americana), hophornbeam (Ostrya virginiana),
pin cherry (Prunus pennsylvanica), black cherry (Prunus serotina), American basswood (Tilia americana)

Hard maple/Oak/Beech 0.1336 2.4342 73 0.99 0.236483
Sugar maple (Acer saccharum), American beech (Fagus grandifolia), white oak (Quercus alba), red oak
(Quercus rubra), black oak (Quercus velutina)

Cedar/ Larch 0.1309 2.2592 250 0.98 0.294574
Tamarack (Larix laricina)

True fir/ Hemlock 0.0790 2.4814 230 0.99 0.182329
Eastern hemlock (Tsuga canadenesis)

Pine 0.0792 2.4349 180 0.98 0.253781
Red pine (Pinus resinosa), white pine (Pinus strobus)

Spruce 0.1253 2.3323 250 0.98 0.250424
Red spruce (Picea rubens)
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Table A3. Summary of coefficients from the Lambert allometric equations [14] for the twenty three species catalogued at the
Harvard Forest.

Species astem bstem abark bbark abranches bbranches afoliage bfoliage σSUR σtt ψt (D) Range N

Stripe maple (Acer pennsylvanicum) 0.0871 2.3702 0.0241 2.1969 0.0167 2.4807 0.0390 1.6629 1.0000 0.0373 3.63 - -

Red maple (Acer rubrum) 0.1014 2.3448 0.0291 2.0893 0.0175 2.4846 0.0515 1.5198 1.0006 0.0050 4.25 2.4–56.0 177

Sugar maple (Acer saccharum) 0.1315 2.3129 0.0631 1.9241 0.0330 2.3741 0.0393 1.6930 1.0002 0.0828 3.28 2.0–57.8 235

Yellow birch (Betula alleghaneisis) 0.1932 2.1569 0.0192 2.2475 0.0305 2.4404 0.1119 1.3973 1.0003 2.8971 2.34 0.8–70.3 280

Black birch (Betula lenta) 0.1754 2.1616 0.0381 2.0991 0.0085 2.7790 0.0373 1.6740 1.0075 0.0344 3.64 1.1–55.3 117

Paper birch (Betula papyrifera) 0.0593 2.5026 0.0135 2.4053 0.0135 2.5532 0.0546 1.6351 1.0001 0.0067 3.81 1.5–53.6 606

Grey birch (Betula populifolia) 0.0720 2.3885 0.0168 2.2569 0.0088 2.5689 0.0099 1.8985 2.2562 0.0016 3.92 2.2–22.7 43

American chestnut (Castanea dentata) 0.0871 2.3702 0.0241 2.1969 0.0167 2.4807 0.0390 1.6629 1.0000 0.0373 3.63 - -

American beech (Fagus grandifolia) 0.1478 2.2986 0.0120 2.2388 0.0370 2.3680 0.0376 1.6164 1.0102 0.4720 2.92 1.8–46.3 177

White ash (Fraxinus americana) 0.1861 2.1665 0.0406 1.9946 0.0461 2.2291 0.1106 1.2277 1.0053 0.0363 3.62 2.4–53.7 109

Tamrack (Larix laricina) 0.0625 2.4475 0.0174 2.1109 0.0196 2.2652 0.0801 1.4875 1.0003 0.0052 3.88 1.8–44.5 575

Hophornbeam (Ostrya virginiana) 0.1929 1.9672 0.0671 1.5911 0.0278 2.1336 0.0293 1.9502 0.7228 0.0679 2.73 5.2–18.5 14

Red pine (Pinus resinosa) 0.0564 2.4465 0.0188 2.0572 0.0033 2.7515 0.0212 2.0690 1.0005 0.0052 3.95 1.3–55.1 371

Red spruce (Picea rubens) 0.0989 2.2814 0.0220 2.0908 0.0005 3.2750 0.0066 2.4213 1.0956 0.0059 3.64 6.5–45.3 55

White pine (Pinus strobus) 0.0997 2.2709 0.0192 2.2038 0.0056 2.6011 0.0284 1.7166 1.0016 0.3142 2.76 1.5–68.7 199

Bigtooth aspen (Populus grandidentata) 0.0959 2.3430 0.0308 2.2240 0.0047 2.6530 0.0080 2.0149 1.0026 0.3645 2.35 1.9–39.2 100

Pin cherry (Prunus pennsylvanica) 0.0871 2.3702 0.0241 2.1969 0.0167 2.4807 0.0390 1.6629 1.0000 0.0373 3.63 - -

Black cherry (Prunus serotina) 0.3743 1.9406 0.0679 1.8377 0.0796 2.0103 0.0840 1.2319 1.0599 60.766 1.52 0.9–49.6 78

White oak (Quercus alba) 0.0762 2.3335 0.0338 1.9845 0.0113 2.6211 0.0188 1.7881 1.0043 0.0011 4.70 2.2–74.3 61

Red oak (Quercus rubra) 0.1754 2.1616 0.0381 2.0991 0.0085 2.7790 0.0373 1.6740 1.0075 0.0344 3.64 1.1–55.3 117

Black oak (Quercus velutina) 0.0871 2.3702 0.0241 2.1969 0.0167 2.4807 0.0390 1.6629 1.0000 0.0373 3.63 - -

American basswood (Tilia americana) 0.0562 2.4102 0.0302 2.0976 0.0230 2.2382 0.0288 1.6378 1.0101 0.1755 2.91 3.7–54.8 80

Eastern hemlock (Tsuga canadenesis) 0.0619 2.2381 0.0139 2.2382 0.0217 2.2653 0.0776 1.6995 1.0005 0.0156 3.60 1.3–51.4 235
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Table A4. Summary of diameter data for the eleven species unique to the Howland Forest dataset and the corresponding coefficients
chosen from Ter-Mikaelian allometry [12].

Species Min D Max D NT Type a b Range/Over R2 SEE MTD CF N Region Author

Balsam fir (Abies balsamea) 8.6 40 3102 AB 0.0690 2.4975 (3–40)/0 0.970 0.123 ln 1.008 40 Ontario Honer, 1971 [45]

Mountain maple (Acer spicatum) 11.0 23.4 6 AB 0.2040 2.2524 (1–20)/3 0.990 0.074 log 1.006 15 New Hampshire Whittaker, 1974 [29]

Black ash (Fraxinus nigra) 17.5 17.5 1 AB 0.1634 2.3480 (4–32)/0 0.953 0.348 ln 1.062 18 Upper Great Leakes Perala, Alban, 1994 [32]

Green ash (Fraxinus pennsylvanica) 17.5 17.5 1 AB 0.1634 2.3480 (4–32)/0 0.953 0.348 ln 1.062 18 Upper Great Leakes Perala, Alban, 1994 [32]

Norway spruce (Picea abies) 10.6 40.0 47 AB 0.2722 2.1040 (12–44)/0 0.960 0.0152 ln 1.012 30 New York Jokela, 1986 [46]

Black spruce (Picea mariana) 10.0 27.00 94 AB 0.1683 2.1777 (2–34)/0 0.99 0.199 ln 1.020 49 Nova Scotia Ker, 1980 [27]

Balsam poplar (Populus balsamifera) 41.8 45.2 2 AB 0.0687 2.5153 (5–40)/2 0.99 1.780 abs 1.00 19 West Virginia Wiant, 1977 [31]

Trembling aspen (Populus tremuloides) 7 58 191 AB 0.2065 2.2490 (15–40)/25 0.988 0.037 log 1.002 191 Wisconsin Pastor,Bockheim, 1981 [47]

White cedar (Thuja occidentalis) 10.0 30 745 AB 0.1148 2.1439 (2–30)/82 0.991 0.141 ln 1.010 46 New Brunswick Ker, 1980 [26]

American elm (Ulmus americana) 13.0 22.7 6 AB 0.0825 2.4680 (4–29)/0 0.991 0.1418 ln 1.011 14 Upper Great Lakes Perala, Alban, 1994 [32]

Table A5. Summary of coefficients from the Lambert allometric equations [14] for the eleven species catalogued only at the
Howland Forest.

Species astem bstem abark bbark abranches bbranches afoliage bfoliage σSUR σtt ψt (D) Range N

Balsam fir (Abies balsamea) 0.0534 2.4030 0.0115 2.3484 0.0070 2.5406 0.0840 1.6695 1.0053 0.0047 3.63 1.5–42.4 639
Mountain maple (Acer spicatum) 0.0871 2.3702 0.0241 2.1969 0.0167 2.4807 0.0390 1.6629 1.0000 0.0373 3.63 - -

Black ash (Fraxinus nigra) 0.0941 2.3491 0.0323 2.0761 0.0448 1.9771 0.0538 1.3584 1.0029 0.0085 3.82 2.0–43.1 73

Green ash (Fraxinus pennsylvanica) 0.0871 2.3702 0.0241 2.1969 0.0167 2.4807 0.0390 1.6629 1.0000 0.0373 3.63 - -

Norway spruce (Picea abies) 0.0648 2.3927 0.0162 2.1959 0.0156 2.2916 0.0861 1.6261 1.0000 0.0065 3.82 - -

Black spruce (Picea mariana) 0.0477 2.5147 0.0153 2.2429 0.0278 2.0839 0.1648 1.4143 1.0005 0.0091 3.55 1.6–37.2 1534

Balsam poplar (Populus balsamea) 0.0510 2.4529 0.0297 2.1131 0.0120 2.4165 0.0276 1.6215 1.0032 0.0049 4.02 2.0–53.2 20

Trembling aspen (Populus tremuloides) 0.0605 2.4750 0.0168 2.3949 0.0080 2.5214 0.0261 1.6304 1.0000 0.0199 3.54 0.7–47.2 773

White cedar (Thuja occidentalis) 0.0654 2.2121 0.0114 2.1432 0.0335 1.9367 0.0499 1.7278 1.0009 0.0315 2.96 2.1–66.2 184

American elm (Ulmus americana) 0.0402 2.5804 0.0073 2.4895 0.0401 2.1826 0.0750 1.3436 1.3426 0.0337 3.28 0.7–55.2 81
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